• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Copyright 2018 Developers of the Rand project.
2 //
3 // Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
4 // https://www.apache.org/licenses/LICENSE-2.0> or the MIT license
5 // <LICENSE-MIT or https://opensource.org/licenses/MIT>, at your
6 // option. This file may not be copied, modified, or distributed
7 // except according to those terms.
8 
9 //! The Bernoulli distribution.
10 
11 use crate::distributions::Distribution;
12 use crate::Rng;
13 use core::{fmt, u64};
14 
15 #[cfg(feature = "serde1")]
16 use serde::{Serialize, Deserialize};
17 /// The Bernoulli distribution.
18 ///
19 /// This is a special case of the Binomial distribution where `n = 1`.
20 ///
21 /// # Example
22 ///
23 /// ```rust
24 /// use rand::distributions::{Bernoulli, Distribution};
25 ///
26 /// let d = Bernoulli::new(0.3).unwrap();
27 /// let v = d.sample(&mut rand::thread_rng());
28 /// println!("{} is from a Bernoulli distribution", v);
29 /// ```
30 ///
31 /// # Precision
32 ///
33 /// This `Bernoulli` distribution uses 64 bits from the RNG (a `u64`),
34 /// so only probabilities that are multiples of 2<sup>-64</sup> can be
35 /// represented.
36 #[derive(Clone, Copy, Debug, PartialEq)]
37 #[cfg_attr(feature = "serde1", derive(Serialize, Deserialize))]
38 pub struct Bernoulli {
39     /// Probability of success, relative to the maximal integer.
40     p_int: u64,
41 }
42 
43 // To sample from the Bernoulli distribution we use a method that compares a
44 // random `u64` value `v < (p * 2^64)`.
45 //
46 // If `p == 1.0`, the integer `v` to compare against can not represented as a
47 // `u64`. We manually set it to `u64::MAX` instead (2^64 - 1 instead of 2^64).
48 // Note that  value of `p < 1.0` can never result in `u64::MAX`, because an
49 // `f64` only has 53 bits of precision, and the next largest value of `p` will
50 // result in `2^64 - 2048`.
51 //
52 // Also there is a 100% theoretical concern: if someone consistently wants to
53 // generate `true` using the Bernoulli distribution (i.e. by using a probability
54 // of `1.0`), just using `u64::MAX` is not enough. On average it would return
55 // false once every 2^64 iterations. Some people apparently care about this
56 // case.
57 //
58 // That is why we special-case `u64::MAX` to always return `true`, without using
59 // the RNG, and pay the performance price for all uses that *are* reasonable.
60 // Luckily, if `new()` and `sample` are close, the compiler can optimize out the
61 // extra check.
62 const ALWAYS_TRUE: u64 = u64::MAX;
63 
64 // This is just `2.0.powi(64)`, but written this way because it is not available
65 // in `no_std` mode.
66 const SCALE: f64 = 2.0 * (1u64 << 63) as f64;
67 
68 /// Error type returned from `Bernoulli::new`.
69 #[derive(Clone, Copy, Debug, PartialEq, Eq)]
70 pub enum BernoulliError {
71     /// `p < 0` or `p > 1`.
72     InvalidProbability,
73 }
74 
75 impl fmt::Display for BernoulliError {
fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result76     fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
77         f.write_str(match self {
78             BernoulliError::InvalidProbability => "p is outside [0, 1] in Bernoulli distribution",
79         })
80     }
81 }
82 
83 #[cfg(feature = "std")]
84 impl ::std::error::Error for BernoulliError {}
85 
86 impl Bernoulli {
87     /// Construct a new `Bernoulli` with the given probability of success `p`.
88     ///
89     /// # Precision
90     ///
91     /// For `p = 1.0`, the resulting distribution will always generate true.
92     /// For `p = 0.0`, the resulting distribution will always generate false.
93     ///
94     /// This method is accurate for any input `p` in the range `[0, 1]` which is
95     /// a multiple of 2<sup>-64</sup>. (Note that not all multiples of
96     /// 2<sup>-64</sup> in `[0, 1]` can be represented as a `f64`.)
97     #[inline]
new(p: f64) -> Result<Bernoulli, BernoulliError>98     pub fn new(p: f64) -> Result<Bernoulli, BernoulliError> {
99         if !(0.0..1.0).contains(&p) {
100             if p == 1.0 {
101                 return Ok(Bernoulli { p_int: ALWAYS_TRUE });
102             }
103             return Err(BernoulliError::InvalidProbability);
104         }
105         Ok(Bernoulli {
106             p_int: (p * SCALE) as u64,
107         })
108     }
109 
110     /// Construct a new `Bernoulli` with the probability of success of
111     /// `numerator`-in-`denominator`. I.e. `new_ratio(2, 3)` will return
112     /// a `Bernoulli` with a 2-in-3 chance, or about 67%, of returning `true`.
113     ///
114     /// return `true`. If `numerator == 0` it will always return `false`.
115     /// For `numerator > denominator` and `denominator == 0`, this returns an
116     /// error. Otherwise, for `numerator == denominator`, samples are always
117     /// true; for `numerator == 0` samples are always false.
118     #[inline]
from_ratio(numerator: u32, denominator: u32) -> Result<Bernoulli, BernoulliError>119     pub fn from_ratio(numerator: u32, denominator: u32) -> Result<Bernoulli, BernoulliError> {
120         if numerator > denominator || denominator == 0 {
121             return Err(BernoulliError::InvalidProbability);
122         }
123         if numerator == denominator {
124             return Ok(Bernoulli { p_int: ALWAYS_TRUE });
125         }
126         let p_int = ((f64::from(numerator) / f64::from(denominator)) * SCALE) as u64;
127         Ok(Bernoulli { p_int })
128     }
129 }
130 
131 impl Distribution<bool> for Bernoulli {
132     #[inline]
sample<R: Rng + ?Sized>(&self, rng: &mut R) -> bool133     fn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> bool {
134         // Make sure to always return true for p = 1.0.
135         if self.p_int == ALWAYS_TRUE {
136             return true;
137         }
138         let v: u64 = rng.gen();
139         v < self.p_int
140     }
141 }
142 
143 #[cfg(test)]
144 mod test {
145     use super::Bernoulli;
146     use crate::distributions::Distribution;
147     use crate::Rng;
148 
149     #[test]
150     #[cfg(feature="serde1")]
test_serializing_deserializing_bernoulli()151     fn test_serializing_deserializing_bernoulli() {
152         let coin_flip = Bernoulli::new(0.5).unwrap();
153         let de_coin_flip : Bernoulli = bincode::deserialize(&bincode::serialize(&coin_flip).unwrap()).unwrap();
154 
155         assert_eq!(coin_flip.p_int, de_coin_flip.p_int);
156     }
157 
158     #[test]
test_trivial()159     fn test_trivial() {
160         // We prefer to be explicit here.
161         #![allow(clippy::bool_assert_comparison)]
162 
163         let mut r = crate::test::rng(1);
164         let always_false = Bernoulli::new(0.0).unwrap();
165         let always_true = Bernoulli::new(1.0).unwrap();
166         for _ in 0..5 {
167             assert_eq!(r.sample::<bool, _>(&always_false), false);
168             assert_eq!(r.sample::<bool, _>(&always_true), true);
169             assert_eq!(Distribution::<bool>::sample(&always_false, &mut r), false);
170             assert_eq!(Distribution::<bool>::sample(&always_true, &mut r), true);
171         }
172     }
173 
174     #[test]
175     #[cfg_attr(miri, ignore)] // Miri is too slow
test_average()176     fn test_average() {
177         const P: f64 = 0.3;
178         const NUM: u32 = 3;
179         const DENOM: u32 = 10;
180         let d1 = Bernoulli::new(P).unwrap();
181         let d2 = Bernoulli::from_ratio(NUM, DENOM).unwrap();
182         const N: u32 = 100_000;
183 
184         let mut sum1: u32 = 0;
185         let mut sum2: u32 = 0;
186         let mut rng = crate::test::rng(2);
187         for _ in 0..N {
188             if d1.sample(&mut rng) {
189                 sum1 += 1;
190             }
191             if d2.sample(&mut rng) {
192                 sum2 += 1;
193             }
194         }
195         let avg1 = (sum1 as f64) / (N as f64);
196         assert!((avg1 - P).abs() < 5e-3);
197 
198         let avg2 = (sum2 as f64) / (N as f64);
199         assert!((avg2 - (NUM as f64) / (DENOM as f64)).abs() < 5e-3);
200     }
201 
202     #[test]
value_stability()203     fn value_stability() {
204         let mut rng = crate::test::rng(3);
205         let distr = Bernoulli::new(0.4532).unwrap();
206         let mut buf = [false; 10];
207         for x in &mut buf {
208             *x = rng.sample(&distr);
209         }
210         assert_eq!(buf, [
211             true, false, false, true, false, false, true, true, true, true
212         ]);
213     }
214 
215     #[test]
bernoulli_distributions_can_be_compared()216     fn bernoulli_distributions_can_be_compared() {
217         assert_eq!(Bernoulli::new(1.0), Bernoulli::new(1.0));
218     }
219 }
220