1 // Copyright 2017 The Abseil Authors.
2 //
3 // Licensed under the Apache License, Version 2.0 (the "License");
4 // you may not use this file except in compliance with the License.
5 // You may obtain a copy of the License at
6 //
7 // https://www.apache.org/licenses/LICENSE-2.0
8 //
9 // Unless required by applicable law or agreed to in writing, software
10 // distributed under the License is distributed on an "AS IS" BASIS,
11 // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12 // See the License for the specific language governing permissions and
13 // limitations under the License.
14
15 #include "absl/synchronization/mutex.h"
16
17 #ifdef _WIN32
18 #include <windows.h>
19 #ifdef ERROR
20 #undef ERROR
21 #endif
22 #else
23 #include <fcntl.h>
24 #include <pthread.h>
25 #include <sched.h>
26 #include <sys/time.h>
27 #endif
28
29 #include <assert.h>
30 #include <errno.h>
31 #include <stdio.h>
32 #include <stdlib.h>
33 #include <string.h>
34 #include <time.h>
35
36 #include <algorithm>
37 #include <atomic>
38 #include <cinttypes>
39 #include <thread> // NOLINT(build/c++11)
40
41 #include "absl/base/attributes.h"
42 #include "absl/base/call_once.h"
43 #include "absl/base/config.h"
44 #include "absl/base/dynamic_annotations.h"
45 #include "absl/base/internal/atomic_hook.h"
46 #include "absl/base/internal/cycleclock.h"
47 #include "absl/base/internal/hide_ptr.h"
48 #include "absl/base/internal/low_level_alloc.h"
49 #include "absl/base/internal/raw_logging.h"
50 #include "absl/base/internal/spinlock.h"
51 #include "absl/base/internal/sysinfo.h"
52 #include "absl/base/internal/thread_identity.h"
53 #include "absl/base/internal/tsan_mutex_interface.h"
54 #include "absl/base/port.h"
55 #include "absl/debugging/stacktrace.h"
56 #include "absl/debugging/symbolize.h"
57 #include "absl/synchronization/internal/graphcycles.h"
58 #include "absl/synchronization/internal/per_thread_sem.h"
59 #include "absl/time/time.h"
60
61 using absl::base_internal::CurrentThreadIdentityIfPresent;
62 using absl::base_internal::PerThreadSynch;
63 using absl::base_internal::SchedulingGuard;
64 using absl::base_internal::ThreadIdentity;
65 using absl::synchronization_internal::GetOrCreateCurrentThreadIdentity;
66 using absl::synchronization_internal::GraphCycles;
67 using absl::synchronization_internal::GraphId;
68 using absl::synchronization_internal::InvalidGraphId;
69 using absl::synchronization_internal::KernelTimeout;
70 using absl::synchronization_internal::PerThreadSem;
71
72 extern "C" {
ABSL_INTERNAL_C_SYMBOL(AbslInternalMutexYield)73 ABSL_ATTRIBUTE_WEAK void ABSL_INTERNAL_C_SYMBOL(AbslInternalMutexYield)() {
74 std::this_thread::yield();
75 }
76 } // extern "C"
77
78 namespace absl {
79 ABSL_NAMESPACE_BEGIN
80
81 namespace {
82
83 #if defined(ABSL_HAVE_THREAD_SANITIZER)
84 constexpr OnDeadlockCycle kDeadlockDetectionDefault = OnDeadlockCycle::kIgnore;
85 #else
86 constexpr OnDeadlockCycle kDeadlockDetectionDefault = OnDeadlockCycle::kAbort;
87 #endif
88
89 ABSL_CONST_INIT std::atomic<OnDeadlockCycle> synch_deadlock_detection(
90 kDeadlockDetectionDefault);
91 ABSL_CONST_INIT std::atomic<bool> synch_check_invariants(false);
92
93 ABSL_INTERNAL_ATOMIC_HOOK_ATTRIBUTES
94 absl::base_internal::AtomicHook<void (*)(int64_t wait_cycles)>
95 submit_profile_data;
96 ABSL_INTERNAL_ATOMIC_HOOK_ATTRIBUTES absl::base_internal::AtomicHook<void (*)(
97 const char *msg, const void *obj, int64_t wait_cycles)>
98 mutex_tracer;
99 ABSL_INTERNAL_ATOMIC_HOOK_ATTRIBUTES
100 absl::base_internal::AtomicHook<void (*)(const char *msg, const void *cv)>
101 cond_var_tracer;
102 ABSL_INTERNAL_ATOMIC_HOOK_ATTRIBUTES absl::base_internal::AtomicHook<
103 bool (*)(const void *pc, char *out, int out_size)>
104 symbolizer(absl::Symbolize);
105
106 } // namespace
107
108 static inline bool EvalConditionAnnotated(const Condition *cond, Mutex *mu,
109 bool locking, bool trylock,
110 bool read_lock);
111
RegisterMutexProfiler(void (* fn)(int64_t wait_timestamp))112 void RegisterMutexProfiler(void (*fn)(int64_t wait_timestamp)) {
113 submit_profile_data.Store(fn);
114 }
115
RegisterMutexTracer(void (* fn)(const char * msg,const void * obj,int64_t wait_cycles))116 void RegisterMutexTracer(void (*fn)(const char *msg, const void *obj,
117 int64_t wait_cycles)) {
118 mutex_tracer.Store(fn);
119 }
120
RegisterCondVarTracer(void (* fn)(const char * msg,const void * cv))121 void RegisterCondVarTracer(void (*fn)(const char *msg, const void *cv)) {
122 cond_var_tracer.Store(fn);
123 }
124
RegisterSymbolizer(bool (* fn)(const void * pc,char * out,int out_size))125 void RegisterSymbolizer(bool (*fn)(const void *pc, char *out, int out_size)) {
126 symbolizer.Store(fn);
127 }
128
129 namespace {
130 // Represents the strategy for spin and yield.
131 // See the comment in GetMutexGlobals() for more information.
132 enum DelayMode { AGGRESSIVE, GENTLE };
133
134 struct ABSL_CACHELINE_ALIGNED MutexGlobals {
135 absl::once_flag once;
136 int spinloop_iterations = 0;
137 int32_t mutex_sleep_limit[2] = {};
138 };
139
GetMutexGlobals()140 const MutexGlobals &GetMutexGlobals() {
141 ABSL_CONST_INIT static MutexGlobals data;
142 absl::base_internal::LowLevelCallOnce(&data.once, [&]() {
143 const int num_cpus = absl::base_internal::NumCPUs();
144 data.spinloop_iterations = num_cpus > 1 ? 1500 : 0;
145 // If this a uniprocessor, only yield/sleep. Otherwise, if the mode is
146 // aggressive then spin many times before yielding. If the mode is
147 // gentle then spin only a few times before yielding. Aggressive spinning
148 // is used to ensure that an Unlock() call, which must get the spin lock
149 // for any thread to make progress gets it without undue delay.
150 if (num_cpus > 1) {
151 data.mutex_sleep_limit[AGGRESSIVE] = 5000;
152 data.mutex_sleep_limit[GENTLE] = 250;
153 } else {
154 data.mutex_sleep_limit[AGGRESSIVE] = 0;
155 data.mutex_sleep_limit[GENTLE] = 0;
156 }
157 });
158 return data;
159 }
160 } // namespace
161
162 namespace synchronization_internal {
163 // Returns the Mutex delay on iteration `c` depending on the given `mode`.
164 // The returned value should be used as `c` for the next call to `MutexDelay`.
MutexDelay(int32_t c,int mode)165 int MutexDelay(int32_t c, int mode) {
166 const int32_t limit = GetMutexGlobals().mutex_sleep_limit[mode];
167 if (c < limit) {
168 // Spin.
169 c++;
170 } else {
171 SchedulingGuard::ScopedEnable enable_rescheduling;
172 ABSL_TSAN_MUTEX_PRE_DIVERT(nullptr, 0);
173 if (c == limit) {
174 // Yield once.
175 ABSL_INTERNAL_C_SYMBOL(AbslInternalMutexYield)();
176 c++;
177 } else {
178 // Then wait.
179 absl::SleepFor(absl::Microseconds(10));
180 c = 0;
181 }
182 ABSL_TSAN_MUTEX_POST_DIVERT(nullptr, 0);
183 }
184 return c;
185 }
186 } // namespace synchronization_internal
187
188 // --------------------------Generic atomic ops
189 // Ensure that "(*pv & bits) == bits" by doing an atomic update of "*pv" to
190 // "*pv | bits" if necessary. Wait until (*pv & wait_until_clear)==0
191 // before making any change.
192 // This is used to set flags in mutex and condition variable words.
AtomicSetBits(std::atomic<intptr_t> * pv,intptr_t bits,intptr_t wait_until_clear)193 static void AtomicSetBits(std::atomic<intptr_t>* pv, intptr_t bits,
194 intptr_t wait_until_clear) {
195 intptr_t v;
196 do {
197 v = pv->load(std::memory_order_relaxed);
198 } while ((v & bits) != bits &&
199 ((v & wait_until_clear) != 0 ||
200 !pv->compare_exchange_weak(v, v | bits,
201 std::memory_order_release,
202 std::memory_order_relaxed)));
203 }
204
205 // Ensure that "(*pv & bits) == 0" by doing an atomic update of "*pv" to
206 // "*pv & ~bits" if necessary. Wait until (*pv & wait_until_clear)==0
207 // before making any change.
208 // This is used to unset flags in mutex and condition variable words.
AtomicClearBits(std::atomic<intptr_t> * pv,intptr_t bits,intptr_t wait_until_clear)209 static void AtomicClearBits(std::atomic<intptr_t>* pv, intptr_t bits,
210 intptr_t wait_until_clear) {
211 intptr_t v;
212 do {
213 v = pv->load(std::memory_order_relaxed);
214 } while ((v & bits) != 0 &&
215 ((v & wait_until_clear) != 0 ||
216 !pv->compare_exchange_weak(v, v & ~bits,
217 std::memory_order_release,
218 std::memory_order_relaxed)));
219 }
220
221 //------------------------------------------------------------------
222
223 // Data for doing deadlock detection.
224 ABSL_CONST_INIT static absl::base_internal::SpinLock deadlock_graph_mu(
225 absl::kConstInit, base_internal::SCHEDULE_KERNEL_ONLY);
226
227 // Graph used to detect deadlocks.
228 ABSL_CONST_INIT static GraphCycles *deadlock_graph
229 ABSL_GUARDED_BY(deadlock_graph_mu) ABSL_PT_GUARDED_BY(deadlock_graph_mu);
230
231 //------------------------------------------------------------------
232 // An event mechanism for debugging mutex use.
233 // It also allows mutexes to be given names for those who can't handle
234 // addresses, and instead like to give their data structures names like
235 // "Henry", "Fido", or "Rupert IV, King of Yondavia".
236
237 namespace { // to prevent name pollution
238 enum { // Mutex and CondVar events passed as "ev" to PostSynchEvent
239 // Mutex events
240 SYNCH_EV_TRYLOCK_SUCCESS,
241 SYNCH_EV_TRYLOCK_FAILED,
242 SYNCH_EV_READERTRYLOCK_SUCCESS,
243 SYNCH_EV_READERTRYLOCK_FAILED,
244 SYNCH_EV_LOCK,
245 SYNCH_EV_LOCK_RETURNING,
246 SYNCH_EV_READERLOCK,
247 SYNCH_EV_READERLOCK_RETURNING,
248 SYNCH_EV_UNLOCK,
249 SYNCH_EV_READERUNLOCK,
250
251 // CondVar events
252 SYNCH_EV_WAIT,
253 SYNCH_EV_WAIT_RETURNING,
254 SYNCH_EV_SIGNAL,
255 SYNCH_EV_SIGNALALL,
256 };
257
258 enum { // Event flags
259 SYNCH_F_R = 0x01, // reader event
260 SYNCH_F_LCK = 0x02, // PostSynchEvent called with mutex held
261 SYNCH_F_TRY = 0x04, // TryLock or ReaderTryLock
262 SYNCH_F_UNLOCK = 0x08, // Unlock or ReaderUnlock
263
264 SYNCH_F_LCK_W = SYNCH_F_LCK,
265 SYNCH_F_LCK_R = SYNCH_F_LCK | SYNCH_F_R,
266 };
267 } // anonymous namespace
268
269 // Properties of the events.
270 static const struct {
271 int flags;
272 const char *msg;
273 } event_properties[] = {
274 {SYNCH_F_LCK_W | SYNCH_F_TRY, "TryLock succeeded "},
275 {0, "TryLock failed "},
276 {SYNCH_F_LCK_R | SYNCH_F_TRY, "ReaderTryLock succeeded "},
277 {0, "ReaderTryLock failed "},
278 {0, "Lock blocking "},
279 {SYNCH_F_LCK_W, "Lock returning "},
280 {0, "ReaderLock blocking "},
281 {SYNCH_F_LCK_R, "ReaderLock returning "},
282 {SYNCH_F_LCK_W | SYNCH_F_UNLOCK, "Unlock "},
283 {SYNCH_F_LCK_R | SYNCH_F_UNLOCK, "ReaderUnlock "},
284 {0, "Wait on "},
285 {0, "Wait unblocked "},
286 {0, "Signal on "},
287 {0, "SignalAll on "},
288 };
289
290 ABSL_CONST_INIT static absl::base_internal::SpinLock synch_event_mu(
291 absl::kConstInit, base_internal::SCHEDULE_KERNEL_ONLY);
292
293 // Hash table size; should be prime > 2.
294 // Can't be too small, as it's used for deadlock detection information.
295 static constexpr uint32_t kNSynchEvent = 1031;
296
297 static struct SynchEvent { // this is a trivial hash table for the events
298 // struct is freed when refcount reaches 0
299 int refcount ABSL_GUARDED_BY(synch_event_mu);
300
301 // buckets have linear, 0-terminated chains
302 SynchEvent *next ABSL_GUARDED_BY(synch_event_mu);
303
304 // Constant after initialization
305 uintptr_t masked_addr; // object at this address is called "name"
306
307 // No explicit synchronization used. Instead we assume that the
308 // client who enables/disables invariants/logging on a Mutex does so
309 // while the Mutex is not being concurrently accessed by others.
310 void (*invariant)(void *arg); // called on each event
311 void *arg; // first arg to (*invariant)()
312 bool log; // logging turned on
313
314 // Constant after initialization
315 char name[1]; // actually longer---NUL-terminated string
316 } * synch_event[kNSynchEvent] ABSL_GUARDED_BY(synch_event_mu);
317
318 // Ensure that the object at "addr" has a SynchEvent struct associated with it,
319 // set "bits" in the word there (waiting until lockbit is clear before doing
320 // so), and return a refcounted reference that will remain valid until
321 // UnrefSynchEvent() is called. If a new SynchEvent is allocated,
322 // the string name is copied into it.
323 // When used with a mutex, the caller should also ensure that kMuEvent
324 // is set in the mutex word, and similarly for condition variables and kCVEvent.
EnsureSynchEvent(std::atomic<intptr_t> * addr,const char * name,intptr_t bits,intptr_t lockbit)325 static SynchEvent *EnsureSynchEvent(std::atomic<intptr_t> *addr,
326 const char *name, intptr_t bits,
327 intptr_t lockbit) {
328 uint32_t h = reinterpret_cast<intptr_t>(addr) % kNSynchEvent;
329 SynchEvent *e;
330 // first look for existing SynchEvent struct..
331 synch_event_mu.Lock();
332 for (e = synch_event[h];
333 e != nullptr && e->masked_addr != base_internal::HidePtr(addr);
334 e = e->next) {
335 }
336 if (e == nullptr) { // no SynchEvent struct found; make one.
337 if (name == nullptr) {
338 name = "";
339 }
340 size_t l = strlen(name);
341 e = reinterpret_cast<SynchEvent *>(
342 base_internal::LowLevelAlloc::Alloc(sizeof(*e) + l));
343 e->refcount = 2; // one for return value, one for linked list
344 e->masked_addr = base_internal::HidePtr(addr);
345 e->invariant = nullptr;
346 e->arg = nullptr;
347 e->log = false;
348 strcpy(e->name, name); // NOLINT(runtime/printf)
349 e->next = synch_event[h];
350 AtomicSetBits(addr, bits, lockbit);
351 synch_event[h] = e;
352 } else {
353 e->refcount++; // for return value
354 }
355 synch_event_mu.Unlock();
356 return e;
357 }
358
359 // Deallocate the SynchEvent *e, whose refcount has fallen to zero.
DeleteSynchEvent(SynchEvent * e)360 static void DeleteSynchEvent(SynchEvent *e) {
361 base_internal::LowLevelAlloc::Free(e);
362 }
363
364 // Decrement the reference count of *e, or do nothing if e==null.
UnrefSynchEvent(SynchEvent * e)365 static void UnrefSynchEvent(SynchEvent *e) {
366 if (e != nullptr) {
367 synch_event_mu.Lock();
368 bool del = (--(e->refcount) == 0);
369 synch_event_mu.Unlock();
370 if (del) {
371 DeleteSynchEvent(e);
372 }
373 }
374 }
375
376 // Forget the mapping from the object (Mutex or CondVar) at address addr
377 // to SynchEvent object, and clear "bits" in its word (waiting until lockbit
378 // is clear before doing so).
ForgetSynchEvent(std::atomic<intptr_t> * addr,intptr_t bits,intptr_t lockbit)379 static void ForgetSynchEvent(std::atomic<intptr_t> *addr, intptr_t bits,
380 intptr_t lockbit) {
381 uint32_t h = reinterpret_cast<intptr_t>(addr) % kNSynchEvent;
382 SynchEvent **pe;
383 SynchEvent *e;
384 synch_event_mu.Lock();
385 for (pe = &synch_event[h];
386 (e = *pe) != nullptr && e->masked_addr != base_internal::HidePtr(addr);
387 pe = &e->next) {
388 }
389 bool del = false;
390 if (e != nullptr) {
391 *pe = e->next;
392 del = (--(e->refcount) == 0);
393 }
394 AtomicClearBits(addr, bits, lockbit);
395 synch_event_mu.Unlock();
396 if (del) {
397 DeleteSynchEvent(e);
398 }
399 }
400
401 // Return a refcounted reference to the SynchEvent of the object at address
402 // "addr", if any. The pointer returned is valid until the UnrefSynchEvent() is
403 // called.
GetSynchEvent(const void * addr)404 static SynchEvent *GetSynchEvent(const void *addr) {
405 uint32_t h = reinterpret_cast<intptr_t>(addr) % kNSynchEvent;
406 SynchEvent *e;
407 synch_event_mu.Lock();
408 for (e = synch_event[h];
409 e != nullptr && e->masked_addr != base_internal::HidePtr(addr);
410 e = e->next) {
411 }
412 if (e != nullptr) {
413 e->refcount++;
414 }
415 synch_event_mu.Unlock();
416 return e;
417 }
418
419 // Called when an event "ev" occurs on a Mutex of CondVar "obj"
420 // if event recording is on
PostSynchEvent(void * obj,int ev)421 static void PostSynchEvent(void *obj, int ev) {
422 SynchEvent *e = GetSynchEvent(obj);
423 // logging is on if event recording is on and either there's no event struct,
424 // or it explicitly says to log
425 if (e == nullptr || e->log) {
426 void *pcs[40];
427 int n = absl::GetStackTrace(pcs, ABSL_ARRAYSIZE(pcs), 1);
428 // A buffer with enough space for the ASCII for all the PCs, even on a
429 // 64-bit machine.
430 char buffer[ABSL_ARRAYSIZE(pcs) * 24];
431 int pos = snprintf(buffer, sizeof (buffer), " @");
432 for (int i = 0; i != n; i++) {
433 pos += snprintf(&buffer[pos], sizeof (buffer) - pos, " %p", pcs[i]);
434 }
435 ABSL_RAW_LOG(INFO, "%s%p %s %s", event_properties[ev].msg, obj,
436 (e == nullptr ? "" : e->name), buffer);
437 }
438 const int flags = event_properties[ev].flags;
439 if ((flags & SYNCH_F_LCK) != 0 && e != nullptr && e->invariant != nullptr) {
440 // Calling the invariant as is causes problems under ThreadSanitizer.
441 // We are currently inside of Mutex Lock/Unlock and are ignoring all
442 // memory accesses and synchronization. If the invariant transitively
443 // synchronizes something else and we ignore the synchronization, we will
444 // get false positive race reports later.
445 // Reuse EvalConditionAnnotated to properly call into user code.
446 struct local {
447 static bool pred(SynchEvent *ev) {
448 (*ev->invariant)(ev->arg);
449 return false;
450 }
451 };
452 Condition cond(&local::pred, e);
453 Mutex *mu = static_cast<Mutex *>(obj);
454 const bool locking = (flags & SYNCH_F_UNLOCK) == 0;
455 const bool trylock = (flags & SYNCH_F_TRY) != 0;
456 const bool read_lock = (flags & SYNCH_F_R) != 0;
457 EvalConditionAnnotated(&cond, mu, locking, trylock, read_lock);
458 }
459 UnrefSynchEvent(e);
460 }
461
462 //------------------------------------------------------------------
463
464 // The SynchWaitParams struct encapsulates the way in which a thread is waiting:
465 // whether it has a timeout, the condition, exclusive/shared, and whether a
466 // condition variable wait has an associated Mutex (as opposed to another
467 // type of lock). It also points to the PerThreadSynch struct of its thread.
468 // cv_word tells Enqueue() to enqueue on a CondVar using CondVarEnqueue().
469 //
470 // This structure is held on the stack rather than directly in
471 // PerThreadSynch because a thread can be waiting on multiple Mutexes if,
472 // while waiting on one Mutex, the implementation calls a client callback
473 // (such as a Condition function) that acquires another Mutex. We don't
474 // strictly need to allow this, but programmers become confused if we do not
475 // allow them to use functions such a LOG() within Condition functions. The
476 // PerThreadSynch struct points at the most recent SynchWaitParams struct when
477 // the thread is on a Mutex's waiter queue.
478 struct SynchWaitParams {
SynchWaitParamsabsl::SynchWaitParams479 SynchWaitParams(Mutex::MuHow how_arg, const Condition *cond_arg,
480 KernelTimeout timeout_arg, Mutex *cvmu_arg,
481 PerThreadSynch *thread_arg,
482 std::atomic<intptr_t> *cv_word_arg)
483 : how(how_arg),
484 cond(cond_arg),
485 timeout(timeout_arg),
486 cvmu(cvmu_arg),
487 thread(thread_arg),
488 cv_word(cv_word_arg),
489 contention_start_cycles(base_internal::CycleClock::Now()) {}
490
491 const Mutex::MuHow how; // How this thread needs to wait.
492 const Condition *cond; // The condition that this thread is waiting for.
493 // In Mutex, this field is set to zero if a timeout
494 // expires.
495 KernelTimeout timeout; // timeout expiry---absolute time
496 // In Mutex, this field is set to zero if a timeout
497 // expires.
498 Mutex *const cvmu; // used for transfer from cond var to mutex
499 PerThreadSynch *const thread; // thread that is waiting
500
501 // If not null, thread should be enqueued on the CondVar whose state
502 // word is cv_word instead of queueing normally on the Mutex.
503 std::atomic<intptr_t> *cv_word;
504
505 int64_t contention_start_cycles; // Time (in cycles) when this thread started
506 // to contend for the mutex.
507 };
508
509 struct SynchLocksHeld {
510 int n; // number of valid entries in locks[]
511 bool overflow; // true iff we overflowed the array at some point
512 struct {
513 Mutex *mu; // lock acquired
514 int32_t count; // times acquired
515 GraphId id; // deadlock_graph id of acquired lock
516 } locks[40];
517 // If a thread overfills the array during deadlock detection, we
518 // continue, discarding information as needed. If no overflow has
519 // taken place, we can provide more error checking, such as
520 // detecting when a thread releases a lock it does not hold.
521 };
522
523 // A sentinel value in lists that is not 0.
524 // A 0 value is used to mean "not on a list".
525 static PerThreadSynch *const kPerThreadSynchNull =
526 reinterpret_cast<PerThreadSynch *>(1);
527
LocksHeldAlloc()528 static SynchLocksHeld *LocksHeldAlloc() {
529 SynchLocksHeld *ret = reinterpret_cast<SynchLocksHeld *>(
530 base_internal::LowLevelAlloc::Alloc(sizeof(SynchLocksHeld)));
531 ret->n = 0;
532 ret->overflow = false;
533 return ret;
534 }
535
536 // Return the PerThreadSynch-struct for this thread.
Synch_GetPerThread()537 static PerThreadSynch *Synch_GetPerThread() {
538 ThreadIdentity *identity = GetOrCreateCurrentThreadIdentity();
539 return &identity->per_thread_synch;
540 }
541
Synch_GetPerThreadAnnotated(Mutex * mu)542 static PerThreadSynch *Synch_GetPerThreadAnnotated(Mutex *mu) {
543 if (mu) {
544 ABSL_TSAN_MUTEX_PRE_DIVERT(mu, 0);
545 }
546 PerThreadSynch *w = Synch_GetPerThread();
547 if (mu) {
548 ABSL_TSAN_MUTEX_POST_DIVERT(mu, 0);
549 }
550 return w;
551 }
552
Synch_GetAllLocks()553 static SynchLocksHeld *Synch_GetAllLocks() {
554 PerThreadSynch *s = Synch_GetPerThread();
555 if (s->all_locks == nullptr) {
556 s->all_locks = LocksHeldAlloc(); // Freed by ReclaimThreadIdentity.
557 }
558 return s->all_locks;
559 }
560
561 // Post on "w"'s associated PerThreadSem.
IncrementSynchSem(Mutex * mu,PerThreadSynch * w)562 void Mutex::IncrementSynchSem(Mutex *mu, PerThreadSynch *w) {
563 if (mu) {
564 ABSL_TSAN_MUTEX_PRE_DIVERT(mu, 0);
565 }
566 PerThreadSem::Post(w->thread_identity());
567 if (mu) {
568 ABSL_TSAN_MUTEX_POST_DIVERT(mu, 0);
569 }
570 }
571
572 // Wait on "w"'s associated PerThreadSem; returns false if timeout expired.
DecrementSynchSem(Mutex * mu,PerThreadSynch * w,KernelTimeout t)573 bool Mutex::DecrementSynchSem(Mutex *mu, PerThreadSynch *w, KernelTimeout t) {
574 if (mu) {
575 ABSL_TSAN_MUTEX_PRE_DIVERT(mu, 0);
576 }
577 assert(w == Synch_GetPerThread());
578 static_cast<void>(w);
579 bool res = PerThreadSem::Wait(t);
580 if (mu) {
581 ABSL_TSAN_MUTEX_POST_DIVERT(mu, 0);
582 }
583 return res;
584 }
585
586 // We're in a fatal signal handler that hopes to use Mutex and to get
587 // lucky by not deadlocking. We try to improve its chances of success
588 // by effectively disabling some of the consistency checks. This will
589 // prevent certain ABSL_RAW_CHECK() statements from being triggered when
590 // re-rentry is detected. The ABSL_RAW_CHECK() statements are those in the
591 // Mutex code checking that the "waitp" field has not been reused.
InternalAttemptToUseMutexInFatalSignalHandler()592 void Mutex::InternalAttemptToUseMutexInFatalSignalHandler() {
593 // Fix the per-thread state only if it exists.
594 ThreadIdentity *identity = CurrentThreadIdentityIfPresent();
595 if (identity != nullptr) {
596 identity->per_thread_synch.suppress_fatal_errors = true;
597 }
598 // Don't do deadlock detection when we are already failing.
599 synch_deadlock_detection.store(OnDeadlockCycle::kIgnore,
600 std::memory_order_release);
601 }
602
603 // --------------------------time support
604
605 // Return the current time plus the timeout. Use the same clock as
606 // PerThreadSem::Wait() for consistency. Unfortunately, we don't have
607 // such a choice when a deadline is given directly.
DeadlineFromTimeout(absl::Duration timeout)608 static absl::Time DeadlineFromTimeout(absl::Duration timeout) {
609 #ifndef _WIN32
610 struct timeval tv;
611 gettimeofday(&tv, nullptr);
612 return absl::TimeFromTimeval(tv) + timeout;
613 #else
614 return absl::Now() + timeout;
615 #endif
616 }
617
618 // --------------------------Mutexes
619
620 // In the layout below, the msb of the bottom byte is currently unused. Also,
621 // the following constraints were considered in choosing the layout:
622 // o Both the debug allocator's "uninitialized" and "freed" patterns (0xab and
623 // 0xcd) are illegal: reader and writer lock both held.
624 // o kMuWriter and kMuEvent should exceed kMuDesig and kMuWait, to enable the
625 // bit-twiddling trick in Mutex::Unlock().
626 // o kMuWriter / kMuReader == kMuWrWait / kMuWait,
627 // to enable the bit-twiddling trick in CheckForMutexCorruption().
628 static const intptr_t kMuReader = 0x0001L; // a reader holds the lock
629 static const intptr_t kMuDesig = 0x0002L; // there's a designated waker
630 static const intptr_t kMuWait = 0x0004L; // threads are waiting
631 static const intptr_t kMuWriter = 0x0008L; // a writer holds the lock
632 static const intptr_t kMuEvent = 0x0010L; // record this mutex's events
633 // INVARIANT1: there's a thread that was blocked on the mutex, is
634 // no longer, yet has not yet acquired the mutex. If there's a
635 // designated waker, all threads can avoid taking the slow path in
636 // unlock because the designated waker will subsequently acquire
637 // the lock and wake someone. To maintain INVARIANT1 the bit is
638 // set when a thread is unblocked(INV1a), and threads that were
639 // unblocked reset the bit when they either acquire or re-block
640 // (INV1b).
641 static const intptr_t kMuWrWait = 0x0020L; // runnable writer is waiting
642 // for a reader
643 static const intptr_t kMuSpin = 0x0040L; // spinlock protects wait list
644 static const intptr_t kMuLow = 0x00ffL; // mask all mutex bits
645 static const intptr_t kMuHigh = ~kMuLow; // mask pointer/reader count
646
647 // Hack to make constant values available to gdb pretty printer
648 enum {
649 kGdbMuSpin = kMuSpin,
650 kGdbMuEvent = kMuEvent,
651 kGdbMuWait = kMuWait,
652 kGdbMuWriter = kMuWriter,
653 kGdbMuDesig = kMuDesig,
654 kGdbMuWrWait = kMuWrWait,
655 kGdbMuReader = kMuReader,
656 kGdbMuLow = kMuLow,
657 };
658
659 // kMuWrWait implies kMuWait.
660 // kMuReader and kMuWriter are mutually exclusive.
661 // If kMuReader is zero, there are no readers.
662 // Otherwise, if kMuWait is zero, the high order bits contain a count of the
663 // number of readers. Otherwise, the reader count is held in
664 // PerThreadSynch::readers of the most recently queued waiter, again in the
665 // bits above kMuLow.
666 static const intptr_t kMuOne = 0x0100; // a count of one reader
667
668 // flags passed to Enqueue and LockSlow{,WithTimeout,Loop}
669 static const int kMuHasBlocked = 0x01; // already blocked (MUST == 1)
670 static const int kMuIsCond = 0x02; // conditional waiter (CV or Condition)
671
672 static_assert(PerThreadSynch::kAlignment > kMuLow,
673 "PerThreadSynch::kAlignment must be greater than kMuLow");
674
675 // This struct contains various bitmasks to be used in
676 // acquiring and releasing a mutex in a particular mode.
677 struct MuHowS {
678 // if all the bits in fast_need_zero are zero, the lock can be acquired by
679 // adding fast_add and oring fast_or. The bit kMuDesig should be reset iff
680 // this is the designated waker.
681 intptr_t fast_need_zero;
682 intptr_t fast_or;
683 intptr_t fast_add;
684
685 intptr_t slow_need_zero; // fast_need_zero with events (e.g. logging)
686
687 intptr_t slow_inc_need_zero; // if all the bits in slow_inc_need_zero are
688 // zero a reader can acquire a read share by
689 // setting the reader bit and incrementing
690 // the reader count (in last waiter since
691 // we're now slow-path). kMuWrWait be may
692 // be ignored if we already waited once.
693 };
694
695 static const MuHowS kSharedS = {
696 // shared or read lock
697 kMuWriter | kMuWait | kMuEvent, // fast_need_zero
698 kMuReader, // fast_or
699 kMuOne, // fast_add
700 kMuWriter | kMuWait, // slow_need_zero
701 kMuSpin | kMuWriter | kMuWrWait, // slow_inc_need_zero
702 };
703 static const MuHowS kExclusiveS = {
704 // exclusive or write lock
705 kMuWriter | kMuReader | kMuEvent, // fast_need_zero
706 kMuWriter, // fast_or
707 0, // fast_add
708 kMuWriter | kMuReader, // slow_need_zero
709 ~static_cast<intptr_t>(0), // slow_inc_need_zero
710 };
711 static const Mutex::MuHow kShared = &kSharedS; // shared lock
712 static const Mutex::MuHow kExclusive = &kExclusiveS; // exclusive lock
713
714 #ifdef NDEBUG
715 static constexpr bool kDebugMode = false;
716 #else
717 static constexpr bool kDebugMode = true;
718 #endif
719
720 #ifdef ABSL_INTERNAL_HAVE_TSAN_INTERFACE
TsanFlags(Mutex::MuHow how)721 static unsigned TsanFlags(Mutex::MuHow how) {
722 return how == kShared ? __tsan_mutex_read_lock : 0;
723 }
724 #endif
725
DebugOnlyIsExiting()726 static bool DebugOnlyIsExiting() {
727 return false;
728 }
729
~Mutex()730 Mutex::~Mutex() {
731 intptr_t v = mu_.load(std::memory_order_relaxed);
732 if ((v & kMuEvent) != 0 && !DebugOnlyIsExiting()) {
733 ForgetSynchEvent(&this->mu_, kMuEvent, kMuSpin);
734 }
735 if (kDebugMode) {
736 this->ForgetDeadlockInfo();
737 }
738 ABSL_TSAN_MUTEX_DESTROY(this, __tsan_mutex_not_static);
739 }
740
EnableDebugLog(const char * name)741 void Mutex::EnableDebugLog(const char *name) {
742 SynchEvent *e = EnsureSynchEvent(&this->mu_, name, kMuEvent, kMuSpin);
743 e->log = true;
744 UnrefSynchEvent(e);
745 }
746
EnableMutexInvariantDebugging(bool enabled)747 void EnableMutexInvariantDebugging(bool enabled) {
748 synch_check_invariants.store(enabled, std::memory_order_release);
749 }
750
EnableInvariantDebugging(void (* invariant)(void *),void * arg)751 void Mutex::EnableInvariantDebugging(void (*invariant)(void *),
752 void *arg) {
753 if (synch_check_invariants.load(std::memory_order_acquire) &&
754 invariant != nullptr) {
755 SynchEvent *e = EnsureSynchEvent(&this->mu_, nullptr, kMuEvent, kMuSpin);
756 e->invariant = invariant;
757 e->arg = arg;
758 UnrefSynchEvent(e);
759 }
760 }
761
SetMutexDeadlockDetectionMode(OnDeadlockCycle mode)762 void SetMutexDeadlockDetectionMode(OnDeadlockCycle mode) {
763 synch_deadlock_detection.store(mode, std::memory_order_release);
764 }
765
766 // Return true iff threads x and y are part of the same equivalence
767 // class of waiters. An equivalence class is defined as the set of
768 // waiters with the same condition, type of lock, and thread priority.
769 //
770 // Requires that x and y be waiting on the same Mutex queue.
MuEquivalentWaiter(PerThreadSynch * x,PerThreadSynch * y)771 static bool MuEquivalentWaiter(PerThreadSynch *x, PerThreadSynch *y) {
772 return x->waitp->how == y->waitp->how && x->priority == y->priority &&
773 Condition::GuaranteedEqual(x->waitp->cond, y->waitp->cond);
774 }
775
776 // Given the contents of a mutex word containing a PerThreadSynch pointer,
777 // return the pointer.
GetPerThreadSynch(intptr_t v)778 static inline PerThreadSynch *GetPerThreadSynch(intptr_t v) {
779 return reinterpret_cast<PerThreadSynch *>(v & kMuHigh);
780 }
781
782 // The next several routines maintain the per-thread next and skip fields
783 // used in the Mutex waiter queue.
784 // The queue is a circular singly-linked list, of which the "head" is the
785 // last element, and head->next if the first element.
786 // The skip field has the invariant:
787 // For thread x, x->skip is one of:
788 // - invalid (iff x is not in a Mutex wait queue),
789 // - null, or
790 // - a pointer to a distinct thread waiting later in the same Mutex queue
791 // such that all threads in [x, x->skip] have the same condition, priority
792 // and lock type (MuEquivalentWaiter() is true for all pairs in [x,
793 // x->skip]).
794 // In addition, if x->skip is valid, (x->may_skip || x->skip == null)
795 //
796 // By the spec of MuEquivalentWaiter(), it is not necessary when removing the
797 // first runnable thread y from the front a Mutex queue to adjust the skip
798 // field of another thread x because if x->skip==y, x->skip must (have) become
799 // invalid before y is removed. The function TryRemove can remove a specified
800 // thread from an arbitrary position in the queue whether runnable or not, so
801 // it fixes up skip fields that would otherwise be left dangling.
802 // The statement
803 // if (x->may_skip && MuEquivalentWaiter(x, x->next)) { x->skip = x->next; }
804 // maintains the invariant provided x is not the last waiter in a Mutex queue
805 // The statement
806 // if (x->skip != null) { x->skip = x->skip->skip; }
807 // maintains the invariant.
808
809 // Returns the last thread y in a mutex waiter queue such that all threads in
810 // [x, y] inclusive share the same condition. Sets skip fields of some threads
811 // in that range to optimize future evaluation of Skip() on x values in
812 // the range. Requires thread x is in a mutex waiter queue.
813 // The locking is unusual. Skip() is called under these conditions:
814 // - spinlock is held in call from Enqueue(), with maybe_unlocking == false
815 // - Mutex is held in call from UnlockSlow() by last unlocker, with
816 // maybe_unlocking == true
817 // - both Mutex and spinlock are held in call from DequeueAllWakeable() (from
818 // UnlockSlow()) and TryRemove()
819 // These cases are mutually exclusive, so Skip() never runs concurrently
820 // with itself on the same Mutex. The skip chain is used in these other places
821 // that cannot occur concurrently:
822 // - FixSkip() (from TryRemove()) - spinlock and Mutex are held)
823 // - Dequeue() (with spinlock and Mutex held)
824 // - UnlockSlow() (with spinlock and Mutex held)
825 // A more complex case is Enqueue()
826 // - Enqueue() (with spinlock held and maybe_unlocking == false)
827 // This is the first case in which Skip is called, above.
828 // - Enqueue() (without spinlock held; but queue is empty and being freshly
829 // formed)
830 // - Enqueue() (with spinlock held and maybe_unlocking == true)
831 // The first case has mutual exclusion, and the second isolation through
832 // working on an otherwise unreachable data structure.
833 // In the last case, Enqueue() is required to change no skip/next pointers
834 // except those in the added node and the former "head" node. This implies
835 // that the new node is added after head, and so must be the new head or the
836 // new front of the queue.
Skip(PerThreadSynch * x)837 static PerThreadSynch *Skip(PerThreadSynch *x) {
838 PerThreadSynch *x0 = nullptr;
839 PerThreadSynch *x1 = x;
840 PerThreadSynch *x2 = x->skip;
841 if (x2 != nullptr) {
842 // Each iteration attempts to advance sequence (x0,x1,x2) to next sequence
843 // such that x1 == x0->skip && x2 == x1->skip
844 while ((x0 = x1, x1 = x2, x2 = x2->skip) != nullptr) {
845 x0->skip = x2; // short-circuit skip from x0 to x2
846 }
847 x->skip = x1; // short-circuit skip from x to result
848 }
849 return x1;
850 }
851
852 // "ancestor" appears before "to_be_removed" in the same Mutex waiter queue.
853 // The latter is going to be removed out of order, because of a timeout.
854 // Check whether "ancestor" has a skip field pointing to "to_be_removed",
855 // and fix it if it does.
FixSkip(PerThreadSynch * ancestor,PerThreadSynch * to_be_removed)856 static void FixSkip(PerThreadSynch *ancestor, PerThreadSynch *to_be_removed) {
857 if (ancestor->skip == to_be_removed) { // ancestor->skip left dangling
858 if (to_be_removed->skip != nullptr) {
859 ancestor->skip = to_be_removed->skip; // can skip past to_be_removed
860 } else if (ancestor->next != to_be_removed) { // they are not adjacent
861 ancestor->skip = ancestor->next; // can skip one past ancestor
862 } else {
863 ancestor->skip = nullptr; // can't skip at all
864 }
865 }
866 }
867
868 static void CondVarEnqueue(SynchWaitParams *waitp);
869
870 // Enqueue thread "waitp->thread" on a waiter queue.
871 // Called with mutex spinlock held if head != nullptr
872 // If head==nullptr and waitp->cv_word==nullptr, then Enqueue() is
873 // idempotent; it alters no state associated with the existing (empty)
874 // queue.
875 //
876 // If waitp->cv_word == nullptr, queue the thread at either the front or
877 // the end (according to its priority) of the circular mutex waiter queue whose
878 // head is "head", and return the new head. mu is the previous mutex state,
879 // which contains the reader count (perhaps adjusted for the operation in
880 // progress) if the list was empty and a read lock held, and the holder hint if
881 // the list was empty and a write lock held. (flags & kMuIsCond) indicates
882 // whether this thread was transferred from a CondVar or is waiting for a
883 // non-trivial condition. In this case, Enqueue() never returns nullptr
884 //
885 // If waitp->cv_word != nullptr, CondVarEnqueue() is called, and "head" is
886 // returned. This mechanism is used by CondVar to queue a thread on the
887 // condition variable queue instead of the mutex queue in implementing Wait().
888 // In this case, Enqueue() can return nullptr (if head==nullptr).
Enqueue(PerThreadSynch * head,SynchWaitParams * waitp,intptr_t mu,int flags)889 static PerThreadSynch *Enqueue(PerThreadSynch *head,
890 SynchWaitParams *waitp, intptr_t mu, int flags) {
891 // If we have been given a cv_word, call CondVarEnqueue() and return
892 // the previous head of the Mutex waiter queue.
893 if (waitp->cv_word != nullptr) {
894 CondVarEnqueue(waitp);
895 return head;
896 }
897
898 PerThreadSynch *s = waitp->thread;
899 ABSL_RAW_CHECK(
900 s->waitp == nullptr || // normal case
901 s->waitp == waitp || // Fer()---transfer from condition variable
902 s->suppress_fatal_errors,
903 "detected illegal recursion into Mutex code");
904 s->waitp = waitp;
905 s->skip = nullptr; // maintain skip invariant (see above)
906 s->may_skip = true; // always true on entering queue
907 s->wake = false; // not being woken
908 s->cond_waiter = ((flags & kMuIsCond) != 0);
909 if (head == nullptr) { // s is the only waiter
910 s->next = s; // it's the only entry in the cycle
911 s->readers = mu; // reader count is from mu word
912 s->maybe_unlocking = false; // no one is searching an empty list
913 head = s; // s is new head
914 } else {
915 PerThreadSynch *enqueue_after = nullptr; // we'll put s after this element
916 #ifdef ABSL_HAVE_PTHREAD_GETSCHEDPARAM
917 int64_t now_cycles = base_internal::CycleClock::Now();
918 if (s->next_priority_read_cycles < now_cycles) {
919 // Every so often, update our idea of the thread's priority.
920 // pthread_getschedparam() is 5% of the block/wakeup time;
921 // base_internal::CycleClock::Now() is 0.5%.
922 int policy;
923 struct sched_param param;
924 const int err = pthread_getschedparam(pthread_self(), &policy, ¶m);
925 if (err != 0) {
926 ABSL_RAW_LOG(ERROR, "pthread_getschedparam failed: %d", err);
927 } else {
928 s->priority = param.sched_priority;
929 s->next_priority_read_cycles =
930 now_cycles +
931 static_cast<int64_t>(base_internal::CycleClock::Frequency());
932 }
933 }
934 if (s->priority > head->priority) { // s's priority is above head's
935 // try to put s in priority-fifo order, or failing that at the front.
936 if (!head->maybe_unlocking) {
937 // No unlocker can be scanning the queue, so we can insert into the
938 // middle of the queue.
939 //
940 // Within a skip chain, all waiters have the same priority, so we can
941 // skip forward through the chains until we find one with a lower
942 // priority than the waiter to be enqueued.
943 PerThreadSynch *advance_to = head; // next value of enqueue_after
944 do {
945 enqueue_after = advance_to;
946 // (side-effect: optimizes skip chain)
947 advance_to = Skip(enqueue_after->next);
948 } while (s->priority <= advance_to->priority);
949 // termination guaranteed because s->priority > head->priority
950 // and head is the end of a skip chain
951 } else if (waitp->how == kExclusive &&
952 Condition::GuaranteedEqual(waitp->cond, nullptr)) {
953 // An unlocker could be scanning the queue, but we know it will recheck
954 // the queue front for writers that have no condition, which is what s
955 // is, so an insert at front is safe.
956 enqueue_after = head; // add after head, at front
957 }
958 }
959 #endif
960 if (enqueue_after != nullptr) {
961 s->next = enqueue_after->next;
962 enqueue_after->next = s;
963
964 // enqueue_after can be: head, Skip(...), or cur.
965 // The first two imply enqueue_after->skip == nullptr, and
966 // the last is used only if MuEquivalentWaiter(s, cur).
967 // We require this because clearing enqueue_after->skip
968 // is impossible; enqueue_after's predecessors might also
969 // incorrectly skip over s if we were to allow other
970 // insertion points.
971 ABSL_RAW_CHECK(enqueue_after->skip == nullptr ||
972 MuEquivalentWaiter(enqueue_after, s),
973 "Mutex Enqueue failure");
974
975 if (enqueue_after != head && enqueue_after->may_skip &&
976 MuEquivalentWaiter(enqueue_after, enqueue_after->next)) {
977 // enqueue_after can skip to its new successor, s
978 enqueue_after->skip = enqueue_after->next;
979 }
980 if (MuEquivalentWaiter(s, s->next)) { // s->may_skip is known to be true
981 s->skip = s->next; // s may skip to its successor
982 }
983 } else { // enqueue not done any other way, so
984 // we're inserting s at the back
985 // s will become new head; copy data from head into it
986 s->next = head->next; // add s after head
987 head->next = s;
988 s->readers = head->readers; // reader count is from previous head
989 s->maybe_unlocking = head->maybe_unlocking; // same for unlock hint
990 if (head->may_skip && MuEquivalentWaiter(head, s)) {
991 // head now has successor; may skip
992 head->skip = s;
993 }
994 head = s; // s is new head
995 }
996 }
997 s->state.store(PerThreadSynch::kQueued, std::memory_order_relaxed);
998 return head;
999 }
1000
1001 // Dequeue the successor pw->next of thread pw from the Mutex waiter queue
1002 // whose last element is head. The new head element is returned, or null
1003 // if the list is made empty.
1004 // Dequeue is called with both spinlock and Mutex held.
Dequeue(PerThreadSynch * head,PerThreadSynch * pw)1005 static PerThreadSynch *Dequeue(PerThreadSynch *head, PerThreadSynch *pw) {
1006 PerThreadSynch *w = pw->next;
1007 pw->next = w->next; // snip w out of list
1008 if (head == w) { // we removed the head
1009 head = (pw == w) ? nullptr : pw; // either emptied list, or pw is new head
1010 } else if (pw != head && MuEquivalentWaiter(pw, pw->next)) {
1011 // pw can skip to its new successor
1012 if (pw->next->skip !=
1013 nullptr) { // either skip to its successors skip target
1014 pw->skip = pw->next->skip;
1015 } else { // or to pw's successor
1016 pw->skip = pw->next;
1017 }
1018 }
1019 return head;
1020 }
1021
1022 // Traverse the elements [ pw->next, h] of the circular list whose last element
1023 // is head.
1024 // Remove all elements with wake==true and place them in the
1025 // singly-linked list wake_list in the order found. Assumes that
1026 // there is only one such element if the element has how == kExclusive.
1027 // Return the new head.
DequeueAllWakeable(PerThreadSynch * head,PerThreadSynch * pw,PerThreadSynch ** wake_tail)1028 static PerThreadSynch *DequeueAllWakeable(PerThreadSynch *head,
1029 PerThreadSynch *pw,
1030 PerThreadSynch **wake_tail) {
1031 PerThreadSynch *orig_h = head;
1032 PerThreadSynch *w = pw->next;
1033 bool skipped = false;
1034 do {
1035 if (w->wake) { // remove this element
1036 ABSL_RAW_CHECK(pw->skip == nullptr, "bad skip in DequeueAllWakeable");
1037 // we're removing pw's successor so either pw->skip is zero or we should
1038 // already have removed pw since if pw->skip!=null, pw has the same
1039 // condition as w.
1040 head = Dequeue(head, pw);
1041 w->next = *wake_tail; // keep list terminated
1042 *wake_tail = w; // add w to wake_list;
1043 wake_tail = &w->next; // next addition to end
1044 if (w->waitp->how == kExclusive) { // wake at most 1 writer
1045 break;
1046 }
1047 } else { // not waking this one; skip
1048 pw = Skip(w); // skip as much as possible
1049 skipped = true;
1050 }
1051 w = pw->next;
1052 // We want to stop processing after we've considered the original head,
1053 // orig_h. We can't test for w==orig_h in the loop because w may skip over
1054 // it; we are guaranteed only that w's predecessor will not skip over
1055 // orig_h. When we've considered orig_h, either we've processed it and
1056 // removed it (so orig_h != head), or we considered it and skipped it (so
1057 // skipped==true && pw == head because skipping from head always skips by
1058 // just one, leaving pw pointing at head). So we want to
1059 // continue the loop with the negation of that expression.
1060 } while (orig_h == head && (pw != head || !skipped));
1061 return head;
1062 }
1063
1064 // Try to remove thread s from the list of waiters on this mutex.
1065 // Does nothing if s is not on the waiter list.
TryRemove(PerThreadSynch * s)1066 void Mutex::TryRemove(PerThreadSynch *s) {
1067 SchedulingGuard::ScopedDisable disable_rescheduling;
1068 intptr_t v = mu_.load(std::memory_order_relaxed);
1069 // acquire spinlock & lock
1070 if ((v & (kMuWait | kMuSpin | kMuWriter | kMuReader)) == kMuWait &&
1071 mu_.compare_exchange_strong(v, v | kMuSpin | kMuWriter,
1072 std::memory_order_acquire,
1073 std::memory_order_relaxed)) {
1074 PerThreadSynch *h = GetPerThreadSynch(v);
1075 if (h != nullptr) {
1076 PerThreadSynch *pw = h; // pw is w's predecessor
1077 PerThreadSynch *w;
1078 if ((w = pw->next) != s) { // search for thread,
1079 do { // processing at least one element
1080 // If the current element isn't equivalent to the waiter to be
1081 // removed, we can skip the entire chain.
1082 if (!MuEquivalentWaiter(s, w)) {
1083 pw = Skip(w); // so skip all that won't match
1084 // we don't have to worry about dangling skip fields
1085 // in the threads we skipped; none can point to s
1086 // because they are in a different equivalence class.
1087 } else { // seeking same condition
1088 FixSkip(w, s); // fix up any skip pointer from w to s
1089 pw = w;
1090 }
1091 // don't search further if we found the thread, or we're about to
1092 // process the first thread again.
1093 } while ((w = pw->next) != s && pw != h);
1094 }
1095 if (w == s) { // found thread; remove it
1096 // pw->skip may be non-zero here; the loop above ensured that
1097 // no ancestor of s can skip to s, so removal is safe anyway.
1098 h = Dequeue(h, pw);
1099 s->next = nullptr;
1100 s->state.store(PerThreadSynch::kAvailable, std::memory_order_release);
1101 }
1102 }
1103 intptr_t nv;
1104 do { // release spinlock and lock
1105 v = mu_.load(std::memory_order_relaxed);
1106 nv = v & (kMuDesig | kMuEvent);
1107 if (h != nullptr) {
1108 nv |= kMuWait | reinterpret_cast<intptr_t>(h);
1109 h->readers = 0; // we hold writer lock
1110 h->maybe_unlocking = false; // finished unlocking
1111 }
1112 } while (!mu_.compare_exchange_weak(v, nv,
1113 std::memory_order_release,
1114 std::memory_order_relaxed));
1115 }
1116 }
1117
1118 // Wait until thread "s", which must be the current thread, is removed from the
1119 // this mutex's waiter queue. If "s->waitp->timeout" has a timeout, wake up
1120 // if the wait extends past the absolute time specified, even if "s" is still
1121 // on the mutex queue. In this case, remove "s" from the queue and return
1122 // true, otherwise return false.
Block(PerThreadSynch * s)1123 ABSL_XRAY_LOG_ARGS(1) void Mutex::Block(PerThreadSynch *s) {
1124 while (s->state.load(std::memory_order_acquire) == PerThreadSynch::kQueued) {
1125 if (!DecrementSynchSem(this, s, s->waitp->timeout)) {
1126 // After a timeout, we go into a spin loop until we remove ourselves
1127 // from the queue, or someone else removes us. We can't be sure to be
1128 // able to remove ourselves in a single lock acquisition because this
1129 // mutex may be held, and the holder has the right to read the centre
1130 // of the waiter queue without holding the spinlock.
1131 this->TryRemove(s);
1132 int c = 0;
1133 while (s->next != nullptr) {
1134 c = synchronization_internal::MutexDelay(c, GENTLE);
1135 this->TryRemove(s);
1136 }
1137 if (kDebugMode) {
1138 // This ensures that we test the case that TryRemove() is called when s
1139 // is not on the queue.
1140 this->TryRemove(s);
1141 }
1142 s->waitp->timeout = KernelTimeout::Never(); // timeout is satisfied
1143 s->waitp->cond = nullptr; // condition no longer relevant for wakeups
1144 }
1145 }
1146 ABSL_RAW_CHECK(s->waitp != nullptr || s->suppress_fatal_errors,
1147 "detected illegal recursion in Mutex code");
1148 s->waitp = nullptr;
1149 }
1150
1151 // Wake thread w, and return the next thread in the list.
Wakeup(PerThreadSynch * w)1152 PerThreadSynch *Mutex::Wakeup(PerThreadSynch *w) {
1153 PerThreadSynch *next = w->next;
1154 w->next = nullptr;
1155 w->state.store(PerThreadSynch::kAvailable, std::memory_order_release);
1156 IncrementSynchSem(this, w);
1157
1158 return next;
1159 }
1160
GetGraphIdLocked(Mutex * mu)1161 static GraphId GetGraphIdLocked(Mutex *mu)
1162 ABSL_EXCLUSIVE_LOCKS_REQUIRED(deadlock_graph_mu) {
1163 if (!deadlock_graph) { // (re)create the deadlock graph.
1164 deadlock_graph =
1165 new (base_internal::LowLevelAlloc::Alloc(sizeof(*deadlock_graph)))
1166 GraphCycles;
1167 }
1168 return deadlock_graph->GetId(mu);
1169 }
1170
GetGraphId(Mutex * mu)1171 static GraphId GetGraphId(Mutex *mu) ABSL_LOCKS_EXCLUDED(deadlock_graph_mu) {
1172 deadlock_graph_mu.Lock();
1173 GraphId id = GetGraphIdLocked(mu);
1174 deadlock_graph_mu.Unlock();
1175 return id;
1176 }
1177
1178 // Record a lock acquisition. This is used in debug mode for deadlock
1179 // detection. The held_locks pointer points to the relevant data
1180 // structure for each case.
LockEnter(Mutex * mu,GraphId id,SynchLocksHeld * held_locks)1181 static void LockEnter(Mutex* mu, GraphId id, SynchLocksHeld *held_locks) {
1182 int n = held_locks->n;
1183 int i = 0;
1184 while (i != n && held_locks->locks[i].id != id) {
1185 i++;
1186 }
1187 if (i == n) {
1188 if (n == ABSL_ARRAYSIZE(held_locks->locks)) {
1189 held_locks->overflow = true; // lost some data
1190 } else { // we have room for lock
1191 held_locks->locks[i].mu = mu;
1192 held_locks->locks[i].count = 1;
1193 held_locks->locks[i].id = id;
1194 held_locks->n = n + 1;
1195 }
1196 } else {
1197 held_locks->locks[i].count++;
1198 }
1199 }
1200
1201 // Record a lock release. Each call to LockEnter(mu, id, x) should be
1202 // eventually followed by a call to LockLeave(mu, id, x) by the same thread.
1203 // It does not process the event if is not needed when deadlock detection is
1204 // disabled.
LockLeave(Mutex * mu,GraphId id,SynchLocksHeld * held_locks)1205 static void LockLeave(Mutex* mu, GraphId id, SynchLocksHeld *held_locks) {
1206 int n = held_locks->n;
1207 int i = 0;
1208 while (i != n && held_locks->locks[i].id != id) {
1209 i++;
1210 }
1211 if (i == n) {
1212 if (!held_locks->overflow) {
1213 // The deadlock id may have been reassigned after ForgetDeadlockInfo,
1214 // but in that case mu should still be present.
1215 i = 0;
1216 while (i != n && held_locks->locks[i].mu != mu) {
1217 i++;
1218 }
1219 if (i == n) { // mu missing means releasing unheld lock
1220 SynchEvent *mu_events = GetSynchEvent(mu);
1221 ABSL_RAW_LOG(FATAL,
1222 "thread releasing lock it does not hold: %p %s; "
1223 ,
1224 static_cast<void *>(mu),
1225 mu_events == nullptr ? "" : mu_events->name);
1226 }
1227 }
1228 } else if (held_locks->locks[i].count == 1) {
1229 held_locks->n = n - 1;
1230 held_locks->locks[i] = held_locks->locks[n - 1];
1231 held_locks->locks[n - 1].id = InvalidGraphId();
1232 held_locks->locks[n - 1].mu =
1233 nullptr; // clear mu to please the leak detector.
1234 } else {
1235 assert(held_locks->locks[i].count > 0);
1236 held_locks->locks[i].count--;
1237 }
1238 }
1239
1240 // Call LockEnter() if in debug mode and deadlock detection is enabled.
DebugOnlyLockEnter(Mutex * mu)1241 static inline void DebugOnlyLockEnter(Mutex *mu) {
1242 if (kDebugMode) {
1243 if (synch_deadlock_detection.load(std::memory_order_acquire) !=
1244 OnDeadlockCycle::kIgnore) {
1245 LockEnter(mu, GetGraphId(mu), Synch_GetAllLocks());
1246 }
1247 }
1248 }
1249
1250 // Call LockEnter() if in debug mode and deadlock detection is enabled.
DebugOnlyLockEnter(Mutex * mu,GraphId id)1251 static inline void DebugOnlyLockEnter(Mutex *mu, GraphId id) {
1252 if (kDebugMode) {
1253 if (synch_deadlock_detection.load(std::memory_order_acquire) !=
1254 OnDeadlockCycle::kIgnore) {
1255 LockEnter(mu, id, Synch_GetAllLocks());
1256 }
1257 }
1258 }
1259
1260 // Call LockLeave() if in debug mode and deadlock detection is enabled.
DebugOnlyLockLeave(Mutex * mu)1261 static inline void DebugOnlyLockLeave(Mutex *mu) {
1262 if (kDebugMode) {
1263 if (synch_deadlock_detection.load(std::memory_order_acquire) !=
1264 OnDeadlockCycle::kIgnore) {
1265 LockLeave(mu, GetGraphId(mu), Synch_GetAllLocks());
1266 }
1267 }
1268 }
1269
StackString(void ** pcs,int n,char * buf,int maxlen,bool symbolize)1270 static char *StackString(void **pcs, int n, char *buf, int maxlen,
1271 bool symbolize) {
1272 static const int kSymLen = 200;
1273 char sym[kSymLen];
1274 int len = 0;
1275 for (int i = 0; i != n; i++) {
1276 if (symbolize) {
1277 if (!symbolizer(pcs[i], sym, kSymLen)) {
1278 sym[0] = '\0';
1279 }
1280 snprintf(buf + len, maxlen - len, "%s\t@ %p %s\n",
1281 (i == 0 ? "\n" : ""),
1282 pcs[i], sym);
1283 } else {
1284 snprintf(buf + len, maxlen - len, " %p", pcs[i]);
1285 }
1286 len += strlen(&buf[len]);
1287 }
1288 return buf;
1289 }
1290
CurrentStackString(char * buf,int maxlen,bool symbolize)1291 static char *CurrentStackString(char *buf, int maxlen, bool symbolize) {
1292 void *pcs[40];
1293 return StackString(pcs, absl::GetStackTrace(pcs, ABSL_ARRAYSIZE(pcs), 2), buf,
1294 maxlen, symbolize);
1295 }
1296
1297 namespace {
1298 enum { kMaxDeadlockPathLen = 10 }; // maximum length of a deadlock cycle;
1299 // a path this long would be remarkable
1300 // Buffers required to report a deadlock.
1301 // We do not allocate them on stack to avoid large stack frame.
1302 struct DeadlockReportBuffers {
1303 char buf[6100];
1304 GraphId path[kMaxDeadlockPathLen];
1305 };
1306
1307 struct ScopedDeadlockReportBuffers {
ScopedDeadlockReportBuffersabsl::__anon50926f1f0a11::ScopedDeadlockReportBuffers1308 ScopedDeadlockReportBuffers() {
1309 b = reinterpret_cast<DeadlockReportBuffers *>(
1310 base_internal::LowLevelAlloc::Alloc(sizeof(*b)));
1311 }
~ScopedDeadlockReportBuffersabsl::__anon50926f1f0a11::ScopedDeadlockReportBuffers1312 ~ScopedDeadlockReportBuffers() { base_internal::LowLevelAlloc::Free(b); }
1313 DeadlockReportBuffers *b;
1314 };
1315
1316 // Helper to pass to GraphCycles::UpdateStackTrace.
GetStack(void ** stack,int max_depth)1317 int GetStack(void** stack, int max_depth) {
1318 return absl::GetStackTrace(stack, max_depth, 3);
1319 }
1320 } // anonymous namespace
1321
1322 // Called in debug mode when a thread is about to acquire a lock in a way that
1323 // may block.
DeadlockCheck(Mutex * mu)1324 static GraphId DeadlockCheck(Mutex *mu) {
1325 if (synch_deadlock_detection.load(std::memory_order_acquire) ==
1326 OnDeadlockCycle::kIgnore) {
1327 return InvalidGraphId();
1328 }
1329
1330 SynchLocksHeld *all_locks = Synch_GetAllLocks();
1331
1332 absl::base_internal::SpinLockHolder lock(&deadlock_graph_mu);
1333 const GraphId mu_id = GetGraphIdLocked(mu);
1334
1335 if (all_locks->n == 0) {
1336 // There are no other locks held. Return now so that we don't need to
1337 // call GetSynchEvent(). This way we do not record the stack trace
1338 // for this Mutex. It's ok, since if this Mutex is involved in a deadlock,
1339 // it can't always be the first lock acquired by a thread.
1340 return mu_id;
1341 }
1342
1343 // We prefer to keep stack traces that show a thread holding and acquiring
1344 // as many locks as possible. This increases the chances that a given edge
1345 // in the acquires-before graph will be represented in the stack traces
1346 // recorded for the locks.
1347 deadlock_graph->UpdateStackTrace(mu_id, all_locks->n + 1, GetStack);
1348
1349 // For each other mutex already held by this thread:
1350 for (int i = 0; i != all_locks->n; i++) {
1351 const GraphId other_node_id = all_locks->locks[i].id;
1352 const Mutex *other =
1353 static_cast<const Mutex *>(deadlock_graph->Ptr(other_node_id));
1354 if (other == nullptr) {
1355 // Ignore stale lock
1356 continue;
1357 }
1358
1359 // Add the acquired-before edge to the graph.
1360 if (!deadlock_graph->InsertEdge(other_node_id, mu_id)) {
1361 ScopedDeadlockReportBuffers scoped_buffers;
1362 DeadlockReportBuffers *b = scoped_buffers.b;
1363 static int number_of_reported_deadlocks = 0;
1364 number_of_reported_deadlocks++;
1365 // Symbolize only 2 first deadlock report to avoid huge slowdowns.
1366 bool symbolize = number_of_reported_deadlocks <= 2;
1367 ABSL_RAW_LOG(ERROR, "Potential Mutex deadlock: %s",
1368 CurrentStackString(b->buf, sizeof (b->buf), symbolize));
1369 int len = 0;
1370 for (int j = 0; j != all_locks->n; j++) {
1371 void* pr = deadlock_graph->Ptr(all_locks->locks[j].id);
1372 if (pr != nullptr) {
1373 snprintf(b->buf + len, sizeof (b->buf) - len, " %p", pr);
1374 len += static_cast<int>(strlen(&b->buf[len]));
1375 }
1376 }
1377 ABSL_RAW_LOG(ERROR,
1378 "Acquiring absl::Mutex %p while holding %s; a cycle in the "
1379 "historical lock ordering graph has been observed",
1380 static_cast<void *>(mu), b->buf);
1381 ABSL_RAW_LOG(ERROR, "Cycle: ");
1382 int path_len = deadlock_graph->FindPath(
1383 mu_id, other_node_id, ABSL_ARRAYSIZE(b->path), b->path);
1384 for (int j = 0; j != path_len; j++) {
1385 GraphId id = b->path[j];
1386 Mutex *path_mu = static_cast<Mutex *>(deadlock_graph->Ptr(id));
1387 if (path_mu == nullptr) continue;
1388 void** stack;
1389 int depth = deadlock_graph->GetStackTrace(id, &stack);
1390 snprintf(b->buf, sizeof(b->buf),
1391 "mutex@%p stack: ", static_cast<void *>(path_mu));
1392 StackString(stack, depth, b->buf + strlen(b->buf),
1393 static_cast<int>(sizeof(b->buf) - strlen(b->buf)),
1394 symbolize);
1395 ABSL_RAW_LOG(ERROR, "%s", b->buf);
1396 }
1397 if (synch_deadlock_detection.load(std::memory_order_acquire) ==
1398 OnDeadlockCycle::kAbort) {
1399 deadlock_graph_mu.Unlock(); // avoid deadlock in fatal sighandler
1400 ABSL_RAW_LOG(FATAL, "dying due to potential deadlock");
1401 return mu_id;
1402 }
1403 break; // report at most one potential deadlock per acquisition
1404 }
1405 }
1406
1407 return mu_id;
1408 }
1409
1410 // Invoke DeadlockCheck() iff we're in debug mode and
1411 // deadlock checking has been enabled.
DebugOnlyDeadlockCheck(Mutex * mu)1412 static inline GraphId DebugOnlyDeadlockCheck(Mutex *mu) {
1413 if (kDebugMode && synch_deadlock_detection.load(std::memory_order_acquire) !=
1414 OnDeadlockCycle::kIgnore) {
1415 return DeadlockCheck(mu);
1416 } else {
1417 return InvalidGraphId();
1418 }
1419 }
1420
ForgetDeadlockInfo()1421 void Mutex::ForgetDeadlockInfo() {
1422 if (kDebugMode && synch_deadlock_detection.load(std::memory_order_acquire) !=
1423 OnDeadlockCycle::kIgnore) {
1424 deadlock_graph_mu.Lock();
1425 if (deadlock_graph != nullptr) {
1426 deadlock_graph->RemoveNode(this);
1427 }
1428 deadlock_graph_mu.Unlock();
1429 }
1430 }
1431
AssertNotHeld() const1432 void Mutex::AssertNotHeld() const {
1433 // We have the data to allow this check only if in debug mode and deadlock
1434 // detection is enabled.
1435 if (kDebugMode &&
1436 (mu_.load(std::memory_order_relaxed) & (kMuWriter | kMuReader)) != 0 &&
1437 synch_deadlock_detection.load(std::memory_order_acquire) !=
1438 OnDeadlockCycle::kIgnore) {
1439 GraphId id = GetGraphId(const_cast<Mutex *>(this));
1440 SynchLocksHeld *locks = Synch_GetAllLocks();
1441 for (int i = 0; i != locks->n; i++) {
1442 if (locks->locks[i].id == id) {
1443 SynchEvent *mu_events = GetSynchEvent(this);
1444 ABSL_RAW_LOG(FATAL, "thread should not hold mutex %p %s",
1445 static_cast<const void *>(this),
1446 (mu_events == nullptr ? "" : mu_events->name));
1447 }
1448 }
1449 }
1450 }
1451
1452 // Attempt to acquire *mu, and return whether successful. The implementation
1453 // may spin for a short while if the lock cannot be acquired immediately.
TryAcquireWithSpinning(std::atomic<intptr_t> * mu)1454 static bool TryAcquireWithSpinning(std::atomic<intptr_t>* mu) {
1455 int c = GetMutexGlobals().spinloop_iterations;
1456 do { // do/while somewhat faster on AMD
1457 intptr_t v = mu->load(std::memory_order_relaxed);
1458 if ((v & (kMuReader|kMuEvent)) != 0) {
1459 return false; // a reader or tracing -> give up
1460 } else if (((v & kMuWriter) == 0) && // no holder -> try to acquire
1461 mu->compare_exchange_strong(v, kMuWriter | v,
1462 std::memory_order_acquire,
1463 std::memory_order_relaxed)) {
1464 return true;
1465 }
1466 } while (--c > 0);
1467 return false;
1468 }
1469
Lock()1470 ABSL_XRAY_LOG_ARGS(1) void Mutex::Lock() {
1471 ABSL_TSAN_MUTEX_PRE_LOCK(this, 0);
1472 GraphId id = DebugOnlyDeadlockCheck(this);
1473 intptr_t v = mu_.load(std::memory_order_relaxed);
1474 // try fast acquire, then spin loop
1475 if ((v & (kMuWriter | kMuReader | kMuEvent)) != 0 ||
1476 !mu_.compare_exchange_strong(v, kMuWriter | v,
1477 std::memory_order_acquire,
1478 std::memory_order_relaxed)) {
1479 // try spin acquire, then slow loop
1480 if (!TryAcquireWithSpinning(&this->mu_)) {
1481 this->LockSlow(kExclusive, nullptr, 0);
1482 }
1483 }
1484 DebugOnlyLockEnter(this, id);
1485 ABSL_TSAN_MUTEX_POST_LOCK(this, 0, 0);
1486 }
1487
ReaderLock()1488 ABSL_XRAY_LOG_ARGS(1) void Mutex::ReaderLock() {
1489 ABSL_TSAN_MUTEX_PRE_LOCK(this, __tsan_mutex_read_lock);
1490 GraphId id = DebugOnlyDeadlockCheck(this);
1491 intptr_t v = mu_.load(std::memory_order_relaxed);
1492 // try fast acquire, then slow loop
1493 if ((v & (kMuWriter | kMuWait | kMuEvent)) != 0 ||
1494 !mu_.compare_exchange_strong(v, (kMuReader | v) + kMuOne,
1495 std::memory_order_acquire,
1496 std::memory_order_relaxed)) {
1497 this->LockSlow(kShared, nullptr, 0);
1498 }
1499 DebugOnlyLockEnter(this, id);
1500 ABSL_TSAN_MUTEX_POST_LOCK(this, __tsan_mutex_read_lock, 0);
1501 }
1502
LockWhen(const Condition & cond)1503 void Mutex::LockWhen(const Condition &cond) {
1504 ABSL_TSAN_MUTEX_PRE_LOCK(this, 0);
1505 GraphId id = DebugOnlyDeadlockCheck(this);
1506 this->LockSlow(kExclusive, &cond, 0);
1507 DebugOnlyLockEnter(this, id);
1508 ABSL_TSAN_MUTEX_POST_LOCK(this, 0, 0);
1509 }
1510
LockWhenWithTimeout(const Condition & cond,absl::Duration timeout)1511 bool Mutex::LockWhenWithTimeout(const Condition &cond, absl::Duration timeout) {
1512 return LockWhenWithDeadline(cond, DeadlineFromTimeout(timeout));
1513 }
1514
LockWhenWithDeadline(const Condition & cond,absl::Time deadline)1515 bool Mutex::LockWhenWithDeadline(const Condition &cond, absl::Time deadline) {
1516 ABSL_TSAN_MUTEX_PRE_LOCK(this, 0);
1517 GraphId id = DebugOnlyDeadlockCheck(this);
1518 bool res = LockSlowWithDeadline(kExclusive, &cond,
1519 KernelTimeout(deadline), 0);
1520 DebugOnlyLockEnter(this, id);
1521 ABSL_TSAN_MUTEX_POST_LOCK(this, 0, 0);
1522 return res;
1523 }
1524
ReaderLockWhen(const Condition & cond)1525 void Mutex::ReaderLockWhen(const Condition &cond) {
1526 ABSL_TSAN_MUTEX_PRE_LOCK(this, __tsan_mutex_read_lock);
1527 GraphId id = DebugOnlyDeadlockCheck(this);
1528 this->LockSlow(kShared, &cond, 0);
1529 DebugOnlyLockEnter(this, id);
1530 ABSL_TSAN_MUTEX_POST_LOCK(this, __tsan_mutex_read_lock, 0);
1531 }
1532
ReaderLockWhenWithTimeout(const Condition & cond,absl::Duration timeout)1533 bool Mutex::ReaderLockWhenWithTimeout(const Condition &cond,
1534 absl::Duration timeout) {
1535 return ReaderLockWhenWithDeadline(cond, DeadlineFromTimeout(timeout));
1536 }
1537
ReaderLockWhenWithDeadline(const Condition & cond,absl::Time deadline)1538 bool Mutex::ReaderLockWhenWithDeadline(const Condition &cond,
1539 absl::Time deadline) {
1540 ABSL_TSAN_MUTEX_PRE_LOCK(this, __tsan_mutex_read_lock);
1541 GraphId id = DebugOnlyDeadlockCheck(this);
1542 bool res = LockSlowWithDeadline(kShared, &cond, KernelTimeout(deadline), 0);
1543 DebugOnlyLockEnter(this, id);
1544 ABSL_TSAN_MUTEX_POST_LOCK(this, __tsan_mutex_read_lock, 0);
1545 return res;
1546 }
1547
Await(const Condition & cond)1548 void Mutex::Await(const Condition &cond) {
1549 if (cond.Eval()) { // condition already true; nothing to do
1550 if (kDebugMode) {
1551 this->AssertReaderHeld();
1552 }
1553 } else { // normal case
1554 ABSL_RAW_CHECK(this->AwaitCommon(cond, KernelTimeout::Never()),
1555 "condition untrue on return from Await");
1556 }
1557 }
1558
AwaitWithTimeout(const Condition & cond,absl::Duration timeout)1559 bool Mutex::AwaitWithTimeout(const Condition &cond, absl::Duration timeout) {
1560 return AwaitWithDeadline(cond, DeadlineFromTimeout(timeout));
1561 }
1562
AwaitWithDeadline(const Condition & cond,absl::Time deadline)1563 bool Mutex::AwaitWithDeadline(const Condition &cond, absl::Time deadline) {
1564 if (cond.Eval()) { // condition already true; nothing to do
1565 if (kDebugMode) {
1566 this->AssertReaderHeld();
1567 }
1568 return true;
1569 }
1570
1571 KernelTimeout t{deadline};
1572 bool res = this->AwaitCommon(cond, t);
1573 ABSL_RAW_CHECK(res || t.has_timeout(),
1574 "condition untrue on return from Await");
1575 return res;
1576 }
1577
AwaitCommon(const Condition & cond,KernelTimeout t)1578 bool Mutex::AwaitCommon(const Condition &cond, KernelTimeout t) {
1579 this->AssertReaderHeld();
1580 MuHow how =
1581 (mu_.load(std::memory_order_relaxed) & kMuWriter) ? kExclusive : kShared;
1582 ABSL_TSAN_MUTEX_PRE_UNLOCK(this, TsanFlags(how));
1583 SynchWaitParams waitp(
1584 how, &cond, t, nullptr /*no cvmu*/, Synch_GetPerThreadAnnotated(this),
1585 nullptr /*no cv_word*/);
1586 int flags = kMuHasBlocked;
1587 if (!Condition::GuaranteedEqual(&cond, nullptr)) {
1588 flags |= kMuIsCond;
1589 }
1590 this->UnlockSlow(&waitp);
1591 this->Block(waitp.thread);
1592 ABSL_TSAN_MUTEX_POST_UNLOCK(this, TsanFlags(how));
1593 ABSL_TSAN_MUTEX_PRE_LOCK(this, TsanFlags(how));
1594 this->LockSlowLoop(&waitp, flags);
1595 bool res = waitp.cond != nullptr || // => cond known true from LockSlowLoop
1596 EvalConditionAnnotated(&cond, this, true, false, how == kShared);
1597 ABSL_TSAN_MUTEX_POST_LOCK(this, TsanFlags(how), 0);
1598 return res;
1599 }
1600
TryLock()1601 ABSL_XRAY_LOG_ARGS(1) bool Mutex::TryLock() {
1602 ABSL_TSAN_MUTEX_PRE_LOCK(this, __tsan_mutex_try_lock);
1603 intptr_t v = mu_.load(std::memory_order_relaxed);
1604 if ((v & (kMuWriter | kMuReader | kMuEvent)) == 0 && // try fast acquire
1605 mu_.compare_exchange_strong(v, kMuWriter | v,
1606 std::memory_order_acquire,
1607 std::memory_order_relaxed)) {
1608 DebugOnlyLockEnter(this);
1609 ABSL_TSAN_MUTEX_POST_LOCK(this, __tsan_mutex_try_lock, 0);
1610 return true;
1611 }
1612 if ((v & kMuEvent) != 0) { // we're recording events
1613 if ((v & kExclusive->slow_need_zero) == 0 && // try fast acquire
1614 mu_.compare_exchange_strong(
1615 v, (kExclusive->fast_or | v) + kExclusive->fast_add,
1616 std::memory_order_acquire, std::memory_order_relaxed)) {
1617 DebugOnlyLockEnter(this);
1618 PostSynchEvent(this, SYNCH_EV_TRYLOCK_SUCCESS);
1619 ABSL_TSAN_MUTEX_POST_LOCK(this, __tsan_mutex_try_lock, 0);
1620 return true;
1621 } else {
1622 PostSynchEvent(this, SYNCH_EV_TRYLOCK_FAILED);
1623 }
1624 }
1625 ABSL_TSAN_MUTEX_POST_LOCK(
1626 this, __tsan_mutex_try_lock | __tsan_mutex_try_lock_failed, 0);
1627 return false;
1628 }
1629
ReaderTryLock()1630 ABSL_XRAY_LOG_ARGS(1) bool Mutex::ReaderTryLock() {
1631 ABSL_TSAN_MUTEX_PRE_LOCK(this,
1632 __tsan_mutex_read_lock | __tsan_mutex_try_lock);
1633 intptr_t v = mu_.load(std::memory_order_relaxed);
1634 // The while-loops (here and below) iterate only if the mutex word keeps
1635 // changing (typically because the reader count changes) under the CAS. We
1636 // limit the number of attempts to avoid having to think about livelock.
1637 int loop_limit = 5;
1638 while ((v & (kMuWriter|kMuWait|kMuEvent)) == 0 && loop_limit != 0) {
1639 if (mu_.compare_exchange_strong(v, (kMuReader | v) + kMuOne,
1640 std::memory_order_acquire,
1641 std::memory_order_relaxed)) {
1642 DebugOnlyLockEnter(this);
1643 ABSL_TSAN_MUTEX_POST_LOCK(
1644 this, __tsan_mutex_read_lock | __tsan_mutex_try_lock, 0);
1645 return true;
1646 }
1647 loop_limit--;
1648 v = mu_.load(std::memory_order_relaxed);
1649 }
1650 if ((v & kMuEvent) != 0) { // we're recording events
1651 loop_limit = 5;
1652 while ((v & kShared->slow_need_zero) == 0 && loop_limit != 0) {
1653 if (mu_.compare_exchange_strong(v, (kMuReader | v) + kMuOne,
1654 std::memory_order_acquire,
1655 std::memory_order_relaxed)) {
1656 DebugOnlyLockEnter(this);
1657 PostSynchEvent(this, SYNCH_EV_READERTRYLOCK_SUCCESS);
1658 ABSL_TSAN_MUTEX_POST_LOCK(
1659 this, __tsan_mutex_read_lock | __tsan_mutex_try_lock, 0);
1660 return true;
1661 }
1662 loop_limit--;
1663 v = mu_.load(std::memory_order_relaxed);
1664 }
1665 if ((v & kMuEvent) != 0) {
1666 PostSynchEvent(this, SYNCH_EV_READERTRYLOCK_FAILED);
1667 }
1668 }
1669 ABSL_TSAN_MUTEX_POST_LOCK(this,
1670 __tsan_mutex_read_lock | __tsan_mutex_try_lock |
1671 __tsan_mutex_try_lock_failed,
1672 0);
1673 return false;
1674 }
1675
Unlock()1676 ABSL_XRAY_LOG_ARGS(1) void Mutex::Unlock() {
1677 ABSL_TSAN_MUTEX_PRE_UNLOCK(this, 0);
1678 DebugOnlyLockLeave(this);
1679 intptr_t v = mu_.load(std::memory_order_relaxed);
1680
1681 if (kDebugMode && ((v & (kMuWriter | kMuReader)) != kMuWriter)) {
1682 ABSL_RAW_LOG(FATAL, "Mutex unlocked when destroyed or not locked: v=0x%x",
1683 static_cast<unsigned>(v));
1684 }
1685
1686 // should_try_cas is whether we'll try a compare-and-swap immediately.
1687 // NOTE: optimized out when kDebugMode is false.
1688 bool should_try_cas = ((v & (kMuEvent | kMuWriter)) == kMuWriter &&
1689 (v & (kMuWait | kMuDesig)) != kMuWait);
1690 // But, we can use an alternate computation of it, that compilers
1691 // currently don't find on their own. When that changes, this function
1692 // can be simplified.
1693 intptr_t x = (v ^ (kMuWriter | kMuWait)) & (kMuWriter | kMuEvent);
1694 intptr_t y = (v ^ (kMuWriter | kMuWait)) & (kMuWait | kMuDesig);
1695 // Claim: "x == 0 && y > 0" is equal to should_try_cas.
1696 // Also, because kMuWriter and kMuEvent exceed kMuDesig and kMuWait,
1697 // all possible non-zero values for x exceed all possible values for y.
1698 // Therefore, (x == 0 && y > 0) == (x < y).
1699 if (kDebugMode && should_try_cas != (x < y)) {
1700 // We would usually use PRIdPTR here, but is not correctly implemented
1701 // within the android toolchain.
1702 ABSL_RAW_LOG(FATAL, "internal logic error %llx %llx %llx\n",
1703 static_cast<long long>(v), static_cast<long long>(x),
1704 static_cast<long long>(y));
1705 }
1706 if (x < y &&
1707 mu_.compare_exchange_strong(v, v & ~(kMuWrWait | kMuWriter),
1708 std::memory_order_release,
1709 std::memory_order_relaxed)) {
1710 // fast writer release (writer with no waiters or with designated waker)
1711 } else {
1712 this->UnlockSlow(nullptr /*no waitp*/); // take slow path
1713 }
1714 ABSL_TSAN_MUTEX_POST_UNLOCK(this, 0);
1715 }
1716
1717 // Requires v to represent a reader-locked state.
ExactlyOneReader(intptr_t v)1718 static bool ExactlyOneReader(intptr_t v) {
1719 assert((v & (kMuWriter|kMuReader)) == kMuReader);
1720 assert((v & kMuHigh) != 0);
1721 // The more straightforward "(v & kMuHigh) == kMuOne" also works, but
1722 // on some architectures the following generates slightly smaller code.
1723 // It may be faster too.
1724 constexpr intptr_t kMuMultipleWaitersMask = kMuHigh ^ kMuOne;
1725 return (v & kMuMultipleWaitersMask) == 0;
1726 }
1727
ReaderUnlock()1728 ABSL_XRAY_LOG_ARGS(1) void Mutex::ReaderUnlock() {
1729 ABSL_TSAN_MUTEX_PRE_UNLOCK(this, __tsan_mutex_read_lock);
1730 DebugOnlyLockLeave(this);
1731 intptr_t v = mu_.load(std::memory_order_relaxed);
1732 assert((v & (kMuWriter|kMuReader)) == kMuReader);
1733 if ((v & (kMuReader|kMuWait|kMuEvent)) == kMuReader) {
1734 // fast reader release (reader with no waiters)
1735 intptr_t clear = ExactlyOneReader(v) ? kMuReader|kMuOne : kMuOne;
1736 if (mu_.compare_exchange_strong(v, v - clear,
1737 std::memory_order_release,
1738 std::memory_order_relaxed)) {
1739 ABSL_TSAN_MUTEX_POST_UNLOCK(this, __tsan_mutex_read_lock);
1740 return;
1741 }
1742 }
1743 this->UnlockSlow(nullptr /*no waitp*/); // take slow path
1744 ABSL_TSAN_MUTEX_POST_UNLOCK(this, __tsan_mutex_read_lock);
1745 }
1746
1747 // The zap_desig_waker bitmask is used to clear the designated waker flag in
1748 // the mutex if this thread has blocked, and therefore may be the designated
1749 // waker.
1750 static const intptr_t zap_desig_waker[] = {
1751 ~static_cast<intptr_t>(0), // not blocked
1752 ~static_cast<intptr_t>(
1753 kMuDesig) // blocked; turn off the designated waker bit
1754 };
1755
1756 // The ignore_waiting_writers bitmask is used to ignore the existence
1757 // of waiting writers if a reader that has already blocked once
1758 // wakes up.
1759 static const intptr_t ignore_waiting_writers[] = {
1760 ~static_cast<intptr_t>(0), // not blocked
1761 ~static_cast<intptr_t>(
1762 kMuWrWait) // blocked; pretend there are no waiting writers
1763 };
1764
1765 // Internal version of LockWhen(). See LockSlowWithDeadline()
LockSlow(MuHow how,const Condition * cond,int flags)1766 ABSL_ATTRIBUTE_NOINLINE void Mutex::LockSlow(MuHow how, const Condition *cond,
1767 int flags) {
1768 ABSL_RAW_CHECK(
1769 this->LockSlowWithDeadline(how, cond, KernelTimeout::Never(), flags),
1770 "condition untrue on return from LockSlow");
1771 }
1772
1773 // Compute cond->Eval() and tell race detectors that we do it under mutex mu.
EvalConditionAnnotated(const Condition * cond,Mutex * mu,bool locking,bool trylock,bool read_lock)1774 static inline bool EvalConditionAnnotated(const Condition *cond, Mutex *mu,
1775 bool locking, bool trylock,
1776 bool read_lock) {
1777 // Delicate annotation dance.
1778 // We are currently inside of read/write lock/unlock operation.
1779 // All memory accesses are ignored inside of mutex operations + for unlock
1780 // operation tsan considers that we've already released the mutex.
1781 bool res = false;
1782 #ifdef ABSL_INTERNAL_HAVE_TSAN_INTERFACE
1783 const int flags = read_lock ? __tsan_mutex_read_lock : 0;
1784 const int tryflags = flags | (trylock ? __tsan_mutex_try_lock : 0);
1785 #endif
1786 if (locking) {
1787 // For lock we pretend that we have finished the operation,
1788 // evaluate the predicate, then unlock the mutex and start locking it again
1789 // to match the annotation at the end of outer lock operation.
1790 // Note: we can't simply do POST_LOCK, Eval, PRE_LOCK, because then tsan
1791 // will think the lock acquisition is recursive which will trigger
1792 // deadlock detector.
1793 ABSL_TSAN_MUTEX_POST_LOCK(mu, tryflags, 0);
1794 res = cond->Eval();
1795 // There is no "try" version of Unlock, so use flags instead of tryflags.
1796 ABSL_TSAN_MUTEX_PRE_UNLOCK(mu, flags);
1797 ABSL_TSAN_MUTEX_POST_UNLOCK(mu, flags);
1798 ABSL_TSAN_MUTEX_PRE_LOCK(mu, tryflags);
1799 } else {
1800 // Similarly, for unlock we pretend that we have unlocked the mutex,
1801 // lock the mutex, evaluate the predicate, and start unlocking it again
1802 // to match the annotation at the end of outer unlock operation.
1803 ABSL_TSAN_MUTEX_POST_UNLOCK(mu, flags);
1804 ABSL_TSAN_MUTEX_PRE_LOCK(mu, flags);
1805 ABSL_TSAN_MUTEX_POST_LOCK(mu, flags, 0);
1806 res = cond->Eval();
1807 ABSL_TSAN_MUTEX_PRE_UNLOCK(mu, flags);
1808 }
1809 // Prevent unused param warnings in non-TSAN builds.
1810 static_cast<void>(mu);
1811 static_cast<void>(trylock);
1812 static_cast<void>(read_lock);
1813 return res;
1814 }
1815
1816 // Compute cond->Eval() hiding it from race detectors.
1817 // We are hiding it because inside of UnlockSlow we can evaluate a predicate
1818 // that was just added by a concurrent Lock operation; Lock adds the predicate
1819 // to the internal Mutex list without actually acquiring the Mutex
1820 // (it only acquires the internal spinlock, which is rightfully invisible for
1821 // tsan). As the result there is no tsan-visible synchronization between the
1822 // addition and this thread. So if we would enable race detection here,
1823 // it would race with the predicate initialization.
EvalConditionIgnored(Mutex * mu,const Condition * cond)1824 static inline bool EvalConditionIgnored(Mutex *mu, const Condition *cond) {
1825 // Memory accesses are already ignored inside of lock/unlock operations,
1826 // but synchronization operations are also ignored. When we evaluate the
1827 // predicate we must ignore only memory accesses but not synchronization,
1828 // because missed synchronization can lead to false reports later.
1829 // So we "divert" (which un-ignores both memory accesses and synchronization)
1830 // and then separately turn on ignores of memory accesses.
1831 ABSL_TSAN_MUTEX_PRE_DIVERT(mu, 0);
1832 ABSL_ANNOTATE_IGNORE_READS_AND_WRITES_BEGIN();
1833 bool res = cond->Eval();
1834 ABSL_ANNOTATE_IGNORE_READS_AND_WRITES_END();
1835 ABSL_TSAN_MUTEX_POST_DIVERT(mu, 0);
1836 static_cast<void>(mu); // Prevent unused param warning in non-TSAN builds.
1837 return res;
1838 }
1839
1840 // Internal equivalent of *LockWhenWithDeadline(), where
1841 // "t" represents the absolute timeout; !t.has_timeout() means "forever".
1842 // "how" is "kShared" (for ReaderLockWhen) or "kExclusive" (for LockWhen)
1843 // In flags, bits are ored together:
1844 // - kMuHasBlocked indicates that the client has already blocked on the call so
1845 // the designated waker bit must be cleared and waiting writers should not
1846 // obstruct this call
1847 // - kMuIsCond indicates that this is a conditional acquire (condition variable,
1848 // Await, LockWhen) so contention profiling should be suppressed.
LockSlowWithDeadline(MuHow how,const Condition * cond,KernelTimeout t,int flags)1849 bool Mutex::LockSlowWithDeadline(MuHow how, const Condition *cond,
1850 KernelTimeout t, int flags) {
1851 intptr_t v = mu_.load(std::memory_order_relaxed);
1852 bool unlock = false;
1853 if ((v & how->fast_need_zero) == 0 && // try fast acquire
1854 mu_.compare_exchange_strong(
1855 v, (how->fast_or | (v & zap_desig_waker[flags & kMuHasBlocked])) +
1856 how->fast_add,
1857 std::memory_order_acquire, std::memory_order_relaxed)) {
1858 if (cond == nullptr ||
1859 EvalConditionAnnotated(cond, this, true, false, how == kShared)) {
1860 return true;
1861 }
1862 unlock = true;
1863 }
1864 SynchWaitParams waitp(
1865 how, cond, t, nullptr /*no cvmu*/, Synch_GetPerThreadAnnotated(this),
1866 nullptr /*no cv_word*/);
1867 if (!Condition::GuaranteedEqual(cond, nullptr)) {
1868 flags |= kMuIsCond;
1869 }
1870 if (unlock) {
1871 this->UnlockSlow(&waitp);
1872 this->Block(waitp.thread);
1873 flags |= kMuHasBlocked;
1874 }
1875 this->LockSlowLoop(&waitp, flags);
1876 return waitp.cond != nullptr || // => cond known true from LockSlowLoop
1877 cond == nullptr ||
1878 EvalConditionAnnotated(cond, this, true, false, how == kShared);
1879 }
1880
1881 // RAW_CHECK_FMT() takes a condition, a printf-style format string, and
1882 // the printf-style argument list. The format string must be a literal.
1883 // Arguments after the first are not evaluated unless the condition is true.
1884 #define RAW_CHECK_FMT(cond, ...) \
1885 do { \
1886 if (ABSL_PREDICT_FALSE(!(cond))) { \
1887 ABSL_RAW_LOG(FATAL, "Check " #cond " failed: " __VA_ARGS__); \
1888 } \
1889 } while (0)
1890
CheckForMutexCorruption(intptr_t v,const char * label)1891 static void CheckForMutexCorruption(intptr_t v, const char* label) {
1892 // Test for either of two situations that should not occur in v:
1893 // kMuWriter and kMuReader
1894 // kMuWrWait and !kMuWait
1895 const uintptr_t w = v ^ kMuWait;
1896 // By flipping that bit, we can now test for:
1897 // kMuWriter and kMuReader in w
1898 // kMuWrWait and kMuWait in w
1899 // We've chosen these two pairs of values to be so that they will overlap,
1900 // respectively, when the word is left shifted by three. This allows us to
1901 // save a branch in the common (correct) case of them not being coincident.
1902 static_assert(kMuReader << 3 == kMuWriter, "must match");
1903 static_assert(kMuWait << 3 == kMuWrWait, "must match");
1904 if (ABSL_PREDICT_TRUE((w & (w << 3) & (kMuWriter | kMuWrWait)) == 0)) return;
1905 RAW_CHECK_FMT((v & (kMuWriter | kMuReader)) != (kMuWriter | kMuReader),
1906 "%s: Mutex corrupt: both reader and writer lock held: %p",
1907 label, reinterpret_cast<void *>(v));
1908 RAW_CHECK_FMT((v & (kMuWait | kMuWrWait)) != kMuWrWait,
1909 "%s: Mutex corrupt: waiting writer with no waiters: %p",
1910 label, reinterpret_cast<void *>(v));
1911 assert(false);
1912 }
1913
LockSlowLoop(SynchWaitParams * waitp,int flags)1914 void Mutex::LockSlowLoop(SynchWaitParams *waitp, int flags) {
1915 SchedulingGuard::ScopedDisable disable_rescheduling;
1916 int c = 0;
1917 intptr_t v = mu_.load(std::memory_order_relaxed);
1918 if ((v & kMuEvent) != 0) {
1919 PostSynchEvent(this,
1920 waitp->how == kExclusive? SYNCH_EV_LOCK: SYNCH_EV_READERLOCK);
1921 }
1922 ABSL_RAW_CHECK(
1923 waitp->thread->waitp == nullptr || waitp->thread->suppress_fatal_errors,
1924 "detected illegal recursion into Mutex code");
1925 for (;;) {
1926 v = mu_.load(std::memory_order_relaxed);
1927 CheckForMutexCorruption(v, "Lock");
1928 if ((v & waitp->how->slow_need_zero) == 0) {
1929 if (mu_.compare_exchange_strong(
1930 v, (waitp->how->fast_or |
1931 (v & zap_desig_waker[flags & kMuHasBlocked])) +
1932 waitp->how->fast_add,
1933 std::memory_order_acquire, std::memory_order_relaxed)) {
1934 if (waitp->cond == nullptr ||
1935 EvalConditionAnnotated(waitp->cond, this, true, false,
1936 waitp->how == kShared)) {
1937 break; // we timed out, or condition true, so return
1938 }
1939 this->UnlockSlow(waitp); // got lock but condition false
1940 this->Block(waitp->thread);
1941 flags |= kMuHasBlocked;
1942 c = 0;
1943 }
1944 } else { // need to access waiter list
1945 bool dowait = false;
1946 if ((v & (kMuSpin|kMuWait)) == 0) { // no waiters
1947 // This thread tries to become the one and only waiter.
1948 PerThreadSynch *new_h = Enqueue(nullptr, waitp, v, flags);
1949 intptr_t nv = (v & zap_desig_waker[flags & kMuHasBlocked] & kMuLow) |
1950 kMuWait;
1951 ABSL_RAW_CHECK(new_h != nullptr, "Enqueue to empty list failed");
1952 if (waitp->how == kExclusive && (v & kMuReader) != 0) {
1953 nv |= kMuWrWait;
1954 }
1955 if (mu_.compare_exchange_strong(
1956 v, reinterpret_cast<intptr_t>(new_h) | nv,
1957 std::memory_order_release, std::memory_order_relaxed)) {
1958 dowait = true;
1959 } else { // attempted Enqueue() failed
1960 // zero out the waitp field set by Enqueue()
1961 waitp->thread->waitp = nullptr;
1962 }
1963 } else if ((v & waitp->how->slow_inc_need_zero &
1964 ignore_waiting_writers[flags & kMuHasBlocked]) == 0) {
1965 // This is a reader that needs to increment the reader count,
1966 // but the count is currently held in the last waiter.
1967 if (mu_.compare_exchange_strong(
1968 v, (v & zap_desig_waker[flags & kMuHasBlocked]) | kMuSpin |
1969 kMuReader,
1970 std::memory_order_acquire, std::memory_order_relaxed)) {
1971 PerThreadSynch *h = GetPerThreadSynch(v);
1972 h->readers += kMuOne; // inc reader count in waiter
1973 do { // release spinlock
1974 v = mu_.load(std::memory_order_relaxed);
1975 } while (!mu_.compare_exchange_weak(v, (v & ~kMuSpin) | kMuReader,
1976 std::memory_order_release,
1977 std::memory_order_relaxed));
1978 if (waitp->cond == nullptr ||
1979 EvalConditionAnnotated(waitp->cond, this, true, false,
1980 waitp->how == kShared)) {
1981 break; // we timed out, or condition true, so return
1982 }
1983 this->UnlockSlow(waitp); // got lock but condition false
1984 this->Block(waitp->thread);
1985 flags |= kMuHasBlocked;
1986 c = 0;
1987 }
1988 } else if ((v & kMuSpin) == 0 && // attempt to queue ourselves
1989 mu_.compare_exchange_strong(
1990 v, (v & zap_desig_waker[flags & kMuHasBlocked]) | kMuSpin |
1991 kMuWait,
1992 std::memory_order_acquire, std::memory_order_relaxed)) {
1993 PerThreadSynch *h = GetPerThreadSynch(v);
1994 PerThreadSynch *new_h = Enqueue(h, waitp, v, flags);
1995 intptr_t wr_wait = 0;
1996 ABSL_RAW_CHECK(new_h != nullptr, "Enqueue to list failed");
1997 if (waitp->how == kExclusive && (v & kMuReader) != 0) {
1998 wr_wait = kMuWrWait; // give priority to a waiting writer
1999 }
2000 do { // release spinlock
2001 v = mu_.load(std::memory_order_relaxed);
2002 } while (!mu_.compare_exchange_weak(
2003 v, (v & (kMuLow & ~kMuSpin)) | kMuWait | wr_wait |
2004 reinterpret_cast<intptr_t>(new_h),
2005 std::memory_order_release, std::memory_order_relaxed));
2006 dowait = true;
2007 }
2008 if (dowait) {
2009 this->Block(waitp->thread); // wait until removed from list or timeout
2010 flags |= kMuHasBlocked;
2011 c = 0;
2012 }
2013 }
2014 ABSL_RAW_CHECK(
2015 waitp->thread->waitp == nullptr || waitp->thread->suppress_fatal_errors,
2016 "detected illegal recursion into Mutex code");
2017 // delay, then try again
2018 c = synchronization_internal::MutexDelay(c, GENTLE);
2019 }
2020 ABSL_RAW_CHECK(
2021 waitp->thread->waitp == nullptr || waitp->thread->suppress_fatal_errors,
2022 "detected illegal recursion into Mutex code");
2023 if ((v & kMuEvent) != 0) {
2024 PostSynchEvent(this,
2025 waitp->how == kExclusive? SYNCH_EV_LOCK_RETURNING :
2026 SYNCH_EV_READERLOCK_RETURNING);
2027 }
2028 }
2029
2030 // Unlock this mutex, which is held by the current thread.
2031 // If waitp is non-zero, it must be the wait parameters for the current thread
2032 // which holds the lock but is not runnable because its condition is false
2033 // or it is in the process of blocking on a condition variable; it must requeue
2034 // itself on the mutex/condvar to wait for its condition to become true.
UnlockSlow(SynchWaitParams * waitp)2035 ABSL_ATTRIBUTE_NOINLINE void Mutex::UnlockSlow(SynchWaitParams *waitp) {
2036 SchedulingGuard::ScopedDisable disable_rescheduling;
2037 intptr_t v = mu_.load(std::memory_order_relaxed);
2038 this->AssertReaderHeld();
2039 CheckForMutexCorruption(v, "Unlock");
2040 if ((v & kMuEvent) != 0) {
2041 PostSynchEvent(this,
2042 (v & kMuWriter) != 0? SYNCH_EV_UNLOCK: SYNCH_EV_READERUNLOCK);
2043 }
2044 int c = 0;
2045 // the waiter under consideration to wake, or zero
2046 PerThreadSynch *w = nullptr;
2047 // the predecessor to w or zero
2048 PerThreadSynch *pw = nullptr;
2049 // head of the list searched previously, or zero
2050 PerThreadSynch *old_h = nullptr;
2051 // a condition that's known to be false.
2052 const Condition *known_false = nullptr;
2053 PerThreadSynch *wake_list = kPerThreadSynchNull; // list of threads to wake
2054 intptr_t wr_wait = 0; // set to kMuWrWait if we wake a reader and a
2055 // later writer could have acquired the lock
2056 // (starvation avoidance)
2057 ABSL_RAW_CHECK(waitp == nullptr || waitp->thread->waitp == nullptr ||
2058 waitp->thread->suppress_fatal_errors,
2059 "detected illegal recursion into Mutex code");
2060 // This loop finds threads wake_list to wakeup if any, and removes them from
2061 // the list of waiters. In addition, it places waitp.thread on the queue of
2062 // waiters if waitp is non-zero.
2063 for (;;) {
2064 v = mu_.load(std::memory_order_relaxed);
2065 if ((v & kMuWriter) != 0 && (v & (kMuWait | kMuDesig)) != kMuWait &&
2066 waitp == nullptr) {
2067 // fast writer release (writer with no waiters or with designated waker)
2068 if (mu_.compare_exchange_strong(v, v & ~(kMuWrWait | kMuWriter),
2069 std::memory_order_release,
2070 std::memory_order_relaxed)) {
2071 return;
2072 }
2073 } else if ((v & (kMuReader | kMuWait)) == kMuReader && waitp == nullptr) {
2074 // fast reader release (reader with no waiters)
2075 intptr_t clear = ExactlyOneReader(v) ? kMuReader | kMuOne : kMuOne;
2076 if (mu_.compare_exchange_strong(v, v - clear,
2077 std::memory_order_release,
2078 std::memory_order_relaxed)) {
2079 return;
2080 }
2081 } else if ((v & kMuSpin) == 0 && // attempt to get spinlock
2082 mu_.compare_exchange_strong(v, v | kMuSpin,
2083 std::memory_order_acquire,
2084 std::memory_order_relaxed)) {
2085 if ((v & kMuWait) == 0) { // no one to wake
2086 intptr_t nv;
2087 bool do_enqueue = true; // always Enqueue() the first time
2088 ABSL_RAW_CHECK(waitp != nullptr,
2089 "UnlockSlow is confused"); // about to sleep
2090 do { // must loop to release spinlock as reader count may change
2091 v = mu_.load(std::memory_order_relaxed);
2092 // decrement reader count if there are readers
2093 intptr_t new_readers = (v >= kMuOne)? v - kMuOne : v;
2094 PerThreadSynch *new_h = nullptr;
2095 if (do_enqueue) {
2096 // If we are enqueuing on a CondVar (waitp->cv_word != nullptr) then
2097 // we must not retry here. The initial attempt will always have
2098 // succeeded, further attempts would enqueue us against *this due to
2099 // Fer() handling.
2100 do_enqueue = (waitp->cv_word == nullptr);
2101 new_h = Enqueue(nullptr, waitp, new_readers, kMuIsCond);
2102 }
2103 intptr_t clear = kMuWrWait | kMuWriter; // by default clear write bit
2104 if ((v & kMuWriter) == 0 && ExactlyOneReader(v)) { // last reader
2105 clear = kMuWrWait | kMuReader; // clear read bit
2106 }
2107 nv = (v & kMuLow & ~clear & ~kMuSpin);
2108 if (new_h != nullptr) {
2109 nv |= kMuWait | reinterpret_cast<intptr_t>(new_h);
2110 } else { // new_h could be nullptr if we queued ourselves on a
2111 // CondVar
2112 // In that case, we must place the reader count back in the mutex
2113 // word, as Enqueue() did not store it in the new waiter.
2114 nv |= new_readers & kMuHigh;
2115 }
2116 // release spinlock & our lock; retry if reader-count changed
2117 // (writer count cannot change since we hold lock)
2118 } while (!mu_.compare_exchange_weak(v, nv,
2119 std::memory_order_release,
2120 std::memory_order_relaxed));
2121 break;
2122 }
2123
2124 // There are waiters.
2125 // Set h to the head of the circular waiter list.
2126 PerThreadSynch *h = GetPerThreadSynch(v);
2127 if ((v & kMuReader) != 0 && (h->readers & kMuHigh) > kMuOne) {
2128 // a reader but not the last
2129 h->readers -= kMuOne; // release our lock
2130 intptr_t nv = v; // normally just release spinlock
2131 if (waitp != nullptr) { // but waitp!=nullptr => must queue ourselves
2132 PerThreadSynch *new_h = Enqueue(h, waitp, v, kMuIsCond);
2133 ABSL_RAW_CHECK(new_h != nullptr,
2134 "waiters disappeared during Enqueue()!");
2135 nv &= kMuLow;
2136 nv |= kMuWait | reinterpret_cast<intptr_t>(new_h);
2137 }
2138 mu_.store(nv, std::memory_order_release); // release spinlock
2139 // can release with a store because there were waiters
2140 break;
2141 }
2142
2143 // Either we didn't search before, or we marked the queue
2144 // as "maybe_unlocking" and no one else should have changed it.
2145 ABSL_RAW_CHECK(old_h == nullptr || h->maybe_unlocking,
2146 "Mutex queue changed beneath us");
2147
2148 // The lock is becoming free, and there's a waiter
2149 if (old_h != nullptr &&
2150 !old_h->may_skip) { // we used old_h as a terminator
2151 old_h->may_skip = true; // allow old_h to skip once more
2152 ABSL_RAW_CHECK(old_h->skip == nullptr, "illegal skip from head");
2153 if (h != old_h && MuEquivalentWaiter(old_h, old_h->next)) {
2154 old_h->skip = old_h->next; // old_h not head & can skip to successor
2155 }
2156 }
2157 if (h->next->waitp->how == kExclusive &&
2158 Condition::GuaranteedEqual(h->next->waitp->cond, nullptr)) {
2159 // easy case: writer with no condition; no need to search
2160 pw = h; // wake w, the successor of h (=pw)
2161 w = h->next;
2162 w->wake = true;
2163 // We are waking up a writer. This writer may be racing against
2164 // an already awake reader for the lock. We want the
2165 // writer to usually win this race,
2166 // because if it doesn't, we can potentially keep taking a reader
2167 // perpetually and writers will starve. Worse than
2168 // that, this can also starve other readers if kMuWrWait gets set
2169 // later.
2170 wr_wait = kMuWrWait;
2171 } else if (w != nullptr && (w->waitp->how == kExclusive || h == old_h)) {
2172 // we found a waiter w to wake on a previous iteration and either it's
2173 // a writer, or we've searched the entire list so we have all the
2174 // readers.
2175 if (pw == nullptr) { // if w's predecessor is unknown, it must be h
2176 pw = h;
2177 }
2178 } else {
2179 // At this point we don't know all the waiters to wake, and the first
2180 // waiter has a condition or is a reader. We avoid searching over
2181 // waiters we've searched on previous iterations by starting at
2182 // old_h if it's set. If old_h==h, there's no one to wakeup at all.
2183 if (old_h == h) { // we've searched before, and nothing's new
2184 // so there's no one to wake.
2185 intptr_t nv = (v & ~(kMuReader|kMuWriter|kMuWrWait));
2186 h->readers = 0;
2187 h->maybe_unlocking = false; // finished unlocking
2188 if (waitp != nullptr) { // we must queue ourselves and sleep
2189 PerThreadSynch *new_h = Enqueue(h, waitp, v, kMuIsCond);
2190 nv &= kMuLow;
2191 if (new_h != nullptr) {
2192 nv |= kMuWait | reinterpret_cast<intptr_t>(new_h);
2193 } // else new_h could be nullptr if we queued ourselves on a
2194 // CondVar
2195 }
2196 // release spinlock & lock
2197 // can release with a store because there were waiters
2198 mu_.store(nv, std::memory_order_release);
2199 break;
2200 }
2201
2202 // set up to walk the list
2203 PerThreadSynch *w_walk; // current waiter during list walk
2204 PerThreadSynch *pw_walk; // previous waiter during list walk
2205 if (old_h != nullptr) { // we've searched up to old_h before
2206 pw_walk = old_h;
2207 w_walk = old_h->next;
2208 } else { // no prior search, start at beginning
2209 pw_walk =
2210 nullptr; // h->next's predecessor may change; don't record it
2211 w_walk = h->next;
2212 }
2213
2214 h->may_skip = false; // ensure we never skip past h in future searches
2215 // even if other waiters are queued after it.
2216 ABSL_RAW_CHECK(h->skip == nullptr, "illegal skip from head");
2217
2218 h->maybe_unlocking = true; // we're about to scan the waiter list
2219 // without the spinlock held.
2220 // Enqueue must be conservative about
2221 // priority queuing.
2222
2223 // We must release the spinlock to evaluate the conditions.
2224 mu_.store(v, std::memory_order_release); // release just spinlock
2225 // can release with a store because there were waiters
2226
2227 // h is the last waiter queued, and w_walk the first unsearched waiter.
2228 // Without the spinlock, the locations mu_ and h->next may now change
2229 // underneath us, but since we hold the lock itself, the only legal
2230 // change is to add waiters between h and w_walk. Therefore, it's safe
2231 // to walk the path from w_walk to h inclusive. (TryRemove() can remove
2232 // a waiter anywhere, but it acquires both the spinlock and the Mutex)
2233
2234 old_h = h; // remember we searched to here
2235
2236 // Walk the path upto and including h looking for waiters we can wake.
2237 while (pw_walk != h) {
2238 w_walk->wake = false;
2239 if (w_walk->waitp->cond ==
2240 nullptr || // no condition => vacuously true OR
2241 (w_walk->waitp->cond != known_false &&
2242 // this thread's condition is not known false, AND
2243 // is in fact true
2244 EvalConditionIgnored(this, w_walk->waitp->cond))) {
2245 if (w == nullptr) {
2246 w_walk->wake = true; // can wake this waiter
2247 w = w_walk;
2248 pw = pw_walk;
2249 if (w_walk->waitp->how == kExclusive) {
2250 wr_wait = kMuWrWait;
2251 break; // bail if waking this writer
2252 }
2253 } else if (w_walk->waitp->how == kShared) { // wake if a reader
2254 w_walk->wake = true;
2255 } else { // writer with true condition
2256 wr_wait = kMuWrWait;
2257 }
2258 } else { // can't wake; condition false
2259 known_false = w_walk->waitp->cond; // remember last false condition
2260 }
2261 if (w_walk->wake) { // we're waking reader w_walk
2262 pw_walk = w_walk; // don't skip similar waiters
2263 } else { // not waking; skip as much as possible
2264 pw_walk = Skip(w_walk);
2265 }
2266 // If pw_walk == h, then load of pw_walk->next can race with
2267 // concurrent write in Enqueue(). However, at the same time
2268 // we do not need to do the load, because we will bail out
2269 // from the loop anyway.
2270 if (pw_walk != h) {
2271 w_walk = pw_walk->next;
2272 }
2273 }
2274
2275 continue; // restart for(;;)-loop to wakeup w or to find more waiters
2276 }
2277 ABSL_RAW_CHECK(pw->next == w, "pw not w's predecessor");
2278 // The first (and perhaps only) waiter we've chosen to wake is w, whose
2279 // predecessor is pw. If w is a reader, we must wake all the other
2280 // waiters with wake==true as well. We may also need to queue
2281 // ourselves if waitp != null. The spinlock and the lock are still
2282 // held.
2283
2284 // This traverses the list in [ pw->next, h ], where h is the head,
2285 // removing all elements with wake==true and placing them in the
2286 // singly-linked list wake_list. Returns the new head.
2287 h = DequeueAllWakeable(h, pw, &wake_list);
2288
2289 intptr_t nv = (v & kMuEvent) | kMuDesig;
2290 // assume no waiters left,
2291 // set kMuDesig for INV1a
2292
2293 if (waitp != nullptr) { // we must queue ourselves and sleep
2294 h = Enqueue(h, waitp, v, kMuIsCond);
2295 // h is new last waiter; could be null if we queued ourselves on a
2296 // CondVar
2297 }
2298
2299 ABSL_RAW_CHECK(wake_list != kPerThreadSynchNull,
2300 "unexpected empty wake list");
2301
2302 if (h != nullptr) { // there are waiters left
2303 h->readers = 0;
2304 h->maybe_unlocking = false; // finished unlocking
2305 nv |= wr_wait | kMuWait | reinterpret_cast<intptr_t>(h);
2306 }
2307
2308 // release both spinlock & lock
2309 // can release with a store because there were waiters
2310 mu_.store(nv, std::memory_order_release);
2311 break; // out of for(;;)-loop
2312 }
2313 // aggressive here; no one can proceed till we do
2314 c = synchronization_internal::MutexDelay(c, AGGRESSIVE);
2315 } // end of for(;;)-loop
2316
2317 if (wake_list != kPerThreadSynchNull) {
2318 int64_t enqueue_timestamp = wake_list->waitp->contention_start_cycles;
2319 bool cond_waiter = wake_list->cond_waiter;
2320 do {
2321 wake_list = Wakeup(wake_list); // wake waiters
2322 } while (wake_list != kPerThreadSynchNull);
2323 if (!cond_waiter) {
2324 // Sample lock contention events only if the (first) waiter was trying to
2325 // acquire the lock, not waiting on a condition variable or Condition.
2326 int64_t wait_cycles =
2327 base_internal::CycleClock::Now() - enqueue_timestamp;
2328 mutex_tracer("slow release", this, wait_cycles);
2329 ABSL_TSAN_MUTEX_PRE_DIVERT(this, 0);
2330 submit_profile_data(enqueue_timestamp);
2331 ABSL_TSAN_MUTEX_POST_DIVERT(this, 0);
2332 }
2333 }
2334 }
2335
2336 // Used by CondVar implementation to reacquire mutex after waking from
2337 // condition variable. This routine is used instead of Lock() because the
2338 // waiting thread may have been moved from the condition variable queue to the
2339 // mutex queue without a wakeup, by Trans(). In that case, when the thread is
2340 // finally woken, the woken thread will believe it has been woken from the
2341 // condition variable (i.e. its PC will be in when in the CondVar code), when
2342 // in fact it has just been woken from the mutex. Thus, it must enter the slow
2343 // path of the mutex in the same state as if it had just woken from the mutex.
2344 // That is, it must ensure to clear kMuDesig (INV1b).
Trans(MuHow how)2345 void Mutex::Trans(MuHow how) {
2346 this->LockSlow(how, nullptr, kMuHasBlocked | kMuIsCond);
2347 }
2348
2349 // Used by CondVar implementation to effectively wake thread w from the
2350 // condition variable. If this mutex is free, we simply wake the thread.
2351 // It will later acquire the mutex with high probability. Otherwise, we
2352 // enqueue thread w on this mutex.
Fer(PerThreadSynch * w)2353 void Mutex::Fer(PerThreadSynch *w) {
2354 SchedulingGuard::ScopedDisable disable_rescheduling;
2355 int c = 0;
2356 ABSL_RAW_CHECK(w->waitp->cond == nullptr,
2357 "Mutex::Fer while waiting on Condition");
2358 ABSL_RAW_CHECK(!w->waitp->timeout.has_timeout(),
2359 "Mutex::Fer while in timed wait");
2360 ABSL_RAW_CHECK(w->waitp->cv_word == nullptr,
2361 "Mutex::Fer with pending CondVar queueing");
2362 for (;;) {
2363 intptr_t v = mu_.load(std::memory_order_relaxed);
2364 // Note: must not queue if the mutex is unlocked (nobody will wake it).
2365 // For example, we can have only kMuWait (conditional) or maybe
2366 // kMuWait|kMuWrWait.
2367 // conflicting != 0 implies that the waking thread cannot currently take
2368 // the mutex, which in turn implies that someone else has it and can wake
2369 // us if we queue.
2370 const intptr_t conflicting =
2371 kMuWriter | (w->waitp->how == kShared ? 0 : kMuReader);
2372 if ((v & conflicting) == 0) {
2373 w->next = nullptr;
2374 w->state.store(PerThreadSynch::kAvailable, std::memory_order_release);
2375 IncrementSynchSem(this, w);
2376 return;
2377 } else {
2378 if ((v & (kMuSpin|kMuWait)) == 0) { // no waiters
2379 // This thread tries to become the one and only waiter.
2380 PerThreadSynch *new_h = Enqueue(nullptr, w->waitp, v, kMuIsCond);
2381 ABSL_RAW_CHECK(new_h != nullptr,
2382 "Enqueue failed"); // we must queue ourselves
2383 if (mu_.compare_exchange_strong(
2384 v, reinterpret_cast<intptr_t>(new_h) | (v & kMuLow) | kMuWait,
2385 std::memory_order_release, std::memory_order_relaxed)) {
2386 return;
2387 }
2388 } else if ((v & kMuSpin) == 0 &&
2389 mu_.compare_exchange_strong(v, v | kMuSpin | kMuWait)) {
2390 PerThreadSynch *h = GetPerThreadSynch(v);
2391 PerThreadSynch *new_h = Enqueue(h, w->waitp, v, kMuIsCond);
2392 ABSL_RAW_CHECK(new_h != nullptr,
2393 "Enqueue failed"); // we must queue ourselves
2394 do {
2395 v = mu_.load(std::memory_order_relaxed);
2396 } while (!mu_.compare_exchange_weak(
2397 v,
2398 (v & kMuLow & ~kMuSpin) | kMuWait |
2399 reinterpret_cast<intptr_t>(new_h),
2400 std::memory_order_release, std::memory_order_relaxed));
2401 return;
2402 }
2403 }
2404 c = synchronization_internal::MutexDelay(c, GENTLE);
2405 }
2406 }
2407
AssertHeld() const2408 void Mutex::AssertHeld() const {
2409 if ((mu_.load(std::memory_order_relaxed) & kMuWriter) == 0) {
2410 SynchEvent *e = GetSynchEvent(this);
2411 ABSL_RAW_LOG(FATAL, "thread should hold write lock on Mutex %p %s",
2412 static_cast<const void *>(this),
2413 (e == nullptr ? "" : e->name));
2414 }
2415 }
2416
AssertReaderHeld() const2417 void Mutex::AssertReaderHeld() const {
2418 if ((mu_.load(std::memory_order_relaxed) & (kMuReader | kMuWriter)) == 0) {
2419 SynchEvent *e = GetSynchEvent(this);
2420 ABSL_RAW_LOG(
2421 FATAL, "thread should hold at least a read lock on Mutex %p %s",
2422 static_cast<const void *>(this), (e == nullptr ? "" : e->name));
2423 }
2424 }
2425
2426 // -------------------------------- condition variables
2427 static const intptr_t kCvSpin = 0x0001L; // spinlock protects waiter list
2428 static const intptr_t kCvEvent = 0x0002L; // record events
2429
2430 static const intptr_t kCvLow = 0x0003L; // low order bits of CV
2431
2432 // Hack to make constant values available to gdb pretty printer
2433 enum { kGdbCvSpin = kCvSpin, kGdbCvEvent = kCvEvent, kGdbCvLow = kCvLow, };
2434
2435 static_assert(PerThreadSynch::kAlignment > kCvLow,
2436 "PerThreadSynch::kAlignment must be greater than kCvLow");
2437
EnableDebugLog(const char * name)2438 void CondVar::EnableDebugLog(const char *name) {
2439 SynchEvent *e = EnsureSynchEvent(&this->cv_, name, kCvEvent, kCvSpin);
2440 e->log = true;
2441 UnrefSynchEvent(e);
2442 }
2443
~CondVar()2444 CondVar::~CondVar() {
2445 if ((cv_.load(std::memory_order_relaxed) & kCvEvent) != 0) {
2446 ForgetSynchEvent(&this->cv_, kCvEvent, kCvSpin);
2447 }
2448 }
2449
2450
2451 // Remove thread s from the list of waiters on this condition variable.
Remove(PerThreadSynch * s)2452 void CondVar::Remove(PerThreadSynch *s) {
2453 SchedulingGuard::ScopedDisable disable_rescheduling;
2454 intptr_t v;
2455 int c = 0;
2456 for (v = cv_.load(std::memory_order_relaxed);;
2457 v = cv_.load(std::memory_order_relaxed)) {
2458 if ((v & kCvSpin) == 0 && // attempt to acquire spinlock
2459 cv_.compare_exchange_strong(v, v | kCvSpin,
2460 std::memory_order_acquire,
2461 std::memory_order_relaxed)) {
2462 PerThreadSynch *h = reinterpret_cast<PerThreadSynch *>(v & ~kCvLow);
2463 if (h != nullptr) {
2464 PerThreadSynch *w = h;
2465 while (w->next != s && w->next != h) { // search for thread
2466 w = w->next;
2467 }
2468 if (w->next == s) { // found thread; remove it
2469 w->next = s->next;
2470 if (h == s) {
2471 h = (w == s) ? nullptr : w;
2472 }
2473 s->next = nullptr;
2474 s->state.store(PerThreadSynch::kAvailable, std::memory_order_release);
2475 }
2476 }
2477 // release spinlock
2478 cv_.store((v & kCvEvent) | reinterpret_cast<intptr_t>(h),
2479 std::memory_order_release);
2480 return;
2481 } else {
2482 // try again after a delay
2483 c = synchronization_internal::MutexDelay(c, GENTLE);
2484 }
2485 }
2486 }
2487
2488 // Queue thread waitp->thread on condition variable word cv_word using
2489 // wait parameters waitp.
2490 // We split this into a separate routine, rather than simply doing it as part
2491 // of WaitCommon(). If we were to queue ourselves on the condition variable
2492 // before calling Mutex::UnlockSlow(), the Mutex code might be re-entered (via
2493 // the logging code, or via a Condition function) and might potentially attempt
2494 // to block this thread. That would be a problem if the thread were already on
2495 // a the condition variable waiter queue. Thus, we use the waitp->cv_word
2496 // to tell the unlock code to call CondVarEnqueue() to queue the thread on the
2497 // condition variable queue just before the mutex is to be unlocked, and (most
2498 // importantly) after any call to an external routine that might re-enter the
2499 // mutex code.
CondVarEnqueue(SynchWaitParams * waitp)2500 static void CondVarEnqueue(SynchWaitParams *waitp) {
2501 // This thread might be transferred to the Mutex queue by Fer() when
2502 // we are woken. To make sure that is what happens, Enqueue() doesn't
2503 // call CondVarEnqueue() again but instead uses its normal code. We
2504 // must do this before we queue ourselves so that cv_word will be null
2505 // when seen by the dequeuer, who may wish immediately to requeue
2506 // this thread on another queue.
2507 std::atomic<intptr_t> *cv_word = waitp->cv_word;
2508 waitp->cv_word = nullptr;
2509
2510 intptr_t v = cv_word->load(std::memory_order_relaxed);
2511 int c = 0;
2512 while ((v & kCvSpin) != 0 || // acquire spinlock
2513 !cv_word->compare_exchange_weak(v, v | kCvSpin,
2514 std::memory_order_acquire,
2515 std::memory_order_relaxed)) {
2516 c = synchronization_internal::MutexDelay(c, GENTLE);
2517 v = cv_word->load(std::memory_order_relaxed);
2518 }
2519 ABSL_RAW_CHECK(waitp->thread->waitp == nullptr, "waiting when shouldn't be");
2520 waitp->thread->waitp = waitp; // prepare ourselves for waiting
2521 PerThreadSynch *h = reinterpret_cast<PerThreadSynch *>(v & ~kCvLow);
2522 if (h == nullptr) { // add this thread to waiter list
2523 waitp->thread->next = waitp->thread;
2524 } else {
2525 waitp->thread->next = h->next;
2526 h->next = waitp->thread;
2527 }
2528 waitp->thread->state.store(PerThreadSynch::kQueued,
2529 std::memory_order_relaxed);
2530 cv_word->store((v & kCvEvent) | reinterpret_cast<intptr_t>(waitp->thread),
2531 std::memory_order_release);
2532 }
2533
WaitCommon(Mutex * mutex,KernelTimeout t)2534 bool CondVar::WaitCommon(Mutex *mutex, KernelTimeout t) {
2535 bool rc = false; // return value; true iff we timed-out
2536
2537 intptr_t mutex_v = mutex->mu_.load(std::memory_order_relaxed);
2538 Mutex::MuHow mutex_how = ((mutex_v & kMuWriter) != 0) ? kExclusive : kShared;
2539 ABSL_TSAN_MUTEX_PRE_UNLOCK(mutex, TsanFlags(mutex_how));
2540
2541 // maybe trace this call
2542 intptr_t v = cv_.load(std::memory_order_relaxed);
2543 cond_var_tracer("Wait", this);
2544 if ((v & kCvEvent) != 0) {
2545 PostSynchEvent(this, SYNCH_EV_WAIT);
2546 }
2547
2548 // Release mu and wait on condition variable.
2549 SynchWaitParams waitp(mutex_how, nullptr, t, mutex,
2550 Synch_GetPerThreadAnnotated(mutex), &cv_);
2551 // UnlockSlow() will call CondVarEnqueue() just before releasing the
2552 // Mutex, thus queuing this thread on the condition variable. See
2553 // CondVarEnqueue() for the reasons.
2554 mutex->UnlockSlow(&waitp);
2555
2556 // wait for signal
2557 while (waitp.thread->state.load(std::memory_order_acquire) ==
2558 PerThreadSynch::kQueued) {
2559 if (!Mutex::DecrementSynchSem(mutex, waitp.thread, t)) {
2560 this->Remove(waitp.thread);
2561 rc = true;
2562 }
2563 }
2564
2565 ABSL_RAW_CHECK(waitp.thread->waitp != nullptr, "not waiting when should be");
2566 waitp.thread->waitp = nullptr; // cleanup
2567
2568 // maybe trace this call
2569 cond_var_tracer("Unwait", this);
2570 if ((v & kCvEvent) != 0) {
2571 PostSynchEvent(this, SYNCH_EV_WAIT_RETURNING);
2572 }
2573
2574 // From synchronization point of view Wait is unlock of the mutex followed
2575 // by lock of the mutex. We've annotated start of unlock in the beginning
2576 // of the function. Now, finish unlock and annotate lock of the mutex.
2577 // (Trans is effectively lock).
2578 ABSL_TSAN_MUTEX_POST_UNLOCK(mutex, TsanFlags(mutex_how));
2579 ABSL_TSAN_MUTEX_PRE_LOCK(mutex, TsanFlags(mutex_how));
2580 mutex->Trans(mutex_how); // Reacquire mutex
2581 ABSL_TSAN_MUTEX_POST_LOCK(mutex, TsanFlags(mutex_how), 0);
2582 return rc;
2583 }
2584
WaitWithTimeout(Mutex * mu,absl::Duration timeout)2585 bool CondVar::WaitWithTimeout(Mutex *mu, absl::Duration timeout) {
2586 return WaitWithDeadline(mu, DeadlineFromTimeout(timeout));
2587 }
2588
WaitWithDeadline(Mutex * mu,absl::Time deadline)2589 bool CondVar::WaitWithDeadline(Mutex *mu, absl::Time deadline) {
2590 return WaitCommon(mu, KernelTimeout(deadline));
2591 }
2592
Wait(Mutex * mu)2593 void CondVar::Wait(Mutex *mu) {
2594 WaitCommon(mu, KernelTimeout::Never());
2595 }
2596
2597 // Wake thread w
2598 // If it was a timed wait, w will be waiting on w->cv
2599 // Otherwise, if it was not a Mutex mutex, w will be waiting on w->sem
2600 // Otherwise, w is transferred to the Mutex mutex via Mutex::Fer().
Wakeup(PerThreadSynch * w)2601 void CondVar::Wakeup(PerThreadSynch *w) {
2602 if (w->waitp->timeout.has_timeout() || w->waitp->cvmu == nullptr) {
2603 // The waiting thread only needs to observe "w->state == kAvailable" to be
2604 // released, we must cache "cvmu" before clearing "next".
2605 Mutex *mu = w->waitp->cvmu;
2606 w->next = nullptr;
2607 w->state.store(PerThreadSynch::kAvailable, std::memory_order_release);
2608 Mutex::IncrementSynchSem(mu, w);
2609 } else {
2610 w->waitp->cvmu->Fer(w);
2611 }
2612 }
2613
Signal()2614 void CondVar::Signal() {
2615 SchedulingGuard::ScopedDisable disable_rescheduling;
2616 ABSL_TSAN_MUTEX_PRE_SIGNAL(nullptr, 0);
2617 intptr_t v;
2618 int c = 0;
2619 for (v = cv_.load(std::memory_order_relaxed); v != 0;
2620 v = cv_.load(std::memory_order_relaxed)) {
2621 if ((v & kCvSpin) == 0 && // attempt to acquire spinlock
2622 cv_.compare_exchange_strong(v, v | kCvSpin,
2623 std::memory_order_acquire,
2624 std::memory_order_relaxed)) {
2625 PerThreadSynch *h = reinterpret_cast<PerThreadSynch *>(v & ~kCvLow);
2626 PerThreadSynch *w = nullptr;
2627 if (h != nullptr) { // remove first waiter
2628 w = h->next;
2629 if (w == h) {
2630 h = nullptr;
2631 } else {
2632 h->next = w->next;
2633 }
2634 }
2635 // release spinlock
2636 cv_.store((v & kCvEvent) | reinterpret_cast<intptr_t>(h),
2637 std::memory_order_release);
2638 if (w != nullptr) {
2639 CondVar::Wakeup(w); // wake waiter, if there was one
2640 cond_var_tracer("Signal wakeup", this);
2641 }
2642 if ((v & kCvEvent) != 0) {
2643 PostSynchEvent(this, SYNCH_EV_SIGNAL);
2644 }
2645 ABSL_TSAN_MUTEX_POST_SIGNAL(nullptr, 0);
2646 return;
2647 } else {
2648 c = synchronization_internal::MutexDelay(c, GENTLE);
2649 }
2650 }
2651 ABSL_TSAN_MUTEX_POST_SIGNAL(nullptr, 0);
2652 }
2653
SignalAll()2654 void CondVar::SignalAll () {
2655 ABSL_TSAN_MUTEX_PRE_SIGNAL(nullptr, 0);
2656 intptr_t v;
2657 int c = 0;
2658 for (v = cv_.load(std::memory_order_relaxed); v != 0;
2659 v = cv_.load(std::memory_order_relaxed)) {
2660 // empty the list if spinlock free
2661 // We do this by simply setting the list to empty using
2662 // compare and swap. We then have the entire list in our hands,
2663 // which cannot be changing since we grabbed it while no one
2664 // held the lock.
2665 if ((v & kCvSpin) == 0 &&
2666 cv_.compare_exchange_strong(v, v & kCvEvent, std::memory_order_acquire,
2667 std::memory_order_relaxed)) {
2668 PerThreadSynch *h = reinterpret_cast<PerThreadSynch *>(v & ~kCvLow);
2669 if (h != nullptr) {
2670 PerThreadSynch *w;
2671 PerThreadSynch *n = h->next;
2672 do { // for every thread, wake it up
2673 w = n;
2674 n = n->next;
2675 CondVar::Wakeup(w);
2676 } while (w != h);
2677 cond_var_tracer("SignalAll wakeup", this);
2678 }
2679 if ((v & kCvEvent) != 0) {
2680 PostSynchEvent(this, SYNCH_EV_SIGNALALL);
2681 }
2682 ABSL_TSAN_MUTEX_POST_SIGNAL(nullptr, 0);
2683 return;
2684 } else {
2685 // try again after a delay
2686 c = synchronization_internal::MutexDelay(c, GENTLE);
2687 }
2688 }
2689 ABSL_TSAN_MUTEX_POST_SIGNAL(nullptr, 0);
2690 }
2691
Release()2692 void ReleasableMutexLock::Release() {
2693 ABSL_RAW_CHECK(this->mu_ != nullptr,
2694 "ReleasableMutexLock::Release may only be called once");
2695 this->mu_->Unlock();
2696 this->mu_ = nullptr;
2697 }
2698
2699 #ifdef ABSL_HAVE_THREAD_SANITIZER
2700 extern "C" void __tsan_read1(void *addr);
2701 #else
2702 #define __tsan_read1(addr) // do nothing if TSan not enabled
2703 #endif
2704
2705 // A function that just returns its argument, dereferenced
Dereference(void * arg)2706 static bool Dereference(void *arg) {
2707 // ThreadSanitizer does not instrument this file for memory accesses.
2708 // This function dereferences a user variable that can participate
2709 // in a data race, so we need to manually tell TSan about this memory access.
2710 __tsan_read1(arg);
2711 return *(static_cast<bool *>(arg));
2712 }
2713
Condition()2714 Condition::Condition() {} // null constructor, used for kTrue only
2715 const Condition Condition::kTrue;
2716
Condition(bool (* func)(void *),void * arg)2717 Condition::Condition(bool (*func)(void *), void *arg)
2718 : eval_(&CallVoidPtrFunction),
2719 function_(func),
2720 method_(nullptr),
2721 arg_(arg) {}
2722
CallVoidPtrFunction(const Condition * c)2723 bool Condition::CallVoidPtrFunction(const Condition *c) {
2724 return (*c->function_)(c->arg_);
2725 }
2726
Condition(const bool * cond)2727 Condition::Condition(const bool *cond)
2728 : eval_(CallVoidPtrFunction),
2729 function_(Dereference),
2730 method_(nullptr),
2731 // const_cast is safe since Dereference does not modify arg
2732 arg_(const_cast<bool *>(cond)) {}
2733
Eval() const2734 bool Condition::Eval() const {
2735 // eval_ == null for kTrue
2736 return (this->eval_ == nullptr) || (*this->eval_)(this);
2737 }
2738
GuaranteedEqual(const Condition * a,const Condition * b)2739 bool Condition::GuaranteedEqual(const Condition *a, const Condition *b) {
2740 if (a == nullptr) {
2741 return b == nullptr || b->eval_ == nullptr;
2742 }
2743 if (b == nullptr || b->eval_ == nullptr) {
2744 return a->eval_ == nullptr;
2745 }
2746 return a->eval_ == b->eval_ && a->function_ == b->function_ &&
2747 a->arg_ == b->arg_ && a->method_ == b->method_;
2748 }
2749
2750 ABSL_NAMESPACE_END
2751 } // namespace absl
2752