1 // Copyright 2015-2016 Brian Smith.
2 //
3 // Permission to use, copy, modify, and/or distribute this software for any
4 // purpose with or without fee is hereby granted, provided that the above
5 // copyright notice and this permission notice appear in all copies.
6 //
7 // THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHORS DISCLAIM ALL WARRANTIES
8 // WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
9 // MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHORS BE LIABLE FOR ANY
10 // SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
11 // WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION
12 // OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN
13 // CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
14
15 //! HMAC is specified in [RFC 2104].
16 //!
17 //! After a `Key` is constructed, it can be used for multiple signing or
18 //! verification operations. Separating the construction of the key from the
19 //! rest of the HMAC operation allows the per-key precomputation to be done
20 //! only once, instead of it being done in every HMAC operation.
21 //!
22 //! Frequently all the data to be signed in a message is available in a single
23 //! contiguous piece. In that case, the module-level `sign` function can be
24 //! used. Otherwise, if the input is in multiple parts, `Context` should be
25 //! used.
26 //!
27 //! # Examples:
28 //!
29 //! ## Signing a value and verifying it wasn't tampered with
30 //!
31 //! ```
32 //! use ring::{hmac, rand};
33 //!
34 //! let rng = rand::SystemRandom::new();
35 //! let key = hmac::Key::generate(hmac::HMAC_SHA256, &rng)?;
36 //!
37 //! let msg = "hello, world";
38 //!
39 //! let tag = hmac::sign(&key, msg.as_bytes());
40 //!
41 //! // [We give access to the message to an untrusted party, and they give it
42 //! // back to us. We need to verify they didn't tamper with it.]
43 //!
44 //! hmac::verify(&key, msg.as_bytes(), tag.as_ref())?;
45 //!
46 //! # Ok::<(), ring::error::Unspecified>(())
47 //! ```
48 //!
49 //! ## Using the one-shot API:
50 //!
51 //! ```
52 //! use ring::{digest, hmac, rand};
53 //! use ring::rand::SecureRandom;
54 //!
55 //! let msg = "hello, world";
56 //!
57 //! // The sender generates a secure key value and signs the message with it.
58 //! // Note that in a real protocol, a key agreement protocol would be used to
59 //! // derive `key_value`.
60 //! let rng = rand::SystemRandom::new();
61 //! let key_value: [u8; digest::SHA256_OUTPUT_LEN] = rand::generate(&rng)?.expose();
62 //!
63 //! let s_key = hmac::Key::new(hmac::HMAC_SHA256, key_value.as_ref());
64 //! let tag = hmac::sign(&s_key, msg.as_bytes());
65 //!
66 //! // The receiver (somehow!) knows the key value, and uses it to verify the
67 //! // integrity of the message.
68 //! let v_key = hmac::Key::new(hmac::HMAC_SHA256, key_value.as_ref());
69 //! hmac::verify(&v_key, msg.as_bytes(), tag.as_ref())?;
70 //!
71 //! # Ok::<(), ring::error::Unspecified>(())
72 //! ```
73 //!
74 //! ## Using the multi-part API:
75 //! ```
76 //! use ring::{digest, hmac, rand};
77 //! use ring::rand::SecureRandom;
78 //!
79 //! let parts = ["hello", ", ", "world"];
80 //!
81 //! // The sender generates a secure key value and signs the message with it.
82 //! // Note that in a real protocol, a key agreement protocol would be used to
83 //! // derive `key_value`.
84 //! let rng = rand::SystemRandom::new();
85 //! let mut key_value: [u8; digest::SHA384_OUTPUT_LEN] = rand::generate(&rng)?.expose();
86 //!
87 //! let s_key = hmac::Key::new(hmac::HMAC_SHA384, key_value.as_ref());
88 //! let mut s_ctx = hmac::Context::with_key(&s_key);
89 //! for part in &parts {
90 //! s_ctx.update(part.as_bytes());
91 //! }
92 //! let tag = s_ctx.sign();
93 //!
94 //! // The receiver (somehow!) knows the key value, and uses it to verify the
95 //! // integrity of the message.
96 //! let v_key = hmac::Key::new(hmac::HMAC_SHA384, key_value.as_ref());
97 //! let mut msg = Vec::<u8>::new();
98 //! for part in &parts {
99 //! msg.extend(part.as_bytes());
100 //! }
101 //! hmac::verify(&v_key, &msg.as_ref(), tag.as_ref())?;
102 //!
103 //! # Ok::<(), ring::error::Unspecified>(())
104 //! ```
105 //!
106 //! [RFC 2104]: https://tools.ietf.org/html/rfc2104
107 //! [code for `ring::pbkdf2`]:
108 //! https://github.com/briansmith/ring/blob/main/src/pbkdf2.rs
109 //! [code for `ring::hkdf`]:
110 //! https://github.com/briansmith/ring/blob/main/src/hkdf.rs
111
112 use crate::{constant_time, digest, error, hkdf, rand};
113
114 /// An HMAC algorithm.
115 #[derive(Clone, Copy, Debug, PartialEq, Eq)]
116 pub struct Algorithm(&'static digest::Algorithm);
117
118 impl Algorithm {
119 /// The digest algorithm this HMAC algorithm is based on.
120 #[inline]
digest_algorithm(&self) -> &'static digest::Algorithm121 pub fn digest_algorithm(&self) -> &'static digest::Algorithm {
122 self.0
123 }
124 }
125
126 /// HMAC using SHA-1. Obsolete.
127 pub static HMAC_SHA1_FOR_LEGACY_USE_ONLY: Algorithm = Algorithm(&digest::SHA1_FOR_LEGACY_USE_ONLY);
128
129 /// HMAC using SHA-256.
130 pub static HMAC_SHA256: Algorithm = Algorithm(&digest::SHA256);
131
132 /// HMAC using SHA-384.
133 pub static HMAC_SHA384: Algorithm = Algorithm(&digest::SHA384);
134
135 /// HMAC using SHA-512.
136 pub static HMAC_SHA512: Algorithm = Algorithm(&digest::SHA512);
137
138 /// An HMAC tag.
139 ///
140 /// For a given tag `t`, use `t.as_ref()` to get the tag value as a byte slice.
141 #[derive(Clone, Copy, Debug)]
142 pub struct Tag(digest::Digest);
143
144 impl AsRef<[u8]> for Tag {
145 #[inline]
as_ref(&self) -> &[u8]146 fn as_ref(&self) -> &[u8] {
147 self.0.as_ref()
148 }
149 }
150
151 /// A key to use for HMAC signing.
152 #[derive(Clone)]
153 pub struct Key {
154 inner: digest::BlockContext,
155 outer: digest::BlockContext,
156 }
157
158 impl core::fmt::Debug for Key {
fmt(&self, f: &mut core::fmt::Formatter) -> Result<(), core::fmt::Error>159 fn fmt(&self, f: &mut core::fmt::Formatter) -> Result<(), core::fmt::Error> {
160 f.debug_struct("Key")
161 .field("algorithm", self.algorithm().digest_algorithm())
162 .finish()
163 }
164 }
165
166 impl Key {
167 /// Generate an HMAC signing key using the given digest algorithm with a
168 /// random value generated from `rng`.
169 ///
170 /// The key will be `digest_alg.output_len` bytes long, based on the
171 /// recommendation in [RFC 2104 Section 3].
172 ///
173 /// [RFC 2104 Section 3]: https://tools.ietf.org/html/rfc2104#section-3
generate( algorithm: Algorithm, rng: &dyn rand::SecureRandom, ) -> Result<Self, error::Unspecified>174 pub fn generate(
175 algorithm: Algorithm,
176 rng: &dyn rand::SecureRandom,
177 ) -> Result<Self, error::Unspecified> {
178 Self::construct(algorithm, |buf| rng.fill(buf))
179 }
180
construct<F>(algorithm: Algorithm, fill: F) -> Result<Self, error::Unspecified> where F: FnOnce(&mut [u8]) -> Result<(), error::Unspecified>,181 fn construct<F>(algorithm: Algorithm, fill: F) -> Result<Self, error::Unspecified>
182 where
183 F: FnOnce(&mut [u8]) -> Result<(), error::Unspecified>,
184 {
185 let mut key_bytes = [0; digest::MAX_OUTPUT_LEN];
186 let key_bytes = &mut key_bytes[..algorithm.0.output_len];
187 fill(key_bytes)?;
188 Ok(Self::new(algorithm, key_bytes))
189 }
190
191 /// Construct an HMAC signing key using the given digest algorithm and key
192 /// value.
193 ///
194 /// `key_value` should be a value generated using a secure random number
195 /// generator (e.g. the `key_value` output by
196 /// `SealingKey::generate_serializable()`) or derived from a random key by
197 /// a key derivation function (e.g. `ring::hkdf`). In particular,
198 /// `key_value` shouldn't be a password.
199 ///
200 /// As specified in RFC 2104, if `key_value` is shorter than the digest
201 /// algorithm's block length (as returned by `digest::Algorithm::block_len`,
202 /// not the digest length returned by `digest::Algorithm::output_len`) then
203 /// it will be padded with zeros. Similarly, if it is longer than the block
204 /// length then it will be compressed using the digest algorithm.
205 ///
206 /// You should not use keys larger than the `digest_alg.block_len` because
207 /// the truncation described above reduces their strength to only
208 /// `digest_alg.output_len * 8` bits. Support for such keys is likely to be
209 /// removed in a future version of *ring*.
new(algorithm: Algorithm, key_value: &[u8]) -> Self210 pub fn new(algorithm: Algorithm, key_value: &[u8]) -> Self {
211 let digest_alg = algorithm.0;
212 let mut key = Self {
213 inner: digest::BlockContext::new(digest_alg),
214 outer: digest::BlockContext::new(digest_alg),
215 };
216
217 let key_hash;
218 let key_value = if key_value.len() <= digest_alg.block_len {
219 key_value
220 } else {
221 key_hash = digest::digest(digest_alg, key_value);
222 key_hash.as_ref()
223 };
224
225 const IPAD: u8 = 0x36;
226
227 let mut padded_key = [IPAD; digest::MAX_BLOCK_LEN];
228 let padded_key = &mut padded_key[..digest_alg.block_len];
229
230 // If the key is shorter than one block then we're supposed to act like
231 // it is padded with zero bytes up to the block length. `x ^ 0 == x` so
232 // we can just leave the trailing bytes of `padded_key` untouched.
233 for (padded_key, key_value) in padded_key.iter_mut().zip(key_value.iter()) {
234 *padded_key ^= *key_value;
235 }
236 key.inner.update(&padded_key);
237
238 const OPAD: u8 = 0x5C;
239
240 // Remove the `IPAD` masking, leaving the unmasked padded key, then
241 // mask with `OPAD`, all in one step.
242 for b in padded_key.iter_mut() {
243 *b ^= IPAD ^ OPAD;
244 }
245 key.outer.update(&padded_key);
246
247 key
248 }
249
250 /// The digest algorithm for the key.
251 #[inline]
algorithm(&self) -> Algorithm252 pub fn algorithm(&self) -> Algorithm {
253 Algorithm(self.inner.algorithm)
254 }
255 }
256
257 impl hkdf::KeyType for Algorithm {
len(&self) -> usize258 fn len(&self) -> usize {
259 self.digest_algorithm().output_len
260 }
261 }
262
263 impl From<hkdf::Okm<'_, Algorithm>> for Key {
from(okm: hkdf::Okm<Algorithm>) -> Self264 fn from(okm: hkdf::Okm<Algorithm>) -> Self {
265 Self::construct(*okm.len(), |buf| okm.fill(buf)).unwrap()
266 }
267 }
268
269 /// A context for multi-step (Init-Update-Finish) HMAC signing.
270 ///
271 /// Use `sign` for single-step HMAC signing.
272 #[derive(Clone)]
273 pub struct Context {
274 inner: digest::Context,
275 outer: digest::BlockContext,
276 }
277
278 impl core::fmt::Debug for Context {
fmt(&self, f: &mut core::fmt::Formatter) -> Result<(), core::fmt::Error>279 fn fmt(&self, f: &mut core::fmt::Formatter) -> Result<(), core::fmt::Error> {
280 f.debug_struct("Context")
281 .field("algorithm", self.inner.algorithm())
282 .finish()
283 }
284 }
285
286 impl Context {
287 /// Constructs a new HMAC signing context using the given digest algorithm
288 /// and key.
with_key(signing_key: &Key) -> Self289 pub fn with_key(signing_key: &Key) -> Self {
290 Self {
291 inner: digest::Context::clone_from(&signing_key.inner),
292 outer: signing_key.outer.clone(),
293 }
294 }
295
296 /// Updates the HMAC with all the data in `data`. `update` may be called
297 /// zero or more times until `finish` is called.
update(&mut self, data: &[u8])298 pub fn update(&mut self, data: &[u8]) {
299 self.inner.update(data);
300 }
301
302 /// Finalizes the HMAC calculation and returns the HMAC value. `sign`
303 /// consumes the context so it cannot be (mis-)used after `sign` has been
304 /// called.
305 ///
306 /// It is generally not safe to implement HMAC verification by comparing
307 /// the return value of `sign` to a tag. Use `verify` for verification
308 /// instead.
sign(self) -> Tag309 pub fn sign(self) -> Tag {
310 let algorithm = self.inner.algorithm();
311 let mut pending = [0u8; digest::MAX_BLOCK_LEN];
312 let pending = &mut pending[..algorithm.block_len];
313 let num_pending = algorithm.output_len;
314 pending[..num_pending].copy_from_slice(self.inner.finish().as_ref());
315 Tag(self.outer.finish(pending, num_pending))
316 }
317 }
318
319 /// Calculates the HMAC of `data` using the key `key` in one step.
320 ///
321 /// Use `Context` to calculate HMACs where the input is in multiple parts.
322 ///
323 /// It is generally not safe to implement HMAC verification by comparing the
324 /// return value of `sign` to a tag. Use `verify` for verification instead.
sign(key: &Key, data: &[u8]) -> Tag325 pub fn sign(key: &Key, data: &[u8]) -> Tag {
326 let mut ctx = Context::with_key(key);
327 ctx.update(data);
328 ctx.sign()
329 }
330
331 /// Calculates the HMAC of `data` using the signing key `key`, and verifies
332 /// whether the resultant value equals `tag`, in one step.
333 ///
334 /// This is logically equivalent to, but more efficient than, constructing a
335 /// `Key` with the same value as `key` and then using `verify`.
336 ///
337 /// The verification will be done in constant time to prevent timing attacks.
verify(key: &Key, data: &[u8], tag: &[u8]) -> Result<(), error::Unspecified>338 pub fn verify(key: &Key, data: &[u8], tag: &[u8]) -> Result<(), error::Unspecified> {
339 constant_time::verify_slices_are_equal(sign(key, data).as_ref(), tag)
340 }
341
342 #[cfg(test)]
343 mod tests {
344 use crate::{hmac, rand};
345
346 // Make sure that `Key::generate` and `verify_with_own_key` aren't
347 // completely wacky.
348 #[test]
hmac_signing_key_coverage()349 pub fn hmac_signing_key_coverage() {
350 let rng = rand::SystemRandom::new();
351
352 const HELLO_WORLD_GOOD: &[u8] = b"hello, world";
353 const HELLO_WORLD_BAD: &[u8] = b"hello, worle";
354
355 for algorithm in &[
356 hmac::HMAC_SHA1_FOR_LEGACY_USE_ONLY,
357 hmac::HMAC_SHA256,
358 hmac::HMAC_SHA384,
359 hmac::HMAC_SHA512,
360 ] {
361 let key = hmac::Key::generate(*algorithm, &rng).unwrap();
362 let tag = hmac::sign(&key, HELLO_WORLD_GOOD);
363 assert!(hmac::verify(&key, HELLO_WORLD_GOOD, tag.as_ref()).is_ok());
364 assert!(hmac::verify(&key, HELLO_WORLD_BAD, tag.as_ref()).is_err())
365 }
366 }
367 }
368