• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright 2012 Google Inc.
3  *
4  * Use of this source code is governed by a BSD-style license that can be
5  * found in the LICENSE file.
6  */
7 
8 #ifndef SkWeakRefCnt_DEFINED
9 #define SkWeakRefCnt_DEFINED
10 
11 #include "include/core/SkRefCnt.h"
12 #include "include/core/SkTypes.h"
13 
14 #include <atomic>
15 #include <cstdint>
16 
17 /** \class SkWeakRefCnt
18 
19     SkWeakRefCnt is the base class for objects that may be shared by multiple
20     objects. When an existing strong owner wants to share a reference, it calls
21     ref(). When a strong owner wants to release its reference, it calls
22     unref(). When the shared object's strong reference count goes to zero as
23     the result of an unref() call, its (virtual) weak_dispose method is called.
24     It is an error for the destructor to be called explicitly (or via the
25     object going out of scope on the stack or calling delete) if
26     getRefCnt() > 1.
27 
28     In addition to strong ownership, an owner may instead obtain a weak
29     reference by calling weak_ref(). A call to weak_ref() must be balanced by a
30     call to weak_unref(). To obtain a strong reference from a weak reference,
31     call try_ref(). If try_ref() returns true, the owner's pointer is now also
32     a strong reference on which unref() must be called. Note that this does not
33     affect the original weak reference, weak_unref() must still be called. When
34     the weak reference count goes to zero, the object is deleted. While the
35     weak reference count is positive and the strong reference count is zero the
36     object still exists, but will be in the disposed state. It is up to the
37     object to define what this means.
38 
39     Note that a strong reference implicitly implies a weak reference. As a
40     result, it is allowable for the owner of a strong ref to call try_ref().
41     This will have the same effect as calling ref(), but may be more expensive.
42 
43     Example:
44 
45     SkWeakRefCnt myRef = strongRef.weak_ref();
46     ... // strongRef.unref() may or may not be called
47     if (myRef.try_ref()) {
48         ... // use myRef
49         myRef.unref();
50     } else {
51         // myRef is in the disposed state
52     }
53     myRef.weak_unref();
54 */
55 class SK_API SkWeakRefCnt : public SkRefCnt {
56 public:
57     /** Default construct, initializing the reference counts to 1.
58         The strong references collectively hold one weak reference. When the
59         strong reference count goes to zero, the collectively held weak
60         reference is released.
61     */
SkWeakRefCnt()62     SkWeakRefCnt() : SkRefCnt(), fWeakCnt(1) {}
63 
64     /** Destruct, asserting that the weak reference count is 1.
65     */
~SkWeakRefCnt()66     ~SkWeakRefCnt() override {
67 #ifdef SK_DEBUG
68         SkASSERT(getWeakCnt() == 1);
69         fWeakCnt.store(0, std::memory_order_relaxed);
70 #endif
71     }
72 
73 #ifdef SK_DEBUG
74     /** Return the weak reference count. */
getWeakCnt()75     int32_t getWeakCnt() const {
76         return fWeakCnt.load(std::memory_order_relaxed);
77     }
78 #endif
79 
80 private:
81     /** If fRefCnt is 0, returns 0.
82      *  Otherwise increments fRefCnt, acquires, and returns the old value.
83      */
atomic_conditional_acquire_strong_ref()84     int32_t atomic_conditional_acquire_strong_ref() const {
85         int32_t prev = fRefCnt.load(std::memory_order_relaxed);
86         do {
87             if (0 == prev) {
88                 break;
89             }
90         } while(!fRefCnt.compare_exchange_weak(prev, prev+1, std::memory_order_acquire,
91                                                              std::memory_order_relaxed));
92         return prev;
93     }
94 
95 public:
96     /** Creates a strong reference from a weak reference, if possible. The
97         caller must already be an owner. If try_ref() returns true the owner
98         is in posession of an additional strong reference. Both the original
99         reference and new reference must be properly unreferenced. If try_ref()
100         returns false, no strong reference could be created and the owner's
101         reference is in the same state as before the call.
102     */
try_ref()103     bool SK_WARN_UNUSED_RESULT try_ref() const {
104         if (atomic_conditional_acquire_strong_ref() != 0) {
105             // Acquire barrier (L/SL), if not provided above.
106             // Prevents subsequent code from happening before the increment.
107             return true;
108         }
109         return false;
110     }
111 
112     /** Increment the weak reference count. Must be balanced by a call to
113         weak_unref().
114     */
weak_ref()115     void weak_ref() const {
116         SkASSERT(getRefCnt() > 0);
117         SkASSERT(getWeakCnt() > 0);
118         // No barrier required.
119         (void)fWeakCnt.fetch_add(+1, std::memory_order_relaxed);
120     }
121 
122     /** Decrement the weak reference count. If the weak reference count is 1
123         before the decrement, then call delete on the object. Note that if this
124         is the case, then the object needs to have been allocated via new, and
125         not on the stack.
126     */
weak_unref()127     void weak_unref() const {
128         SkASSERT(getWeakCnt() > 0);
129         // A release here acts in place of all releases we "should" have been doing in ref().
130         if (1 == fWeakCnt.fetch_add(-1, std::memory_order_acq_rel)) {
131             // Like try_ref(), the acquire is only needed on success, to make sure
132             // code in internal_dispose() doesn't happen before the decrement.
133 #ifdef SK_DEBUG
134             // so our destructor won't complain
135             fWeakCnt.store(1, std::memory_order_relaxed);
136 #endif
137             this->INHERITED::internal_dispose();
138         }
139     }
140 
141     /** Returns true if there are no strong references to the object. When this
142         is the case all future calls to try_ref() will return false.
143     */
weak_expired()144     bool weak_expired() const {
145         return fRefCnt.load(std::memory_order_relaxed) == 0;
146     }
147 
148 protected:
149     /** Called when the strong reference count goes to zero. This allows the
150         object to free any resources it may be holding. Weak references may
151         still exist and their level of allowed access to the object is defined
152         by the object's class.
153     */
weak_dispose()154     virtual void weak_dispose() const {
155     }
156 
157 private:
158     /** Called when the strong reference count goes to zero. Calls weak_dispose
159         on the object and releases the implicit weak reference held
160         collectively by the strong references.
161     */
internal_dispose()162     void internal_dispose() const override {
163         weak_dispose();
164         weak_unref();
165     }
166 
167     /* Invariant: fWeakCnt = #weak + (fRefCnt > 0 ? 1 : 0) */
168     mutable std::atomic<int32_t> fWeakCnt;
169 
170     using INHERITED = SkRefCnt;
171 };
172 
173 #endif
174