• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 //! General purpose combinators
2 
3 use nom::bytes::streaming::take;
4 use nom::combinator::map_parser;
5 use nom::error::{make_error, ErrorKind, ParseError};
6 use nom::{IResult, Needed, Parser};
7 use nom::{InputIter, InputTake};
8 use nom::{InputLength, ToUsize};
9 
10 #[deprecated(since = "3.0.1", note = "please use `be_var_u64` instead")]
11 /// Read an entire slice as a big-endian value.
12 ///
13 /// Returns the value as `u64`. This function checks for integer overflows, and returns a
14 /// `Result::Err` value if the value is too big.
bytes_to_u64(s: &[u8]) -> Result<u64, &'static str>15 pub fn bytes_to_u64(s: &[u8]) -> Result<u64, &'static str> {
16     let mut u: u64 = 0;
17 
18     if s.is_empty() {
19         return Err("empty");
20     };
21     if s.len() > 8 {
22         return Err("overflow");
23     }
24     for &c in s {
25         let u1 = u << 8;
26         u = u1 | (c as u64);
27     }
28 
29     Ok(u)
30 }
31 
32 /// Read the entire slice as a big endian unsigned integer, up to 8 bytes
33 #[inline]
be_var_u64<'a, E: ParseError<&'a [u8]>>(input: &'a [u8]) -> IResult<&'a [u8], u64, E>34 pub fn be_var_u64<'a, E: ParseError<&'a [u8]>>(input: &'a [u8]) -> IResult<&'a [u8], u64, E> {
35     if input.is_empty() {
36         return Err(nom::Err::Incomplete(Needed::new(1)));
37     }
38     if input.len() > 8 {
39         return Err(nom::Err::Error(make_error(input, ErrorKind::TooLarge)));
40     }
41     let mut res = 0u64;
42     for byte in input {
43         res = (res << 8) + *byte as u64;
44     }
45 
46     Ok((&b""[..], res))
47 }
48 
49 /// Read the entire slice as a little endian unsigned integer, up to 8 bytes
50 #[inline]
le_var_u64<'a, E: ParseError<&'a [u8]>>(input: &'a [u8]) -> IResult<&'a [u8], u64, E>51 pub fn le_var_u64<'a, E: ParseError<&'a [u8]>>(input: &'a [u8]) -> IResult<&'a [u8], u64, E> {
52     if input.is_empty() {
53         return Err(nom::Err::Incomplete(Needed::new(1)));
54     }
55     if input.len() > 8 {
56         return Err(nom::Err::Error(make_error(input, ErrorKind::TooLarge)));
57     }
58     let mut res = 0u64;
59     for byte in input.iter().rev() {
60         res = (res << 8) + *byte as u64;
61     }
62 
63     Ok((&b""[..], res))
64 }
65 
66 /// Read a slice as a big-endian value.
67 #[inline]
parse_hex_to_u64<S>(i: &[u8], size: S) -> IResult<&[u8], u64> where S: ToUsize + Copy,68 pub fn parse_hex_to_u64<S>(i: &[u8], size: S) -> IResult<&[u8], u64>
69 where
70     S: ToUsize + Copy,
71 {
72     map_parser(take(size.to_usize()), be_var_u64)(i)
73 }
74 
75 /// Apply combinator, automatically converts between errors if the underlying type supports it
upgrade_error<I, O, E1: ParseError<I>, E2: ParseError<I>, F>( mut f: F, ) -> impl FnMut(I) -> IResult<I, O, E2> where F: FnMut(I) -> IResult<I, O, E1>, E2: From<E1>,76 pub fn upgrade_error<I, O, E1: ParseError<I>, E2: ParseError<I>, F>(
77     mut f: F,
78 ) -> impl FnMut(I) -> IResult<I, O, E2>
79 where
80     F: FnMut(I) -> IResult<I, O, E1>,
81     E2: From<E1>,
82 {
83     move |i| f(i).map_err(nom::Err::convert)
84 }
85 
86 /// Create a combinator that returns the provided value, and input unchanged
pure<I, O, E: ParseError<I>>(val: O) -> impl Fn(I) -> IResult<I, O, E> where O: Clone,87 pub fn pure<I, O, E: ParseError<I>>(val: O) -> impl Fn(I) -> IResult<I, O, E>
88 where
89     O: Clone,
90 {
91     move |input: I| Ok((input, val.clone()))
92 }
93 
94 /// Return a closure that takes `len` bytes from input, and applies `parser`.
flat_take<I, C, O, E: ParseError<I>, F>( len: C, mut parser: F, ) -> impl FnMut(I) -> IResult<I, O, E> where I: InputTake + InputLength + InputIter, C: ToUsize + Copy, F: Parser<I, O, E>,95 pub fn flat_take<I, C, O, E: ParseError<I>, F>(
96     len: C,
97     mut parser: F,
98 ) -> impl FnMut(I) -> IResult<I, O, E>
99 where
100     I: InputTake + InputLength + InputIter,
101     C: ToUsize + Copy,
102     F: Parser<I, O, E>,
103 {
104     // Note: this is the same as `map_parser(take(len), parser)`
105     move |input: I| {
106         let (input, o1) = take(len.to_usize())(input)?;
107         let (_, o2) = parser.parse(o1)?;
108         Ok((input, o2))
109     }
110 }
111 
112 /// Take `len` bytes from `input`, and apply `parser`.
flat_takec<I, O, E: ParseError<I>, C, F>(input: I, len: C, parser: F) -> IResult<I, O, E> where C: ToUsize + Copy, F: Parser<I, O, E>, I: InputTake + InputLength + InputIter, O: InputLength,113 pub fn flat_takec<I, O, E: ParseError<I>, C, F>(input: I, len: C, parser: F) -> IResult<I, O, E>
114 where
115     C: ToUsize + Copy,
116     F: Parser<I, O, E>,
117     I: InputTake + InputLength + InputIter,
118     O: InputLength,
119 {
120     flat_take(len, parser)(input)
121 }
122 
123 /// Helper macro for nom parsers: run first parser if condition is true, else second parser
cond_else<I, O, E: ParseError<I>, C, F, G>( cond: C, mut first: F, mut second: G, ) -> impl FnMut(I) -> IResult<I, O, E> where C: Fn() -> bool, F: Parser<I, O, E>, G: Parser<I, O, E>,124 pub fn cond_else<I, O, E: ParseError<I>, C, F, G>(
125     cond: C,
126     mut first: F,
127     mut second: G,
128 ) -> impl FnMut(I) -> IResult<I, O, E>
129 where
130     C: Fn() -> bool,
131     F: Parser<I, O, E>,
132     G: Parser<I, O, E>,
133 {
134     move |input: I| {
135         if cond() {
136             first.parse(input)
137         } else {
138             second.parse(input)
139         }
140     }
141 }
142 
143 /// Align input value to the next multiple of n bytes
144 /// Valid only if n is a power of 2
align_n2(x: usize, n: usize) -> usize145 pub const fn align_n2(x: usize, n: usize) -> usize {
146     (x + (n - 1)) & !(n - 1)
147 }
148 
149 /// Align input value to the next multiple of 4 bytes
align32(x: usize) -> usize150 pub const fn align32(x: usize) -> usize {
151     (x + 3) & !3
152 }
153 
154 #[cfg(test)]
155 mod tests {
156     use super::{align32, be_var_u64, cond_else, flat_take, pure};
157     use nom::bytes::streaming::take;
158     use nom::number::streaming::{be_u16, be_u32, be_u8};
159     use nom::{Err, IResult, Needed};
160 
161     #[test]
test_be_var_u64()162     fn test_be_var_u64() {
163         let res: IResult<&[u8], u64> = be_var_u64(b"\x12\x34\x56");
164         let (_, v) = res.expect("be_var_u64 failed");
165         assert_eq!(v, 0x123456);
166     }
167 
168     #[test]
test_flat_take()169     fn test_flat_take() {
170         let input = &[0x00, 0x01, 0xff];
171         // read first 2 bytes and use correct combinator: OK
172         let res: IResult<&[u8], u16> = flat_take(2u8, be_u16)(input);
173         assert_eq!(res, Ok((&input[2..], 0x0001)));
174         // read 3 bytes and use 2: OK (some input is just lost)
175         let res: IResult<&[u8], u16> = flat_take(3u8, be_u16)(input);
176         assert_eq!(res, Ok((&b""[..], 0x0001)));
177         // read 2 bytes and a combinator requiring more bytes
178         let res: IResult<&[u8], u32> = flat_take(2u8, be_u32)(input);
179         assert_eq!(res, Err(Err::Incomplete(Needed::new(2))));
180     }
181 
182     #[test]
test_flat_take_str()183     fn test_flat_take_str() {
184         let input = "abcdef";
185         // read first 2 bytes and use correct combinator: OK
186         let res: IResult<&str, &str> = flat_take(2u8, take(2u8))(input);
187         assert_eq!(res, Ok(("cdef", "ab")));
188         // read 3 bytes and use 2: OK (some input is just lost)
189         let res: IResult<&str, &str> = flat_take(3u8, take(2u8))(input);
190         assert_eq!(res, Ok(("def", "ab")));
191         // read 2 bytes and a use combinator requiring more bytes
192         let res: IResult<&str, &str> = flat_take(2u8, take(4u8))(input);
193         assert_eq!(res, Err(Err::Incomplete(Needed::Unknown)));
194     }
195 
196     #[test]
test_cond_else()197     fn test_cond_else() {
198         let input = &[0x01][..];
199         let empty = &b""[..];
200         let a = 1;
201         fn parse_u8(i: &[u8]) -> IResult<&[u8], u8> {
202             be_u8(i)
203         }
204         assert_eq!(
205             cond_else(|| a == 1, parse_u8, pure(0x02))(input),
206             Ok((empty, 0x01))
207         );
208         assert_eq!(
209             cond_else(|| a == 1, parse_u8, pure(0x02))(input),
210             Ok((empty, 0x01))
211         );
212         assert_eq!(
213             cond_else(|| a == 2, parse_u8, pure(0x02))(input),
214             Ok((input, 0x02))
215         );
216         assert_eq!(
217             cond_else(|| a == 1, pure(0x02), parse_u8)(input),
218             Ok((input, 0x02))
219         );
220         let res: IResult<&[u8], u8> = cond_else(|| a == 1, parse_u8, parse_u8)(input);
221         assert_eq!(res, Ok((empty, 0x01)));
222     }
223 
224     #[test]
test_align32()225     fn test_align32() {
226         assert_eq!(align32(3), 4);
227         assert_eq!(align32(4), 4);
228         assert_eq!(align32(5), 8);
229         assert_eq!(align32(5usize), 8);
230     }
231 }
232