• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Generated from vec.rs.tera template. Edit the template, not the generated file.
2 
3 use crate::{BVec3, Vec2, Vec4};
4 
5 #[cfg(not(target_arch = "spirv"))]
6 use core::fmt;
7 use core::iter::{Product, Sum};
8 use core::{f32, ops::*};
9 
10 #[cfg(feature = "libm")]
11 #[allow(unused_imports)]
12 use num_traits::Float;
13 
14 /// Creates a 3-dimensional vector.
15 #[inline(always)]
vec3(x: f32, y: f32, z: f32) -> Vec316 pub const fn vec3(x: f32, y: f32, z: f32) -> Vec3 {
17     Vec3::new(x, y, z)
18 }
19 
20 /// A 3-dimensional vector.
21 #[derive(Clone, Copy, PartialEq)]
22 #[cfg_attr(not(target_arch = "spirv"), repr(C))]
23 #[cfg_attr(target_arch = "spirv", repr(simd))]
24 pub struct Vec3 {
25     pub x: f32,
26     pub y: f32,
27     pub z: f32,
28 }
29 
30 impl Vec3 {
31     /// All zeroes.
32     pub const ZERO: Self = Self::splat(0.0);
33 
34     /// All ones.
35     pub const ONE: Self = Self::splat(1.0);
36 
37     /// All negative ones.
38     pub const NEG_ONE: Self = Self::splat(-1.0);
39 
40     /// All NAN.
41     pub const NAN: Self = Self::splat(f32::NAN);
42 
43     /// A unit-length vector pointing along the positive X axis.
44     pub const X: Self = Self::new(1.0, 0.0, 0.0);
45 
46     /// A unit-length vector pointing along the positive Y axis.
47     pub const Y: Self = Self::new(0.0, 1.0, 0.0);
48 
49     /// A unit-length vector pointing along the positive Z axis.
50     pub const Z: Self = Self::new(0.0, 0.0, 1.0);
51 
52     /// A unit-length vector pointing along the negative X axis.
53     pub const NEG_X: Self = Self::new(-1.0, 0.0, 0.0);
54 
55     /// A unit-length vector pointing along the negative Y axis.
56     pub const NEG_Y: Self = Self::new(0.0, -1.0, 0.0);
57 
58     /// A unit-length vector pointing along the negative Z axis.
59     pub const NEG_Z: Self = Self::new(0.0, 0.0, -1.0);
60 
61     /// The unit axes.
62     pub const AXES: [Self; 3] = [Self::X, Self::Y, Self::Z];
63 
64     /// Creates a new vector.
65     #[inline(always)]
new(x: f32, y: f32, z: f32) -> Self66     pub const fn new(x: f32, y: f32, z: f32) -> Self {
67         Self { x, y, z }
68     }
69 
70     /// Creates a vector with all elements set to `v`.
71     #[inline]
splat(v: f32) -> Self72     pub const fn splat(v: f32) -> Self {
73         Self { x: v, y: v, z: v }
74     }
75 
76     /// Creates a vector from the elements in `if_true` and `if_false`, selecting which to use
77     /// for each element of `self`.
78     ///
79     /// A true element in the mask uses the corresponding element from `if_true`, and false
80     /// uses the element from `if_false`.
81     #[inline]
select(mask: BVec3, if_true: Self, if_false: Self) -> Self82     pub fn select(mask: BVec3, if_true: Self, if_false: Self) -> Self {
83         Self {
84             x: if mask.x { if_true.x } else { if_false.x },
85             y: if mask.y { if_true.y } else { if_false.y },
86             z: if mask.z { if_true.z } else { if_false.z },
87         }
88     }
89 
90     /// Creates a new vector from an array.
91     #[inline]
from_array(a: [f32; 3]) -> Self92     pub const fn from_array(a: [f32; 3]) -> Self {
93         Self::new(a[0], a[1], a[2])
94     }
95 
96     /// `[x, y, z]`
97     #[inline]
to_array(&self) -> [f32; 3]98     pub const fn to_array(&self) -> [f32; 3] {
99         [self.x, self.y, self.z]
100     }
101 
102     /// Creates a vector from the first 3 values in `slice`.
103     ///
104     /// # Panics
105     ///
106     /// Panics if `slice` is less than 3 elements long.
107     #[inline]
from_slice(slice: &[f32]) -> Self108     pub const fn from_slice(slice: &[f32]) -> Self {
109         Self::new(slice[0], slice[1], slice[2])
110     }
111 
112     /// Writes the elements of `self` to the first 3 elements in `slice`.
113     ///
114     /// # Panics
115     ///
116     /// Panics if `slice` is less than 3 elements long.
117     #[inline]
write_to_slice(self, slice: &mut [f32])118     pub fn write_to_slice(self, slice: &mut [f32]) {
119         slice[0] = self.x;
120         slice[1] = self.y;
121         slice[2] = self.z;
122     }
123 
124     /// Internal method for creating a 3D vector from a 4D vector, discarding `w`.
125     #[allow(dead_code)]
126     #[inline]
from_vec4(v: Vec4) -> Self127     pub(crate) fn from_vec4(v: Vec4) -> Self {
128         Self {
129             x: v.x,
130             y: v.y,
131             z: v.z,
132         }
133     }
134 
135     /// Creates a 4D vector from `self` and the given `w` value.
136     #[inline]
extend(self, w: f32) -> Vec4137     pub fn extend(self, w: f32) -> Vec4 {
138         Vec4::new(self.x, self.y, self.z, w)
139     }
140 
141     /// Creates a 2D vector from the `x` and `y` elements of `self`, discarding `z`.
142     ///
143     /// Truncation may also be performed by using `self.xy()` or `Vec2::from()`.
144     #[inline]
truncate(self) -> Vec2145     pub fn truncate(self) -> Vec2 {
146         use crate::swizzles::Vec3Swizzles;
147         self.xy()
148     }
149 
150     /// Computes the dot product of `self` and `rhs`.
151     #[inline]
dot(self, rhs: Self) -> f32152     pub fn dot(self, rhs: Self) -> f32 {
153         (self.x * rhs.x) + (self.y * rhs.y) + (self.z * rhs.z)
154     }
155 
156     /// Returns a vector where every component is the dot product of `self` and `rhs`.
157     #[inline]
dot_into_vec(self, rhs: Self) -> Self158     pub fn dot_into_vec(self, rhs: Self) -> Self {
159         Self::splat(self.dot(rhs))
160     }
161 
162     /// Computes the cross product of `self` and `rhs`.
163     #[inline]
cross(self, rhs: Self) -> Self164     pub fn cross(self, rhs: Self) -> Self {
165         Self {
166             x: self.y * rhs.z - rhs.y * self.z,
167             y: self.z * rhs.x - rhs.z * self.x,
168             z: self.x * rhs.y - rhs.x * self.y,
169         }
170     }
171 
172     /// Returns a vector containing the minimum values for each element of `self` and `rhs`.
173     ///
174     /// In other words this computes `[self.x.min(rhs.x), self.y.min(rhs.y), ..]`.
175     #[inline]
min(self, rhs: Self) -> Self176     pub fn min(self, rhs: Self) -> Self {
177         Self {
178             x: self.x.min(rhs.x),
179             y: self.y.min(rhs.y),
180             z: self.z.min(rhs.z),
181         }
182     }
183 
184     /// Returns a vector containing the maximum values for each element of `self` and `rhs`.
185     ///
186     /// In other words this computes `[self.x.max(rhs.x), self.y.max(rhs.y), ..]`.
187     #[inline]
max(self, rhs: Self) -> Self188     pub fn max(self, rhs: Self) -> Self {
189         Self {
190             x: self.x.max(rhs.x),
191             y: self.y.max(rhs.y),
192             z: self.z.max(rhs.z),
193         }
194     }
195 
196     /// Component-wise clamping of values, similar to [`f32::clamp`].
197     ///
198     /// Each element in `min` must be less-or-equal to the corresponding element in `max`.
199     ///
200     /// # Panics
201     ///
202     /// Will panic if `min` is greater than `max` when `glam_assert` is enabled.
203     #[inline]
clamp(self, min: Self, max: Self) -> Self204     pub fn clamp(self, min: Self, max: Self) -> Self {
205         glam_assert!(min.cmple(max).all(), "clamp: expected min <= max");
206         self.max(min).min(max)
207     }
208 
209     /// Returns the horizontal minimum of `self`.
210     ///
211     /// In other words this computes `min(x, y, ..)`.
212     #[inline]
min_element(self) -> f32213     pub fn min_element(self) -> f32 {
214         self.x.min(self.y.min(self.z))
215     }
216 
217     /// Returns the horizontal maximum of `self`.
218     ///
219     /// In other words this computes `max(x, y, ..)`.
220     #[inline]
max_element(self) -> f32221     pub fn max_element(self) -> f32 {
222         self.x.max(self.y.max(self.z))
223     }
224 
225     /// Returns a vector mask containing the result of a `==` comparison for each element of
226     /// `self` and `rhs`.
227     ///
228     /// In other words, this computes `[self.x == rhs.x, self.y == rhs.y, ..]` for all
229     /// elements.
230     #[inline]
cmpeq(self, rhs: Self) -> BVec3231     pub fn cmpeq(self, rhs: Self) -> BVec3 {
232         BVec3::new(self.x.eq(&rhs.x), self.y.eq(&rhs.y), self.z.eq(&rhs.z))
233     }
234 
235     /// Returns a vector mask containing the result of a `!=` comparison for each element of
236     /// `self` and `rhs`.
237     ///
238     /// In other words this computes `[self.x != rhs.x, self.y != rhs.y, ..]` for all
239     /// elements.
240     #[inline]
cmpne(self, rhs: Self) -> BVec3241     pub fn cmpne(self, rhs: Self) -> BVec3 {
242         BVec3::new(self.x.ne(&rhs.x), self.y.ne(&rhs.y), self.z.ne(&rhs.z))
243     }
244 
245     /// Returns a vector mask containing the result of a `>=` comparison for each element of
246     /// `self` and `rhs`.
247     ///
248     /// In other words this computes `[self.x >= rhs.x, self.y >= rhs.y, ..]` for all
249     /// elements.
250     #[inline]
cmpge(self, rhs: Self) -> BVec3251     pub fn cmpge(self, rhs: Self) -> BVec3 {
252         BVec3::new(self.x.ge(&rhs.x), self.y.ge(&rhs.y), self.z.ge(&rhs.z))
253     }
254 
255     /// Returns a vector mask containing the result of a `>` comparison for each element of
256     /// `self` and `rhs`.
257     ///
258     /// In other words this computes `[self.x > rhs.x, self.y > rhs.y, ..]` for all
259     /// elements.
260     #[inline]
cmpgt(self, rhs: Self) -> BVec3261     pub fn cmpgt(self, rhs: Self) -> BVec3 {
262         BVec3::new(self.x.gt(&rhs.x), self.y.gt(&rhs.y), self.z.gt(&rhs.z))
263     }
264 
265     /// Returns a vector mask containing the result of a `<=` comparison for each element of
266     /// `self` and `rhs`.
267     ///
268     /// In other words this computes `[self.x <= rhs.x, self.y <= rhs.y, ..]` for all
269     /// elements.
270     #[inline]
cmple(self, rhs: Self) -> BVec3271     pub fn cmple(self, rhs: Self) -> BVec3 {
272         BVec3::new(self.x.le(&rhs.x), self.y.le(&rhs.y), self.z.le(&rhs.z))
273     }
274 
275     /// Returns a vector mask containing the result of a `<` comparison for each element of
276     /// `self` and `rhs`.
277     ///
278     /// In other words this computes `[self.x < rhs.x, self.y < rhs.y, ..]` for all
279     /// elements.
280     #[inline]
cmplt(self, rhs: Self) -> BVec3281     pub fn cmplt(self, rhs: Self) -> BVec3 {
282         BVec3::new(self.x.lt(&rhs.x), self.y.lt(&rhs.y), self.z.lt(&rhs.z))
283     }
284 
285     /// Returns a vector containing the absolute value of each element of `self`.
286     #[inline]
abs(self) -> Self287     pub fn abs(self) -> Self {
288         Self {
289             x: self.x.abs(),
290             y: self.y.abs(),
291             z: self.z.abs(),
292         }
293     }
294 
295     /// Returns a vector with elements representing the sign of `self`.
296     ///
297     /// - `1.0` if the number is positive, `+0.0` or `INFINITY`
298     /// - `-1.0` if the number is negative, `-0.0` or `NEG_INFINITY`
299     /// - `NAN` if the number is `NAN`
300     #[inline]
signum(self) -> Self301     pub fn signum(self) -> Self {
302         Self {
303             x: self.x.signum(),
304             y: self.y.signum(),
305             z: self.z.signum(),
306         }
307     }
308 
309     /// Returns a vector with signs of `rhs` and the magnitudes of `self`.
310     #[inline]
copysign(self, rhs: Self) -> Self311     pub fn copysign(self, rhs: Self) -> Self {
312         Self {
313             x: self.x.copysign(rhs.x),
314             y: self.y.copysign(rhs.y),
315             z: self.z.copysign(rhs.z),
316         }
317     }
318 
319     /// Returns a bitmask with the lowest 3 bits set to the sign bits from the elements of `self`.
320     ///
321     /// A negative element results in a `1` bit and a positive element in a `0` bit.  Element `x` goes
322     /// into the first lowest bit, element `y` into the second, etc.
323     #[inline]
is_negative_bitmask(self) -> u32324     pub fn is_negative_bitmask(self) -> u32 {
325         (self.x.is_sign_negative() as u32)
326             | (self.y.is_sign_negative() as u32) << 1
327             | (self.z.is_sign_negative() as u32) << 2
328     }
329 
330     /// Returns `true` if, and only if, all elements are finite.  If any element is either
331     /// `NaN`, positive or negative infinity, this will return `false`.
332     #[inline]
is_finite(self) -> bool333     pub fn is_finite(self) -> bool {
334         self.x.is_finite() && self.y.is_finite() && self.z.is_finite()
335     }
336 
337     /// Returns `true` if any elements are `NaN`.
338     #[inline]
is_nan(self) -> bool339     pub fn is_nan(self) -> bool {
340         self.x.is_nan() || self.y.is_nan() || self.z.is_nan()
341     }
342 
343     /// Performs `is_nan` on each element of self, returning a vector mask of the results.
344     ///
345     /// In other words, this computes `[x.is_nan(), y.is_nan(), z.is_nan(), w.is_nan()]`.
346     #[inline]
is_nan_mask(self) -> BVec3347     pub fn is_nan_mask(self) -> BVec3 {
348         BVec3::new(self.x.is_nan(), self.y.is_nan(), self.z.is_nan())
349     }
350 
351     /// Computes the length of `self`.
352     #[doc(alias = "magnitude")]
353     #[inline]
length(self) -> f32354     pub fn length(self) -> f32 {
355         self.dot(self).sqrt()
356     }
357 
358     /// Computes the squared length of `self`.
359     ///
360     /// This is faster than `length()` as it avoids a square root operation.
361     #[doc(alias = "magnitude2")]
362     #[inline]
length_squared(self) -> f32363     pub fn length_squared(self) -> f32 {
364         self.dot(self)
365     }
366 
367     /// Computes `1.0 / length()`.
368     ///
369     /// For valid results, `self` must _not_ be of length zero.
370     #[inline]
length_recip(self) -> f32371     pub fn length_recip(self) -> f32 {
372         self.length().recip()
373     }
374 
375     /// Computes the Euclidean distance between two points in space.
376     #[inline]
distance(self, rhs: Self) -> f32377     pub fn distance(self, rhs: Self) -> f32 {
378         (self - rhs).length()
379     }
380 
381     /// Compute the squared euclidean distance between two points in space.
382     #[inline]
distance_squared(self, rhs: Self) -> f32383     pub fn distance_squared(self, rhs: Self) -> f32 {
384         (self - rhs).length_squared()
385     }
386 
387     /// Returns `self` normalized to length 1.0.
388     ///
389     /// For valid results, `self` must _not_ be of length zero, nor very close to zero.
390     ///
391     /// See also [`Self::try_normalize`] and [`Self::normalize_or_zero`].
392     ///
393     /// Panics
394     ///
395     /// Will panic if `self` is zero length when `glam_assert` is enabled.
396     #[must_use]
397     #[inline]
normalize(self) -> Self398     pub fn normalize(self) -> Self {
399         #[allow(clippy::let_and_return)]
400         let normalized = self.mul(self.length_recip());
401         glam_assert!(normalized.is_finite());
402         normalized
403     }
404 
405     /// Returns `self` normalized to length 1.0 if possible, else returns `None`.
406     ///
407     /// In particular, if the input is zero (or very close to zero), or non-finite,
408     /// the result of this operation will be `None`.
409     ///
410     /// See also [`Self::normalize_or_zero`].
411     #[must_use]
412     #[inline]
try_normalize(self) -> Option<Self>413     pub fn try_normalize(self) -> Option<Self> {
414         let rcp = self.length_recip();
415         if rcp.is_finite() && rcp > 0.0 {
416             Some(self * rcp)
417         } else {
418             None
419         }
420     }
421 
422     /// Returns `self` normalized to length 1.0 if possible, else returns zero.
423     ///
424     /// In particular, if the input is zero (or very close to zero), or non-finite,
425     /// the result of this operation will be zero.
426     ///
427     /// See also [`Self::try_normalize`].
428     #[must_use]
429     #[inline]
normalize_or_zero(self) -> Self430     pub fn normalize_or_zero(self) -> Self {
431         let rcp = self.length_recip();
432         if rcp.is_finite() && rcp > 0.0 {
433             self * rcp
434         } else {
435             Self::ZERO
436         }
437     }
438 
439     /// Returns whether `self` is length `1.0` or not.
440     ///
441     /// Uses a precision threshold of `1e-6`.
442     #[inline]
is_normalized(self) -> bool443     pub fn is_normalized(self) -> bool {
444         // TODO: do something with epsilon
445         (self.length_squared() - 1.0).abs() <= 1e-4
446     }
447 
448     /// Returns the vector projection of `self` onto `rhs`.
449     ///
450     /// `rhs` must be of non-zero length.
451     ///
452     /// # Panics
453     ///
454     /// Will panic if `rhs` is zero length when `glam_assert` is enabled.
455     #[must_use]
456     #[inline]
project_onto(self, rhs: Self) -> Self457     pub fn project_onto(self, rhs: Self) -> Self {
458         let other_len_sq_rcp = rhs.dot(rhs).recip();
459         glam_assert!(other_len_sq_rcp.is_finite());
460         rhs * self.dot(rhs) * other_len_sq_rcp
461     }
462 
463     /// Returns the vector rejection of `self` from `rhs`.
464     ///
465     /// The vector rejection is the vector perpendicular to the projection of `self` onto
466     /// `rhs`, in rhs words the result of `self - self.project_onto(rhs)`.
467     ///
468     /// `rhs` must be of non-zero length.
469     ///
470     /// # Panics
471     ///
472     /// Will panic if `rhs` has a length of zero when `glam_assert` is enabled.
473     #[must_use]
474     #[inline]
reject_from(self, rhs: Self) -> Self475     pub fn reject_from(self, rhs: Self) -> Self {
476         self - self.project_onto(rhs)
477     }
478 
479     /// Returns the vector projection of `self` onto `rhs`.
480     ///
481     /// `rhs` must be normalized.
482     ///
483     /// # Panics
484     ///
485     /// Will panic if `rhs` is not normalized when `glam_assert` is enabled.
486     #[must_use]
487     #[inline]
project_onto_normalized(self, rhs: Self) -> Self488     pub fn project_onto_normalized(self, rhs: Self) -> Self {
489         glam_assert!(rhs.is_normalized());
490         rhs * self.dot(rhs)
491     }
492 
493     /// Returns the vector rejection of `self` from `rhs`.
494     ///
495     /// The vector rejection is the vector perpendicular to the projection of `self` onto
496     /// `rhs`, in rhs words the result of `self - self.project_onto(rhs)`.
497     ///
498     /// `rhs` must be normalized.
499     ///
500     /// # Panics
501     ///
502     /// Will panic if `rhs` is not normalized when `glam_assert` is enabled.
503     #[must_use]
504     #[inline]
reject_from_normalized(self, rhs: Self) -> Self505     pub fn reject_from_normalized(self, rhs: Self) -> Self {
506         self - self.project_onto_normalized(rhs)
507     }
508 
509     /// Returns a vector containing the nearest integer to a number for each element of `self`.
510     /// Round half-way cases away from 0.0.
511     #[inline]
round(self) -> Self512     pub fn round(self) -> Self {
513         Self {
514             x: self.x.round(),
515             y: self.y.round(),
516             z: self.z.round(),
517         }
518     }
519 
520     /// Returns a vector containing the largest integer less than or equal to a number for each
521     /// element of `self`.
522     #[inline]
floor(self) -> Self523     pub fn floor(self) -> Self {
524         Self {
525             x: self.x.floor(),
526             y: self.y.floor(),
527             z: self.z.floor(),
528         }
529     }
530 
531     /// Returns a vector containing the smallest integer greater than or equal to a number for
532     /// each element of `self`.
533     #[inline]
ceil(self) -> Self534     pub fn ceil(self) -> Self {
535         Self {
536             x: self.x.ceil(),
537             y: self.y.ceil(),
538             z: self.z.ceil(),
539         }
540     }
541 
542     /// Returns a vector containing the fractional part of the vector, e.g. `self -
543     /// self.floor()`.
544     ///
545     /// Note that this is fast but not precise for large numbers.
546     #[inline]
fract(self) -> Self547     pub fn fract(self) -> Self {
548         self - self.floor()
549     }
550 
551     /// Returns a vector containing `e^self` (the exponential function) for each element of
552     /// `self`.
553     #[inline]
exp(self) -> Self554     pub fn exp(self) -> Self {
555         Self::new(self.x.exp(), self.y.exp(), self.z.exp())
556     }
557 
558     /// Returns a vector containing each element of `self` raised to the power of `n`.
559     #[inline]
powf(self, n: f32) -> Self560     pub fn powf(self, n: f32) -> Self {
561         Self::new(self.x.powf(n), self.y.powf(n), self.z.powf(n))
562     }
563 
564     /// Returns a vector containing the reciprocal `1.0/n` of each element of `self`.
565     #[inline]
recip(self) -> Self566     pub fn recip(self) -> Self {
567         Self {
568             x: self.x.recip(),
569             y: self.y.recip(),
570             z: self.z.recip(),
571         }
572     }
573 
574     /// Performs a linear interpolation between `self` and `rhs` based on the value `s`.
575     ///
576     /// When `s` is `0.0`, the result will be equal to `self`.  When `s` is `1.0`, the result
577     /// will be equal to `rhs`. When `s` is outside of range `[0, 1]`, the result is linearly
578     /// extrapolated.
579     #[doc(alias = "mix")]
580     #[inline]
lerp(self, rhs: Self, s: f32) -> Self581     pub fn lerp(self, rhs: Self, s: f32) -> Self {
582         self + ((rhs - self) * s)
583     }
584 
585     /// Returns true if the absolute difference of all elements between `self` and `rhs` is
586     /// less than or equal to `max_abs_diff`.
587     ///
588     /// This can be used to compare if two vectors contain similar elements. It works best when
589     /// comparing with a known value. The `max_abs_diff` that should be used used depends on
590     /// the values being compared against.
591     ///
592     /// For more see
593     /// [comparing floating point numbers](https://randomascii.wordpress.com/2012/02/25/comparing-floating-point-numbers-2012-edition/).
594     #[inline]
abs_diff_eq(self, rhs: Self, max_abs_diff: f32) -> bool595     pub fn abs_diff_eq(self, rhs: Self, max_abs_diff: f32) -> bool {
596         self.sub(rhs).abs().cmple(Self::splat(max_abs_diff)).all()
597     }
598 
599     /// Returns a vector with a length no less than `min` and no more than `max`
600     ///
601     /// # Panics
602     ///
603     /// Will panic if `min` is greater than `max` when `glam_assert` is enabled.
604     #[inline]
clamp_length(self, min: f32, max: f32) -> Self605     pub fn clamp_length(self, min: f32, max: f32) -> Self {
606         glam_assert!(min <= max);
607         let length_sq = self.length_squared();
608         if length_sq < min * min {
609             self * (length_sq.sqrt().recip() * min)
610         } else if length_sq > max * max {
611             self * (length_sq.sqrt().recip() * max)
612         } else {
613             self
614         }
615     }
616 
617     /// Returns a vector with a length no more than `max`
clamp_length_max(self, max: f32) -> Self618     pub fn clamp_length_max(self, max: f32) -> Self {
619         let length_sq = self.length_squared();
620         if length_sq > max * max {
621             self * (length_sq.sqrt().recip() * max)
622         } else {
623             self
624         }
625     }
626 
627     /// Returns a vector with a length no less than `min`
clamp_length_min(self, min: f32) -> Self628     pub fn clamp_length_min(self, min: f32) -> Self {
629         let length_sq = self.length_squared();
630         if length_sq < min * min {
631             self * (length_sq.sqrt().recip() * min)
632         } else {
633             self
634         }
635     }
636 
637     /// Fused multiply-add. Computes `(self * a) + b` element-wise with only one rounding
638     /// error, yielding a more accurate result than an unfused multiply-add.
639     ///
640     /// Using `mul_add` *may* be more performant than an unfused multiply-add if the target
641     /// architecture has a dedicated fma CPU instruction. However, this is not always true,
642     /// and will be heavily dependant on designing algorithms with specific target hardware in
643     /// mind.
644     #[inline]
mul_add(self, a: Self, b: Self) -> Self645     pub fn mul_add(self, a: Self, b: Self) -> Self {
646         Self::new(
647             self.x.mul_add(a.x, b.x),
648             self.y.mul_add(a.y, b.y),
649             self.z.mul_add(a.z, b.z),
650         )
651     }
652 
653     /// Returns the angle (in radians) between two vectors.
654     ///
655     /// The input vectors do not need to be unit length however they must be non-zero.
656     #[inline]
angle_between(self, rhs: Self) -> f32657     pub fn angle_between(self, rhs: Self) -> f32 {
658         use crate::FloatEx;
659         self.dot(rhs)
660             .div(self.length_squared().mul(rhs.length_squared()).sqrt())
661             .acos_approx()
662     }
663 
664     /// Returns some vector that is orthogonal to the given one.
665     ///
666     /// The input vector must be finite and non-zero.
667     ///
668     /// The output vector is not necessarily unit-length.
669     /// For that use [`Self::any_orthonormal_vector`] instead.
670     #[inline]
any_orthogonal_vector(&self) -> Self671     pub fn any_orthogonal_vector(&self) -> Self {
672         // This can probably be optimized
673         if self.x.abs() > self.y.abs() {
674             Self::new(-self.z, 0.0, self.x) // self.cross(Self::Y)
675         } else {
676             Self::new(0.0, self.z, -self.y) // self.cross(Self::X)
677         }
678     }
679 
680     /// Returns any unit-length vector that is orthogonal to the given one.
681     /// The input vector must be finite and non-zero.
682     ///
683     /// # Panics
684     ///
685     /// Will panic if `self` is not normalized when `glam_assert` is enabled.
686     #[inline]
any_orthonormal_vector(&self) -> Self687     pub fn any_orthonormal_vector(&self) -> Self {
688         glam_assert!(self.is_normalized());
689         // From https://graphics.pixar.com/library/OrthonormalB/paper.pdf
690         #[cfg(feature = "std")]
691         let sign = (1.0_f32).copysign(self.z);
692         #[cfg(not(feature = "std"))]
693         let sign = self.z.signum();
694         let a = -1.0 / (sign + self.z);
695         let b = self.x * self.y * a;
696         Self::new(b, sign + self.y * self.y * a, -self.y)
697     }
698 
699     /// Given a unit-length vector return two other vectors that together form an orthonormal
700     /// basis.  That is, all three vectors are orthogonal to each other and are normalized.
701     ///
702     /// # Panics
703     ///
704     /// Will panic if `self` is not normalized when `glam_assert` is enabled.
705     #[inline]
any_orthonormal_pair(&self) -> (Self, Self)706     pub fn any_orthonormal_pair(&self) -> (Self, Self) {
707         glam_assert!(self.is_normalized());
708         // From https://graphics.pixar.com/library/OrthonormalB/paper.pdf
709         #[cfg(feature = "std")]
710         let sign = (1.0_f32).copysign(self.z);
711         #[cfg(not(feature = "std"))]
712         let sign = self.z.signum();
713         let a = -1.0 / (sign + self.z);
714         let b = self.x * self.y * a;
715         (
716             Self::new(1.0 + sign * self.x * self.x * a, sign * b, -sign * self.x),
717             Self::new(b, sign + self.y * self.y * a, -self.y),
718         )
719     }
720 
721     /// Casts all elements of `self` to `f64`.
722     #[inline]
as_dvec3(&self) -> crate::DVec3723     pub fn as_dvec3(&self) -> crate::DVec3 {
724         crate::DVec3::new(self.x as f64, self.y as f64, self.z as f64)
725     }
726 
727     /// Casts all elements of `self` to `i32`.
728     #[inline]
as_ivec3(&self) -> crate::IVec3729     pub fn as_ivec3(&self) -> crate::IVec3 {
730         crate::IVec3::new(self.x as i32, self.y as i32, self.z as i32)
731     }
732 
733     /// Casts all elements of `self` to `u32`.
734     #[inline]
as_uvec3(&self) -> crate::UVec3735     pub fn as_uvec3(&self) -> crate::UVec3 {
736         crate::UVec3::new(self.x as u32, self.y as u32, self.z as u32)
737     }
738 }
739 
740 impl Default for Vec3 {
741     #[inline(always)]
default() -> Self742     fn default() -> Self {
743         Self::ZERO
744     }
745 }
746 
747 impl Div<Vec3> for Vec3 {
748     type Output = Self;
749     #[inline]
div(self, rhs: Self) -> Self750     fn div(self, rhs: Self) -> Self {
751         Self {
752             x: self.x.div(rhs.x),
753             y: self.y.div(rhs.y),
754             z: self.z.div(rhs.z),
755         }
756     }
757 }
758 
759 impl DivAssign<Vec3> for Vec3 {
760     #[inline]
div_assign(&mut self, rhs: Self)761     fn div_assign(&mut self, rhs: Self) {
762         self.x.div_assign(rhs.x);
763         self.y.div_assign(rhs.y);
764         self.z.div_assign(rhs.z);
765     }
766 }
767 
768 impl Div<f32> for Vec3 {
769     type Output = Self;
770     #[inline]
div(self, rhs: f32) -> Self771     fn div(self, rhs: f32) -> Self {
772         Self {
773             x: self.x.div(rhs),
774             y: self.y.div(rhs),
775             z: self.z.div(rhs),
776         }
777     }
778 }
779 
780 impl DivAssign<f32> for Vec3 {
781     #[inline]
div_assign(&mut self, rhs: f32)782     fn div_assign(&mut self, rhs: f32) {
783         self.x.div_assign(rhs);
784         self.y.div_assign(rhs);
785         self.z.div_assign(rhs);
786     }
787 }
788 
789 impl Div<Vec3> for f32 {
790     type Output = Vec3;
791     #[inline]
div(self, rhs: Vec3) -> Vec3792     fn div(self, rhs: Vec3) -> Vec3 {
793         Vec3 {
794             x: self.div(rhs.x),
795             y: self.div(rhs.y),
796             z: self.div(rhs.z),
797         }
798     }
799 }
800 
801 impl Mul<Vec3> for Vec3 {
802     type Output = Self;
803     #[inline]
mul(self, rhs: Self) -> Self804     fn mul(self, rhs: Self) -> Self {
805         Self {
806             x: self.x.mul(rhs.x),
807             y: self.y.mul(rhs.y),
808             z: self.z.mul(rhs.z),
809         }
810     }
811 }
812 
813 impl MulAssign<Vec3> for Vec3 {
814     #[inline]
mul_assign(&mut self, rhs: Self)815     fn mul_assign(&mut self, rhs: Self) {
816         self.x.mul_assign(rhs.x);
817         self.y.mul_assign(rhs.y);
818         self.z.mul_assign(rhs.z);
819     }
820 }
821 
822 impl Mul<f32> for Vec3 {
823     type Output = Self;
824     #[inline]
mul(self, rhs: f32) -> Self825     fn mul(self, rhs: f32) -> Self {
826         Self {
827             x: self.x.mul(rhs),
828             y: self.y.mul(rhs),
829             z: self.z.mul(rhs),
830         }
831     }
832 }
833 
834 impl MulAssign<f32> for Vec3 {
835     #[inline]
mul_assign(&mut self, rhs: f32)836     fn mul_assign(&mut self, rhs: f32) {
837         self.x.mul_assign(rhs);
838         self.y.mul_assign(rhs);
839         self.z.mul_assign(rhs);
840     }
841 }
842 
843 impl Mul<Vec3> for f32 {
844     type Output = Vec3;
845     #[inline]
mul(self, rhs: Vec3) -> Vec3846     fn mul(self, rhs: Vec3) -> Vec3 {
847         Vec3 {
848             x: self.mul(rhs.x),
849             y: self.mul(rhs.y),
850             z: self.mul(rhs.z),
851         }
852     }
853 }
854 
855 impl Add<Vec3> for Vec3 {
856     type Output = Self;
857     #[inline]
add(self, rhs: Self) -> Self858     fn add(self, rhs: Self) -> Self {
859         Self {
860             x: self.x.add(rhs.x),
861             y: self.y.add(rhs.y),
862             z: self.z.add(rhs.z),
863         }
864     }
865 }
866 
867 impl AddAssign<Vec3> for Vec3 {
868     #[inline]
add_assign(&mut self, rhs: Self)869     fn add_assign(&mut self, rhs: Self) {
870         self.x.add_assign(rhs.x);
871         self.y.add_assign(rhs.y);
872         self.z.add_assign(rhs.z);
873     }
874 }
875 
876 impl Add<f32> for Vec3 {
877     type Output = Self;
878     #[inline]
add(self, rhs: f32) -> Self879     fn add(self, rhs: f32) -> Self {
880         Self {
881             x: self.x.add(rhs),
882             y: self.y.add(rhs),
883             z: self.z.add(rhs),
884         }
885     }
886 }
887 
888 impl AddAssign<f32> for Vec3 {
889     #[inline]
add_assign(&mut self, rhs: f32)890     fn add_assign(&mut self, rhs: f32) {
891         self.x.add_assign(rhs);
892         self.y.add_assign(rhs);
893         self.z.add_assign(rhs);
894     }
895 }
896 
897 impl Add<Vec3> for f32 {
898     type Output = Vec3;
899     #[inline]
add(self, rhs: Vec3) -> Vec3900     fn add(self, rhs: Vec3) -> Vec3 {
901         Vec3 {
902             x: self.add(rhs.x),
903             y: self.add(rhs.y),
904             z: self.add(rhs.z),
905         }
906     }
907 }
908 
909 impl Sub<Vec3> for Vec3 {
910     type Output = Self;
911     #[inline]
sub(self, rhs: Self) -> Self912     fn sub(self, rhs: Self) -> Self {
913         Self {
914             x: self.x.sub(rhs.x),
915             y: self.y.sub(rhs.y),
916             z: self.z.sub(rhs.z),
917         }
918     }
919 }
920 
921 impl SubAssign<Vec3> for Vec3 {
922     #[inline]
sub_assign(&mut self, rhs: Vec3)923     fn sub_assign(&mut self, rhs: Vec3) {
924         self.x.sub_assign(rhs.x);
925         self.y.sub_assign(rhs.y);
926         self.z.sub_assign(rhs.z);
927     }
928 }
929 
930 impl Sub<f32> for Vec3 {
931     type Output = Self;
932     #[inline]
sub(self, rhs: f32) -> Self933     fn sub(self, rhs: f32) -> Self {
934         Self {
935             x: self.x.sub(rhs),
936             y: self.y.sub(rhs),
937             z: self.z.sub(rhs),
938         }
939     }
940 }
941 
942 impl SubAssign<f32> for Vec3 {
943     #[inline]
sub_assign(&mut self, rhs: f32)944     fn sub_assign(&mut self, rhs: f32) {
945         self.x.sub_assign(rhs);
946         self.y.sub_assign(rhs);
947         self.z.sub_assign(rhs);
948     }
949 }
950 
951 impl Sub<Vec3> for f32 {
952     type Output = Vec3;
953     #[inline]
sub(self, rhs: Vec3) -> Vec3954     fn sub(self, rhs: Vec3) -> Vec3 {
955         Vec3 {
956             x: self.sub(rhs.x),
957             y: self.sub(rhs.y),
958             z: self.sub(rhs.z),
959         }
960     }
961 }
962 
963 impl Rem<Vec3> for Vec3 {
964     type Output = Self;
965     #[inline]
rem(self, rhs: Self) -> Self966     fn rem(self, rhs: Self) -> Self {
967         Self {
968             x: self.x.rem(rhs.x),
969             y: self.y.rem(rhs.y),
970             z: self.z.rem(rhs.z),
971         }
972     }
973 }
974 
975 impl RemAssign<Vec3> for Vec3 {
976     #[inline]
rem_assign(&mut self, rhs: Self)977     fn rem_assign(&mut self, rhs: Self) {
978         self.x.rem_assign(rhs.x);
979         self.y.rem_assign(rhs.y);
980         self.z.rem_assign(rhs.z);
981     }
982 }
983 
984 impl Rem<f32> for Vec3 {
985     type Output = Self;
986     #[inline]
rem(self, rhs: f32) -> Self987     fn rem(self, rhs: f32) -> Self {
988         Self {
989             x: self.x.rem(rhs),
990             y: self.y.rem(rhs),
991             z: self.z.rem(rhs),
992         }
993     }
994 }
995 
996 impl RemAssign<f32> for Vec3 {
997     #[inline]
rem_assign(&mut self, rhs: f32)998     fn rem_assign(&mut self, rhs: f32) {
999         self.x.rem_assign(rhs);
1000         self.y.rem_assign(rhs);
1001         self.z.rem_assign(rhs);
1002     }
1003 }
1004 
1005 impl Rem<Vec3> for f32 {
1006     type Output = Vec3;
1007     #[inline]
rem(self, rhs: Vec3) -> Vec31008     fn rem(self, rhs: Vec3) -> Vec3 {
1009         Vec3 {
1010             x: self.rem(rhs.x),
1011             y: self.rem(rhs.y),
1012             z: self.rem(rhs.z),
1013         }
1014     }
1015 }
1016 
1017 #[cfg(not(target_arch = "spirv"))]
1018 impl AsRef<[f32; 3]> for Vec3 {
1019     #[inline]
as_ref(&self) -> &[f32; 3]1020     fn as_ref(&self) -> &[f32; 3] {
1021         unsafe { &*(self as *const Vec3 as *const [f32; 3]) }
1022     }
1023 }
1024 
1025 #[cfg(not(target_arch = "spirv"))]
1026 impl AsMut<[f32; 3]> for Vec3 {
1027     #[inline]
as_mut(&mut self) -> &mut [f32; 3]1028     fn as_mut(&mut self) -> &mut [f32; 3] {
1029         unsafe { &mut *(self as *mut Vec3 as *mut [f32; 3]) }
1030     }
1031 }
1032 
1033 impl Sum for Vec3 {
1034     #[inline]
sum<I>(iter: I) -> Self where I: Iterator<Item = Self>,1035     fn sum<I>(iter: I) -> Self
1036     where
1037         I: Iterator<Item = Self>,
1038     {
1039         iter.fold(Self::ZERO, Self::add)
1040     }
1041 }
1042 
1043 impl<'a> Sum<&'a Self> for Vec3 {
1044     #[inline]
sum<I>(iter: I) -> Self where I: Iterator<Item = &'a Self>,1045     fn sum<I>(iter: I) -> Self
1046     where
1047         I: Iterator<Item = &'a Self>,
1048     {
1049         iter.fold(Self::ZERO, |a, &b| Self::add(a, b))
1050     }
1051 }
1052 
1053 impl Product for Vec3 {
1054     #[inline]
product<I>(iter: I) -> Self where I: Iterator<Item = Self>,1055     fn product<I>(iter: I) -> Self
1056     where
1057         I: Iterator<Item = Self>,
1058     {
1059         iter.fold(Self::ONE, Self::mul)
1060     }
1061 }
1062 
1063 impl<'a> Product<&'a Self> for Vec3 {
1064     #[inline]
product<I>(iter: I) -> Self where I: Iterator<Item = &'a Self>,1065     fn product<I>(iter: I) -> Self
1066     where
1067         I: Iterator<Item = &'a Self>,
1068     {
1069         iter.fold(Self::ONE, |a, &b| Self::mul(a, b))
1070     }
1071 }
1072 
1073 impl Neg for Vec3 {
1074     type Output = Self;
1075     #[inline]
neg(self) -> Self1076     fn neg(self) -> Self {
1077         Self {
1078             x: self.x.neg(),
1079             y: self.y.neg(),
1080             z: self.z.neg(),
1081         }
1082     }
1083 }
1084 
1085 impl Index<usize> for Vec3 {
1086     type Output = f32;
1087     #[inline]
index(&self, index: usize) -> &Self::Output1088     fn index(&self, index: usize) -> &Self::Output {
1089         match index {
1090             0 => &self.x,
1091             1 => &self.y,
1092             2 => &self.z,
1093             _ => panic!("index out of bounds"),
1094         }
1095     }
1096 }
1097 
1098 impl IndexMut<usize> for Vec3 {
1099     #[inline]
index_mut(&mut self, index: usize) -> &mut Self::Output1100     fn index_mut(&mut self, index: usize) -> &mut Self::Output {
1101         match index {
1102             0 => &mut self.x,
1103             1 => &mut self.y,
1104             2 => &mut self.z,
1105             _ => panic!("index out of bounds"),
1106         }
1107     }
1108 }
1109 
1110 #[cfg(not(target_arch = "spirv"))]
1111 impl fmt::Display for Vec3 {
fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result1112     fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
1113         write!(f, "[{}, {}, {}]", self.x, self.y, self.z)
1114     }
1115 }
1116 
1117 #[cfg(not(target_arch = "spirv"))]
1118 impl fmt::Debug for Vec3 {
fmt(&self, fmt: &mut fmt::Formatter<'_>) -> fmt::Result1119     fn fmt(&self, fmt: &mut fmt::Formatter<'_>) -> fmt::Result {
1120         fmt.debug_tuple(stringify!(Vec3))
1121             .field(&self.x)
1122             .field(&self.y)
1123             .field(&self.z)
1124             .finish()
1125     }
1126 }
1127 
1128 impl From<[f32; 3]> for Vec3 {
1129     #[inline]
from(a: [f32; 3]) -> Self1130     fn from(a: [f32; 3]) -> Self {
1131         Self::new(a[0], a[1], a[2])
1132     }
1133 }
1134 
1135 impl From<Vec3> for [f32; 3] {
1136     #[inline]
from(v: Vec3) -> Self1137     fn from(v: Vec3) -> Self {
1138         [v.x, v.y, v.z]
1139     }
1140 }
1141 
1142 impl From<(f32, f32, f32)> for Vec3 {
1143     #[inline]
from(t: (f32, f32, f32)) -> Self1144     fn from(t: (f32, f32, f32)) -> Self {
1145         Self::new(t.0, t.1, t.2)
1146     }
1147 }
1148 
1149 impl From<Vec3> for (f32, f32, f32) {
1150     #[inline]
from(v: Vec3) -> Self1151     fn from(v: Vec3) -> Self {
1152         (v.x, v.y, v.z)
1153     }
1154 }
1155 
1156 impl From<(Vec2, f32)> for Vec3 {
1157     #[inline]
from((v, z): (Vec2, f32)) -> Self1158     fn from((v, z): (Vec2, f32)) -> Self {
1159         Self::new(v.x, v.y, z)
1160     }
1161 }
1162