• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /* origin: FreeBSD /usr/src/lib/msun/src/e_jnf.c */
2 /*
3  * Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com.
4  */
5 /*
6  * ====================================================
7  * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
8  *
9  * Developed at SunPro, a Sun Microsystems, Inc. business.
10  * Permission to use, copy, modify, and distribute this
11  * software is freely granted, provided that this notice
12  * is preserved.
13  * ====================================================
14  */
15 
16 use super::{fabsf, j0f, j1f, logf, y0f, y1f};
17 
jnf(n: i32, mut x: f32) -> f3218 pub fn jnf(n: i32, mut x: f32) -> f32 {
19     let mut ix: u32;
20     let mut nm1: i32;
21     let mut sign: bool;
22     let mut i: i32;
23     let mut a: f32;
24     let mut b: f32;
25     let mut temp: f32;
26 
27     ix = x.to_bits();
28     sign = (ix >> 31) != 0;
29     ix &= 0x7fffffff;
30     if ix > 0x7f800000 {
31         /* nan */
32         return x;
33     }
34 
35     /* J(-n,x) = J(n,-x), use |n|-1 to avoid overflow in -n */
36     if n == 0 {
37         return j0f(x);
38     }
39     if n < 0 {
40         nm1 = -(n + 1);
41         x = -x;
42         sign = !sign;
43     } else {
44         nm1 = n - 1;
45     }
46     if nm1 == 0 {
47         return j1f(x);
48     }
49 
50     sign &= (n & 1) != 0; /* even n: 0, odd n: signbit(x) */
51     x = fabsf(x);
52     if ix == 0 || ix == 0x7f800000 {
53         /* if x is 0 or inf */
54         b = 0.0;
55     } else if (nm1 as f32) < x {
56         /* Safe to use J(n+1,x)=2n/x *J(n,x)-J(n-1,x) */
57         a = j0f(x);
58         b = j1f(x);
59         i = 0;
60         while i < nm1 {
61             i += 1;
62             temp = b;
63             b = b * (2.0 * (i as f32) / x) - a;
64             a = temp;
65         }
66     } else {
67         if ix < 0x35800000 {
68             /* x < 2**-20 */
69             /* x is tiny, return the first Taylor expansion of J(n,x)
70              * J(n,x) = 1/n!*(x/2)^n  - ...
71              */
72             if nm1 > 8 {
73                 /* underflow */
74                 nm1 = 8;
75             }
76             temp = 0.5 * x;
77             b = temp;
78             a = 1.0;
79             i = 2;
80             while i <= nm1 + 1 {
81                 a *= i as f32; /* a = n! */
82                 b *= temp; /* b = (x/2)^n */
83                 i += 1;
84             }
85             b = b / a;
86         } else {
87             /* use backward recurrence */
88             /*                      x      x^2      x^2
89              *  J(n,x)/J(n-1,x) =  ----   ------   ------   .....
90              *                      2n  - 2(n+1) - 2(n+2)
91              *
92              *                      1      1        1
93              *  (for large x)   =  ----  ------   ------   .....
94              *                      2n   2(n+1)   2(n+2)
95              *                      -- - ------ - ------ -
96              *                       x     x         x
97              *
98              * Let w = 2n/x and h=2/x, then the above quotient
99              * is equal to the continued fraction:
100              *                  1
101              *      = -----------------------
102              *                     1
103              *         w - -----------------
104              *                        1
105              *              w+h - ---------
106              *                     w+2h - ...
107              *
108              * To determine how many terms needed, let
109              * Q(0) = w, Q(1) = w(w+h) - 1,
110              * Q(k) = (w+k*h)*Q(k-1) - Q(k-2),
111              * When Q(k) > 1e4      good for single
112              * When Q(k) > 1e9      good for double
113              * When Q(k) > 1e17     good for quadruple
114              */
115             /* determine k */
116             let mut t: f32;
117             let mut q0: f32;
118             let mut q1: f32;
119             let mut w: f32;
120             let h: f32;
121             let mut z: f32;
122             let mut tmp: f32;
123             let nf: f32;
124             let mut k: i32;
125 
126             nf = (nm1 as f32) + 1.0;
127             w = 2.0 * (nf as f32) / x;
128             h = 2.0 / x;
129             z = w + h;
130             q0 = w;
131             q1 = w * z - 1.0;
132             k = 1;
133             while q1 < 1.0e4 {
134                 k += 1;
135                 z += h;
136                 tmp = z * q1 - q0;
137                 q0 = q1;
138                 q1 = tmp;
139             }
140             t = 0.0;
141             i = k;
142             while i >= 0 {
143                 t = 1.0 / (2.0 * ((i as f32) + nf) / x - t);
144                 i -= 1;
145             }
146             a = t;
147             b = 1.0;
148             /*  estimate log((2/x)^n*n!) = n*log(2/x)+n*ln(n)
149              *  Hence, if n*(log(2n/x)) > ...
150              *  single 8.8722839355e+01
151              *  double 7.09782712893383973096e+02
152              *  long double 1.1356523406294143949491931077970765006170e+04
153              *  then recurrent value may overflow and the result is
154              *  likely underflow to zero
155              */
156             tmp = nf * logf(fabsf(w));
157             if tmp < 88.721679688 {
158                 i = nm1;
159                 while i > 0 {
160                     temp = b;
161                     b = 2.0 * (i as f32) * b / x - a;
162                     a = temp;
163                     i -= 1;
164                 }
165             } else {
166                 i = nm1;
167                 while i > 0 {
168                     temp = b;
169                     b = 2.0 * (i as f32) * b / x - a;
170                     a = temp;
171                     /* scale b to avoid spurious overflow */
172                     let x1p60 = f32::from_bits(0x5d800000); // 0x1p60 == 2^60
173                     if b > x1p60 {
174                         a /= b;
175                         t /= b;
176                         b = 1.0;
177                     }
178                     i -= 1;
179                 }
180             }
181             z = j0f(x);
182             w = j1f(x);
183             if fabsf(z) >= fabsf(w) {
184                 b = t * z / b;
185             } else {
186                 b = t * w / a;
187             }
188         }
189     }
190 
191     if sign {
192         -b
193     } else {
194         b
195     }
196 }
197 
ynf(n: i32, x: f32) -> f32198 pub fn ynf(n: i32, x: f32) -> f32 {
199     let mut ix: u32;
200     let mut ib: u32;
201     let nm1: i32;
202     let mut sign: bool;
203     let mut i: i32;
204     let mut a: f32;
205     let mut b: f32;
206     let mut temp: f32;
207 
208     ix = x.to_bits();
209     sign = (ix >> 31) != 0;
210     ix &= 0x7fffffff;
211     if ix > 0x7f800000 {
212         /* nan */
213         return x;
214     }
215     if sign && ix != 0 {
216         /* x < 0 */
217         return 0.0 / 0.0;
218     }
219     if ix == 0x7f800000 {
220         return 0.0;
221     }
222 
223     if n == 0 {
224         return y0f(x);
225     }
226     if n < 0 {
227         nm1 = -(n + 1);
228         sign = (n & 1) != 0;
229     } else {
230         nm1 = n - 1;
231         sign = false;
232     }
233     if nm1 == 0 {
234         if sign {
235             return -y1f(x);
236         } else {
237             return y1f(x);
238         }
239     }
240 
241     a = y0f(x);
242     b = y1f(x);
243     /* quit if b is -inf */
244     ib = b.to_bits();
245     i = 0;
246     while i < nm1 && ib != 0xff800000 {
247         i += 1;
248         temp = b;
249         b = (2.0 * (i as f32) / x) * b - a;
250         ib = b.to_bits();
251         a = temp;
252     }
253 
254     if sign {
255         -b
256     } else {
257         b
258     }
259 }
260