• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright 2012 Google Inc.
3  *
4  * Use of this source code is governed by a BSD-style license that can be
5  * found in the LICENSE file.
6  *
7  * The following code is based on the description in RFC 1321.
8  * http://www.ietf.org/rfc/rfc1321.txt
9  */
10 
11 //The following macros can be defined to affect the MD5 code generated.
12 //SK_MD5_CLEAR_DATA causes all intermediate state to be overwritten with 0's.
13 //SK_CPU_LENDIAN allows 32 bit <=> 8 bit conversions without copies (if alligned).
14 //SK_CPU_FAST_UNALIGNED_ACCESS allows 32 bit <=> 8 bit conversions without copies if SK_CPU_LENDIAN.
15 
16 #include "src/core/SkMD5.h"
17 
18 #include "include/private/base/SkFeatures.h"
19 
20 /** MD5 basic transformation. Transforms state based on block. */
21 static void transform(uint32_t state[4], const uint8_t block[64]);
22 
23 /** Encodes input into output (4 little endian 32 bit values). */
24 static void encode(uint8_t output[16], const uint32_t input[4]);
25 
26 /** Encodes input into output (little endian 64 bit value). */
27 static void encode(uint8_t output[8], const uint64_t input);
28 
29 /** Decodes input (4 little endian 32 bit values) into storage, if required. */
30 static const uint32_t* decode(uint32_t storage[16], const uint8_t input[64]);
31 
SkMD5()32 SkMD5::SkMD5() : byteCount(0) {
33     // These are magic numbers from the specification.
34     this->state[0] = 0x67452301;
35     this->state[1] = 0xefcdab89;
36     this->state[2] = 0x98badcfe;
37     this->state[3] = 0x10325476;
38 }
39 
write(const void * buf,size_t inputLength)40 bool SkMD5::write(const void* buf, size_t inputLength) {
41     const uint8_t* input = reinterpret_cast<const uint8_t*>(buf);
42     unsigned int bufferIndex = (unsigned int)(this->byteCount & 0x3F);
43     unsigned int bufferAvailable = 64 - bufferIndex;
44 
45     unsigned int inputIndex;
46     if (inputLength >= bufferAvailable) {
47         if (bufferIndex) {
48             memcpy(&this->buffer[bufferIndex], input, bufferAvailable);
49             transform(this->state, this->buffer);
50             inputIndex = bufferAvailable;
51         } else {
52             inputIndex = 0;
53         }
54 
55         for (; inputIndex + 63 < inputLength; inputIndex += 64) {
56             transform(this->state, &input[inputIndex]);
57         }
58 
59         bufferIndex = 0;
60     } else {
61         inputIndex = 0;
62     }
63 
64     memcpy(&this->buffer[bufferIndex], &input[inputIndex], inputLength - inputIndex);
65 
66     this->byteCount += inputLength;
67     return true;
68 }
69 
finish()70 SkMD5::Digest SkMD5::finish() {
71     SkMD5::Digest digest;
72     // Get the number of bits before padding.
73     uint8_t bits[8];
74     encode(bits, this->byteCount << 3);
75 
76     // Pad out to 56 mod 64.
77     unsigned int bufferIndex = (unsigned int)(this->byteCount & 0x3F);
78     unsigned int paddingLength = (bufferIndex < 56) ? (56 - bufferIndex) : (120 - bufferIndex);
79     static const uint8_t PADDING[64] = {
80         0x80, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
81            0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
82            0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
83            0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
84     };
85     (void)this->write(PADDING, paddingLength);
86 
87     // Append length (length before padding, will cause final update).
88     (void)this->write(bits, 8);
89 
90     // Write out digest.
91     encode(digest.data, this->state);
92 
93 #if defined(SK_MD5_CLEAR_DATA)
94     // Clear state.
95     memset(this, 0, sizeof(*this));
96 #endif
97     return digest;
98 }
99 
operator ()F100 struct F { uint32_t operator()(uint32_t x, uint32_t y, uint32_t z) {
101     //return (x & y) | ((~x) & z);
102     return ((y ^ z) & x) ^ z; //equivelent but faster
103 }};
104 
operator ()G105 struct G { uint32_t operator()(uint32_t x, uint32_t y, uint32_t z) {
106     return (x & z) | (y & (~z));
107     //return ((x ^ y) & z) ^ y; //equivelent but slower
108 }};
109 
operator ()H110 struct H { uint32_t operator()(uint32_t x, uint32_t y, uint32_t z) {
111     return x ^ y ^ z;
112 }};
113 
operator ()I114 struct I { uint32_t operator()(uint32_t x, uint32_t y, uint32_t z) {
115     return y ^ (x | (~z));
116 }};
117 
118 /** Rotates x left n bits. */
rotate_left(uint32_t x,uint8_t n)119 static inline uint32_t rotate_left(uint32_t x, uint8_t n) {
120     return (x << n) | (x >> (32 - n));
121 }
122 
123 template <typename T>
operation(T operation,uint32_t & a,uint32_t b,uint32_t c,uint32_t d,uint32_t x,uint8_t s,uint32_t t)124 static inline void operation(T operation, uint32_t& a, uint32_t b, uint32_t c, uint32_t d,
125                              uint32_t x, uint8_t s, uint32_t t) {
126     a = b + rotate_left(a + operation(b, c, d) + x + t, s);
127 }
128 
transform(uint32_t state[4],const uint8_t block[64])129 static void transform(uint32_t state[4], const uint8_t block[64]) {
130     uint32_t a = state[0], b = state[1], c = state[2], d = state[3];
131 
132     uint32_t storage[16];
133     const uint32_t* X = decode(storage, block);
134 
135     // Round 1
136     operation(F(), a, b, c, d, X[ 0],  7, 0xd76aa478); // 1
137     operation(F(), d, a, b, c, X[ 1], 12, 0xe8c7b756); // 2
138     operation(F(), c, d, a, b, X[ 2], 17, 0x242070db); // 3
139     operation(F(), b, c, d, a, X[ 3], 22, 0xc1bdceee); // 4
140     operation(F(), a, b, c, d, X[ 4],  7, 0xf57c0faf); // 5
141     operation(F(), d, a, b, c, X[ 5], 12, 0x4787c62a); // 6
142     operation(F(), c, d, a, b, X[ 6], 17, 0xa8304613); // 7
143     operation(F(), b, c, d, a, X[ 7], 22, 0xfd469501); // 8
144     operation(F(), a, b, c, d, X[ 8],  7, 0x698098d8); // 9
145     operation(F(), d, a, b, c, X[ 9], 12, 0x8b44f7af); // 10
146     operation(F(), c, d, a, b, X[10], 17, 0xffff5bb1); // 11
147     operation(F(), b, c, d, a, X[11], 22, 0x895cd7be); // 12
148     operation(F(), a, b, c, d, X[12],  7, 0x6b901122); // 13
149     operation(F(), d, a, b, c, X[13], 12, 0xfd987193); // 14
150     operation(F(), c, d, a, b, X[14], 17, 0xa679438e); // 15
151     operation(F(), b, c, d, a, X[15], 22, 0x49b40821); // 16
152 
153     // Round 2
154     operation(G(), a, b, c, d, X[ 1],  5, 0xf61e2562); // 17
155     operation(G(), d, a, b, c, X[ 6],  9, 0xc040b340); // 18
156     operation(G(), c, d, a, b, X[11], 14, 0x265e5a51); // 19
157     operation(G(), b, c, d, a, X[ 0], 20, 0xe9b6c7aa); // 20
158     operation(G(), a, b, c, d, X[ 5],  5, 0xd62f105d); // 21
159     operation(G(), d, a, b, c, X[10],  9,  0x2441453); // 22
160     operation(G(), c, d, a, b, X[15], 14, 0xd8a1e681); // 23
161     operation(G(), b, c, d, a, X[ 4], 20, 0xe7d3fbc8); // 24
162     operation(G(), a, b, c, d, X[ 9],  5, 0x21e1cde6); // 25
163     operation(G(), d, a, b, c, X[14],  9, 0xc33707d6); // 26
164     operation(G(), c, d, a, b, X[ 3], 14, 0xf4d50d87); // 27
165     operation(G(), b, c, d, a, X[ 8], 20, 0x455a14ed); // 28
166     operation(G(), a, b, c, d, X[13],  5, 0xa9e3e905); // 29
167     operation(G(), d, a, b, c, X[ 2],  9, 0xfcefa3f8); // 30
168     operation(G(), c, d, a, b, X[ 7], 14, 0x676f02d9); // 31
169     operation(G(), b, c, d, a, X[12], 20, 0x8d2a4c8a); // 32
170 
171     // Round 3
172     operation(H(), a, b, c, d, X[ 5],  4, 0xfffa3942); // 33
173     operation(H(), d, a, b, c, X[ 8], 11, 0x8771f681); // 34
174     operation(H(), c, d, a, b, X[11], 16, 0x6d9d6122); // 35
175     operation(H(), b, c, d, a, X[14], 23, 0xfde5380c); // 36
176     operation(H(), a, b, c, d, X[ 1],  4, 0xa4beea44); // 37
177     operation(H(), d, a, b, c, X[ 4], 11, 0x4bdecfa9); // 38
178     operation(H(), c, d, a, b, X[ 7], 16, 0xf6bb4b60); // 39
179     operation(H(), b, c, d, a, X[10], 23, 0xbebfbc70); // 40
180     operation(H(), a, b, c, d, X[13],  4, 0x289b7ec6); // 41
181     operation(H(), d, a, b, c, X[ 0], 11, 0xeaa127fa); // 42
182     operation(H(), c, d, a, b, X[ 3], 16, 0xd4ef3085); // 43
183     operation(H(), b, c, d, a, X[ 6], 23,  0x4881d05); // 44
184     operation(H(), a, b, c, d, X[ 9],  4, 0xd9d4d039); // 45
185     operation(H(), d, a, b, c, X[12], 11, 0xe6db99e5); // 46
186     operation(H(), c, d, a, b, X[15], 16, 0x1fa27cf8); // 47
187     operation(H(), b, c, d, a, X[ 2], 23, 0xc4ac5665); // 48
188 
189     // Round 4
190     operation(I(), a, b, c, d, X[ 0],  6, 0xf4292244); // 49
191     operation(I(), d, a, b, c, X[ 7], 10, 0x432aff97); // 50
192     operation(I(), c, d, a, b, X[14], 15, 0xab9423a7); // 51
193     operation(I(), b, c, d, a, X[ 5], 21, 0xfc93a039); // 52
194     operation(I(), a, b, c, d, X[12],  6, 0x655b59c3); // 53
195     operation(I(), d, a, b, c, X[ 3], 10, 0x8f0ccc92); // 54
196     operation(I(), c, d, a, b, X[10], 15, 0xffeff47d); // 55
197     operation(I(), b, c, d, a, X[ 1], 21, 0x85845dd1); // 56
198     operation(I(), a, b, c, d, X[ 8],  6, 0x6fa87e4f); // 57
199     operation(I(), d, a, b, c, X[15], 10, 0xfe2ce6e0); // 58
200     operation(I(), c, d, a, b, X[ 6], 15, 0xa3014314); // 59
201     operation(I(), b, c, d, a, X[13], 21, 0x4e0811a1); // 60
202     operation(I(), a, b, c, d, X[ 4],  6, 0xf7537e82); // 61
203     operation(I(), d, a, b, c, X[11], 10, 0xbd3af235); // 62
204     operation(I(), c, d, a, b, X[ 2], 15, 0x2ad7d2bb); // 63
205     operation(I(), b, c, d, a, X[ 9], 21, 0xeb86d391); // 64
206 
207     state[0] += a;
208     state[1] += b;
209     state[2] += c;
210     state[3] += d;
211 
212 #if defined(SK_MD5_CLEAR_DATA)
213     // Clear sensitive information.
214     if (X == &storage) {
215         memset(storage, 0, sizeof(storage));
216     }
217 #endif
218 }
219 
encode(uint8_t output[16],const uint32_t input[4])220 static void encode(uint8_t output[16], const uint32_t input[4]) {
221     for (size_t i = 0, j = 0; i < 4; i++, j += 4) {
222         output[j  ] = (uint8_t) (input[i]        & 0xff);
223         output[j+1] = (uint8_t)((input[i] >>  8) & 0xff);
224         output[j+2] = (uint8_t)((input[i] >> 16) & 0xff);
225         output[j+3] = (uint8_t)((input[i] >> 24) & 0xff);
226     }
227 }
228 
encode(uint8_t output[8],const uint64_t input)229 static void encode(uint8_t output[8], const uint64_t input) {
230     output[0] = (uint8_t) (input        & 0xff);
231     output[1] = (uint8_t)((input >>  8) & 0xff);
232     output[2] = (uint8_t)((input >> 16) & 0xff);
233     output[3] = (uint8_t)((input >> 24) & 0xff);
234     output[4] = (uint8_t)((input >> 32) & 0xff);
235     output[5] = (uint8_t)((input >> 40) & 0xff);
236     output[6] = (uint8_t)((input >> 48) & 0xff);
237     output[7] = (uint8_t)((input >> 56) & 0xff);
238 }
239 
is_aligned(const void * pointer,size_t byte_count)240 static inline bool is_aligned(const void *pointer, size_t byte_count) {
241     return reinterpret_cast<uintptr_t>(pointer) % byte_count == 0;
242 }
243 
decode(uint32_t storage[16],const uint8_t input[64])244 static const uint32_t* decode(uint32_t storage[16], const uint8_t input[64]) {
245 #if defined(SK_CPU_LENDIAN) && defined(SK_CPU_FAST_UNALIGNED_ACCESS)
246    return reinterpret_cast<const uint32_t*>(input);
247 #else
248 #if defined(SK_CPU_LENDIAN)
249     if (is_aligned(input, 4)) {
250         return reinterpret_cast<const uint32_t*>(input);
251     }
252 #endif
253     for (size_t i = 0, j = 0; j < 64; i++, j += 4) {
254         storage[i] =  ((uint32_t)input[j  ])        |
255                      (((uint32_t)input[j+1]) <<  8) |
256                      (((uint32_t)input[j+2]) << 16) |
257                      (((uint32_t)input[j+3]) << 24);
258     }
259     return storage;
260 #endif
261 }
262