• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
2  * All rights reserved.
3  *
4  * This package is an SSL implementation written
5  * by Eric Young (eay@cryptsoft.com).
6  * The implementation was written so as to conform with Netscapes SSL.
7  *
8  * This library is free for commercial and non-commercial use as long as
9  * the following conditions are aheared to.  The following conditions
10  * apply to all code found in this distribution, be it the RC4, RSA,
11  * lhash, DES, etc., code; not just the SSL code.  The SSL documentation
12  * included with this distribution is covered by the same copyright terms
13  * except that the holder is Tim Hudson (tjh@cryptsoft.com).
14  *
15  * Copyright remains Eric Young's, and as such any Copyright notices in
16  * the code are not to be removed.
17  * If this package is used in a product, Eric Young should be given attribution
18  * as the author of the parts of the library used.
19  * This can be in the form of a textual message at program startup or
20  * in documentation (online or textual) provided with the package.
21  *
22  * Redistribution and use in source and binary forms, with or without
23  * modification, are permitted provided that the following conditions
24  * are met:
25  * 1. Redistributions of source code must retain the copyright
26  *    notice, this list of conditions and the following disclaimer.
27  * 2. Redistributions in binary form must reproduce the above copyright
28  *    notice, this list of conditions and the following disclaimer in the
29  *    documentation and/or other materials provided with the distribution.
30  * 3. All advertising materials mentioning features or use of this software
31  *    must display the following acknowledgement:
32  *    "This product includes cryptographic software written by
33  *     Eric Young (eay@cryptsoft.com)"
34  *    The word 'cryptographic' can be left out if the rouines from the library
35  *    being used are not cryptographic related :-).
36  * 4. If you include any Windows specific code (or a derivative thereof) from
37  *    the apps directory (application code) you must include an acknowledgement:
38  *    "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
39  *
40  * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND
41  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
42  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
43  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
44  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
45  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
46  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
47  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
48  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
49  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
50  * SUCH DAMAGE.
51  *
52  * The licence and distribution terms for any publically available version or
53  * derivative of this code cannot be changed.  i.e. this code cannot simply be
54  * copied and put under another distribution licence
55  * [including the GNU Public Licence.] */
56 
57 #include <openssl/mem.h>
58 
59 #include <assert.h>
60 #include <stdarg.h>
61 #include <stdio.h>
62 
63 #include <openssl/err.h>
64 
65 #if defined(OPENSSL_WINDOWS)
66 OPENSSL_MSVC_PRAGMA(warning(push, 3))
67 #include <windows.h>
68 OPENSSL_MSVC_PRAGMA(warning(pop))
69 #endif
70 
71 #include "internal.h"
72 
73 
74 #define OPENSSL_MALLOC_PREFIX 8
75 OPENSSL_STATIC_ASSERT(OPENSSL_MALLOC_PREFIX >= sizeof(size_t),
76                       "size_t too large");
77 
78 #if defined(OPENSSL_ASAN)
79 void __asan_poison_memory_region(const volatile void *addr, size_t size);
80 void __asan_unpoison_memory_region(const volatile void *addr, size_t size);
81 #else
__asan_poison_memory_region(const void * addr,size_t size)82 static void __asan_poison_memory_region(const void *addr, size_t size) {}
__asan_unpoison_memory_region(const void * addr,size_t size)83 static void __asan_unpoison_memory_region(const void *addr, size_t size) {}
84 #endif
85 
86 // Windows doesn't really support weak symbols as of May 2019, and Clang on
87 // Windows will emit strong symbols instead. See
88 // https://bugs.llvm.org/show_bug.cgi?id=37598
89 #if defined(__ELF__) && defined(__GNUC__)
90 #define WEAK_SYMBOL_FUNC(rettype, name, args) \
91   rettype name args __attribute__((weak));
92 #else
93 #define WEAK_SYMBOL_FUNC(rettype, name, args) static rettype(*name) args = NULL;
94 #endif
95 
96 #if defined(BORINGSSL_SDALLOCX)
97 // sdallocx is a sized |free| function. By passing the size (which we happen to
98 // always know in BoringSSL), the malloc implementation can save work.
99 //
100 // This is guarded by BORINGSSL_SDALLOCX, rather than being a weak symbol,
101 // because it can work poorly if there are two malloc implementations in the
102 // address space. (Which probably isn't valid, ODR etc, but
103 // https://github.com/grpc/grpc/issues/25450). In that situation, |malloc| can
104 // come from one allocator but |sdallocx| from another and crashes quickly
105 // result. We can't match |sdallocx| with |mallocx| because tcmalloc only
106 // provides the former, so a mismatch can still happen.
107 void sdallocx(void *ptr, size_t size, int flags);
108 #endif
109 
110 // The following three functions can be defined to override default heap
111 // allocation and freeing. If defined, it is the responsibility of
112 // |OPENSSL_memory_free| to zero out the memory before returning it to the
113 // system. |OPENSSL_memory_free| will not be passed NULL pointers.
114 //
115 // WARNING: These functions are called on every allocation and free in
116 // BoringSSL across the entire process. They may be called by any code in the
117 // process which calls BoringSSL, including in process initializers and thread
118 // destructors. When called, BoringSSL may hold pthreads locks. Any other code
119 // in the process which, directly or indirectly, calls BoringSSL may be on the
120 // call stack and may itself be using arbitrary synchronization primitives.
121 //
122 // As a result, these functions may not have the usual programming environment
123 // available to most C or C++ code. In particular, they may not call into
124 // BoringSSL, or any library which depends on BoringSSL. Any synchronization
125 // primitives used must tolerate every other synchronization primitive linked
126 // into the process, including pthreads locks. Failing to meet these constraints
127 // may result in deadlocks, crashes, or memory corruption.
128 WEAK_SYMBOL_FUNC(void*, OPENSSL_memory_alloc, (size_t size));
129 WEAK_SYMBOL_FUNC(void, OPENSSL_memory_free, (void *ptr));
130 WEAK_SYMBOL_FUNC(size_t, OPENSSL_memory_get_size, (void *ptr));
131 
OPENSSL_malloc(size_t size)132 void *OPENSSL_malloc(size_t size) {
133   if (OPENSSL_memory_alloc != NULL) {
134     assert(OPENSSL_memory_free != NULL);
135     assert(OPENSSL_memory_get_size != NULL);
136     return OPENSSL_memory_alloc(size);
137   }
138 
139   if (size + OPENSSL_MALLOC_PREFIX < size) {
140     return NULL;
141   }
142 
143   void *ptr = malloc(size + OPENSSL_MALLOC_PREFIX);
144   if (ptr == NULL) {
145     return NULL;
146   }
147 
148   *(size_t *)ptr = size;
149 
150   __asan_poison_memory_region(ptr, OPENSSL_MALLOC_PREFIX);
151   return ((uint8_t *)ptr) + OPENSSL_MALLOC_PREFIX;
152 }
153 
OPENSSL_free(void * orig_ptr)154 void OPENSSL_free(void *orig_ptr) {
155   if (orig_ptr == NULL) {
156     return;
157   }
158 
159   if (OPENSSL_memory_free != NULL) {
160     OPENSSL_memory_free(orig_ptr);
161     return;
162   }
163 
164   void *ptr = ((uint8_t *)orig_ptr) - OPENSSL_MALLOC_PREFIX;
165   __asan_unpoison_memory_region(ptr, OPENSSL_MALLOC_PREFIX);
166 
167   size_t size = *(size_t *)ptr;
168   OPENSSL_cleanse(ptr, size + OPENSSL_MALLOC_PREFIX);
169 #if defined(BORINGSSL_SDALLOCX)
170   sdallocx(ptr, size + OPENSSL_MALLOC_PREFIX, 0 /* flags */);
171 #else
172   free(ptr);
173 #endif
174 }
175 
OPENSSL_realloc(void * orig_ptr,size_t new_size)176 void *OPENSSL_realloc(void *orig_ptr, size_t new_size) {
177   if (orig_ptr == NULL) {
178     return OPENSSL_malloc(new_size);
179   }
180 
181   size_t old_size;
182   if (OPENSSL_memory_get_size != NULL) {
183     old_size = OPENSSL_memory_get_size(orig_ptr);
184   } else {
185     void *ptr = ((uint8_t *)orig_ptr) - OPENSSL_MALLOC_PREFIX;
186     __asan_unpoison_memory_region(ptr, OPENSSL_MALLOC_PREFIX);
187     old_size = *(size_t *)ptr;
188     __asan_poison_memory_region(ptr, OPENSSL_MALLOC_PREFIX);
189   }
190 
191   void *ret = OPENSSL_malloc(new_size);
192   if (ret == NULL) {
193     return NULL;
194   }
195 
196   size_t to_copy = new_size;
197   if (old_size < to_copy) {
198     to_copy = old_size;
199   }
200 
201   memcpy(ret, orig_ptr, to_copy);
202   OPENSSL_free(orig_ptr);
203 
204   return ret;
205 }
206 
OPENSSL_cleanse(void * ptr,size_t len)207 void OPENSSL_cleanse(void *ptr, size_t len) {
208 #if defined(OPENSSL_WINDOWS)
209   SecureZeroMemory(ptr, len);
210 #else
211   OPENSSL_memset(ptr, 0, len);
212 
213 #if !defined(OPENSSL_NO_ASM)
214   /* As best as we can tell, this is sufficient to break any optimisations that
215      might try to eliminate "superfluous" memsets. If there's an easy way to
216      detect memset_s, it would be better to use that. */
217   __asm__ __volatile__("" : : "r"(ptr) : "memory");
218 #endif
219 #endif  // !OPENSSL_NO_ASM
220 }
221 
OPENSSL_clear_free(void * ptr,size_t unused)222 void OPENSSL_clear_free(void *ptr, size_t unused) {
223   OPENSSL_free(ptr);
224 }
225 
CRYPTO_memcmp(const void * in_a,const void * in_b,size_t len)226 int CRYPTO_memcmp(const void *in_a, const void *in_b, size_t len) {
227   const uint8_t *a = in_a;
228   const uint8_t *b = in_b;
229   uint8_t x = 0;
230 
231   for (size_t i = 0; i < len; i++) {
232     x |= a[i] ^ b[i];
233   }
234 
235   return x;
236 }
237 
OPENSSL_hash32(const void * ptr,size_t len)238 uint32_t OPENSSL_hash32(const void *ptr, size_t len) {
239   // These are the FNV-1a parameters for 32 bits.
240   static const uint32_t kPrime = 16777619u;
241   static const uint32_t kOffsetBasis = 2166136261u;
242 
243   const uint8_t *in = ptr;
244   uint32_t h = kOffsetBasis;
245 
246   for (size_t i = 0; i < len; i++) {
247     h ^= in[i];
248     h *= kPrime;
249   }
250 
251   return h;
252 }
253 
OPENSSL_strhash(const char * s)254 uint32_t OPENSSL_strhash(const char *s) { return OPENSSL_hash32(s, strlen(s)); }
255 
OPENSSL_strnlen(const char * s,size_t len)256 size_t OPENSSL_strnlen(const char *s, size_t len) {
257   for (size_t i = 0; i < len; i++) {
258     if (s[i] == 0) {
259       return i;
260     }
261   }
262 
263   return len;
264 }
265 
OPENSSL_strdup(const char * s)266 char *OPENSSL_strdup(const char *s) {
267   if (s == NULL) {
268     return NULL;
269   }
270   const size_t len = strlen(s) + 1;
271   char *ret = OPENSSL_malloc(len);
272   if (ret == NULL) {
273     return NULL;
274   }
275   OPENSSL_memcpy(ret, s, len);
276   return ret;
277 }
278 
OPENSSL_tolower(int c)279 int OPENSSL_tolower(int c) {
280   if (c >= 'A' && c <= 'Z') {
281     return c + ('a' - 'A');
282   }
283   return c;
284 }
285 
OPENSSL_strcasecmp(const char * a,const char * b)286 int OPENSSL_strcasecmp(const char *a, const char *b) {
287   for (size_t i = 0;; i++) {
288     const int aa = OPENSSL_tolower(a[i]);
289     const int bb = OPENSSL_tolower(b[i]);
290 
291     if (aa < bb) {
292       return -1;
293     } else if (aa > bb) {
294       return 1;
295     } else if (aa == 0) {
296       return 0;
297     }
298   }
299 }
300 
OPENSSL_strncasecmp(const char * a,const char * b,size_t n)301 int OPENSSL_strncasecmp(const char *a, const char *b, size_t n) {
302   for (size_t i = 0; i < n; i++) {
303     const int aa = OPENSSL_tolower(a[i]);
304     const int bb = OPENSSL_tolower(b[i]);
305 
306     if (aa < bb) {
307       return -1;
308     } else if (aa > bb) {
309       return 1;
310     } else if (aa == 0) {
311       return 0;
312     }
313   }
314 
315   return 0;
316 }
317 
BIO_snprintf(char * buf,size_t n,const char * format,...)318 int BIO_snprintf(char *buf, size_t n, const char *format, ...) {
319   va_list args;
320   va_start(args, format);
321   int ret = BIO_vsnprintf(buf, n, format, args);
322   va_end(args);
323   return ret;
324 }
325 
BIO_vsnprintf(char * buf,size_t n,const char * format,va_list args)326 int BIO_vsnprintf(char *buf, size_t n, const char *format, va_list args) {
327   return vsnprintf(buf, n, format, args);
328 }
329 
OPENSSL_strndup(const char * str,size_t size)330 char *OPENSSL_strndup(const char *str, size_t size) {
331   size = OPENSSL_strnlen(str, size);
332 
333   size_t alloc_size = size + 1;
334   if (alloc_size < size) {
335     // overflow
336     OPENSSL_PUT_ERROR(CRYPTO, ERR_R_MALLOC_FAILURE);
337     return NULL;
338   }
339   char *ret = OPENSSL_malloc(alloc_size);
340   if (ret == NULL) {
341     OPENSSL_PUT_ERROR(CRYPTO, ERR_R_MALLOC_FAILURE);
342     return NULL;
343   }
344 
345   OPENSSL_memcpy(ret, str, size);
346   ret[size] = '\0';
347   return ret;
348 }
349 
OPENSSL_strlcpy(char * dst,const char * src,size_t dst_size)350 size_t OPENSSL_strlcpy(char *dst, const char *src, size_t dst_size) {
351   size_t l = 0;
352 
353   for (; dst_size > 1 && *src; dst_size--) {
354     *dst++ = *src++;
355     l++;
356   }
357 
358   if (dst_size) {
359     *dst = 0;
360   }
361 
362   return l + strlen(src);
363 }
364 
OPENSSL_strlcat(char * dst,const char * src,size_t dst_size)365 size_t OPENSSL_strlcat(char *dst, const char *src, size_t dst_size) {
366   size_t l = 0;
367   for (; dst_size > 0 && *dst; dst_size--, dst++) {
368     l++;
369   }
370   return l + OPENSSL_strlcpy(dst, src, dst_size);
371 }
372 
OPENSSL_memdup(const void * data,size_t size)373 void *OPENSSL_memdup(const void *data, size_t size) {
374   if (size == 0) {
375     return NULL;
376   }
377 
378   void *ret = OPENSSL_malloc(size);
379   if (ret == NULL) {
380     OPENSSL_PUT_ERROR(CRYPTO, ERR_R_MALLOC_FAILURE);
381     return NULL;
382   }
383 
384   OPENSSL_memcpy(ret, data, size);
385   return ret;
386 }
387