• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright 2012 Google Inc.
3  *
4  * Use of this source code is governed by a BSD-style license that can be
5  * found in the LICENSE file.
6  */
7 #include "include/core/SkPath.h"
8 #include "include/core/SkPoint.h"
9 #include "include/core/SkTypes.h"
10 #include "include/private/base/SkDebug.h"
11 #include "src/pathops/SkIntersections.h"
12 #include "src/pathops/SkPathOpsCubic.h"
13 #include "src/pathops/SkPathOpsCurve.h"
14 #include "src/pathops/SkPathOpsDebug.h"
15 #include "src/pathops/SkPathOpsLine.h"
16 #include "src/pathops/SkPathOpsPoint.h"
17 #include "src/pathops/SkPathOpsTypes.h"
18 
19 #include <cmath>
20 
21 /*
22 Find the intersection of a line and cubic by solving for valid t values.
23 
24 Analogous to line-quadratic intersection, solve line-cubic intersection by
25 representing the cubic as:
26   x = a(1-t)^3 + 2b(1-t)^2t + c(1-t)t^2 + dt^3
27   y = e(1-t)^3 + 2f(1-t)^2t + g(1-t)t^2 + ht^3
28 and the line as:
29   y = i*x + j  (if the line is more horizontal)
30 or:
31   x = i*y + j  (if the line is more vertical)
32 
33 Then using Mathematica, solve for the values of t where the cubic intersects the
34 line:
35 
36   (in) Resultant[
37         a*(1 - t)^3 + 3*b*(1 - t)^2*t + 3*c*(1 - t)*t^2 + d*t^3 - x,
38         e*(1 - t)^3 + 3*f*(1 - t)^2*t + 3*g*(1 - t)*t^2 + h*t^3 - i*x - j, x]
39   (out) -e     +   j     +
40        3 e t   - 3 f t   -
41        3 e t^2 + 6 f t^2 - 3 g t^2 +
42          e t^3 - 3 f t^3 + 3 g t^3 - h t^3 +
43      i ( a     -
44        3 a t + 3 b t +
45        3 a t^2 - 6 b t^2 + 3 c t^2 -
46          a t^3 + 3 b t^3 - 3 c t^3 + d t^3 )
47 
48 if i goes to infinity, we can rewrite the line in terms of x. Mathematica:
49 
50   (in) Resultant[
51         a*(1 - t)^3 + 3*b*(1 - t)^2*t + 3*c*(1 - t)*t^2 + d*t^3 - i*y - j,
52         e*(1 - t)^3 + 3*f*(1 - t)^2*t + 3*g*(1 - t)*t^2 + h*t^3 - y,       y]
53   (out)  a     -   j     -
54        3 a t   + 3 b t   +
55        3 a t^2 - 6 b t^2 + 3 c t^2 -
56          a t^3 + 3 b t^3 - 3 c t^3 + d t^3 -
57      i ( e     -
58        3 e t   + 3 f t   +
59        3 e t^2 - 6 f t^2 + 3 g t^2 -
60          e t^3 + 3 f t^3 - 3 g t^3 + h t^3 )
61 
62 Solving this with Mathematica produces an expression with hundreds of terms;
63 instead, use Numeric Solutions recipe to solve the cubic.
64 
65 The near-horizontal case, in terms of:  Ax^3 + Bx^2 + Cx + D == 0
66     A =   (-(-e + 3*f - 3*g + h) + i*(-a + 3*b - 3*c + d)     )
67     B = 3*(-( e - 2*f +   g    ) + i*( a - 2*b +   c    )     )
68     C = 3*(-(-e +   f          ) + i*(-a +   b          )     )
69     D =   (-( e                ) + i*( a                ) + j )
70 
71 The near-vertical case, in terms of:  Ax^3 + Bx^2 + Cx + D == 0
72     A =   ( (-a + 3*b - 3*c + d) - i*(-e + 3*f - 3*g + h)     )
73     B = 3*( ( a - 2*b +   c    ) - i*( e - 2*f +   g    )     )
74     C = 3*( (-a +   b          ) - i*(-e +   f          )     )
75     D =   ( ( a                ) - i*( e                ) - j )
76 
77 For horizontal lines:
78 (in) Resultant[
79       a*(1 - t)^3 + 3*b*(1 - t)^2*t + 3*c*(1 - t)*t^2 + d*t^3 - j,
80       e*(1 - t)^3 + 3*f*(1 - t)^2*t + 3*g*(1 - t)*t^2 + h*t^3 - y, y]
81 (out)  e     -   j     -
82      3 e t   + 3 f t   +
83      3 e t^2 - 6 f t^2 + 3 g t^2 -
84        e t^3 + 3 f t^3 - 3 g t^3 + h t^3
85  */
86 
87 class LineCubicIntersections {
88 public:
89     enum PinTPoint {
90         kPointUninitialized,
91         kPointInitialized
92     };
93 
LineCubicIntersections(const SkDCubic & c,const SkDLine & l,SkIntersections * i)94     LineCubicIntersections(const SkDCubic& c, const SkDLine& l, SkIntersections* i)
95         : fCubic(c)
96         , fLine(l)
97         , fIntersections(i)
98         , fAllowNear(true) {
99         i->setMax(4);
100     }
101 
allowNear(bool allow)102     void allowNear(bool allow) {
103         fAllowNear = allow;
104     }
105 
checkCoincident()106     void checkCoincident() {
107         int last = fIntersections->used() - 1;
108         for (int index = 0; index < last; ) {
109             double cubicMidT = ((*fIntersections)[0][index] + (*fIntersections)[0][index + 1]) / 2;
110             SkDPoint cubicMidPt = fCubic.ptAtT(cubicMidT);
111             double t = fLine.nearPoint(cubicMidPt, nullptr);
112             if (t < 0) {
113                 ++index;
114                 continue;
115             }
116             if (fIntersections->isCoincident(index)) {
117                 fIntersections->removeOne(index);
118                 --last;
119             } else if (fIntersections->isCoincident(index + 1)) {
120                 fIntersections->removeOne(index + 1);
121                 --last;
122             } else {
123                 fIntersections->setCoincident(index++);
124             }
125             fIntersections->setCoincident(index);
126         }
127     }
128 
129     // see parallel routine in line quadratic intersections
intersectRay(double roots[3])130     int intersectRay(double roots[3]) {
131         double adj = fLine[1].fX - fLine[0].fX;
132         double opp = fLine[1].fY - fLine[0].fY;
133         SkDCubic c;
134         SkDEBUGCODE(c.fDebugGlobalState = fIntersections->globalState());
135         for (int n = 0; n < 4; ++n) {
136             c[n].fX = (fCubic[n].fY - fLine[0].fY) * adj - (fCubic[n].fX - fLine[0].fX) * opp;
137         }
138         double A, B, C, D;
139         SkDCubic::Coefficients(&c[0].fX, &A, &B, &C, &D);
140         int count = SkDCubic::RootsValidT(A, B, C, D, roots);
141         for (int index = 0; index < count; ++index) {
142             SkDPoint calcPt = c.ptAtT(roots[index]);
143             if (!approximately_zero(calcPt.fX)) {
144                 for (int n = 0; n < 4; ++n) {
145                     c[n].fY = (fCubic[n].fY - fLine[0].fY) * opp
146                             + (fCubic[n].fX - fLine[0].fX) * adj;
147                 }
148                 double extremeTs[6];
149                 int extrema = SkDCubic::FindExtrema(&c[0].fX, extremeTs);
150                 count = c.searchRoots(extremeTs, extrema, 0, SkDCubic::kXAxis, roots);
151                 break;
152             }
153         }
154         return count;
155     }
156 
intersect()157     int intersect() {
158         addExactEndPoints();
159         if (fAllowNear) {
160             addNearEndPoints();
161         }
162         double rootVals[3];
163         int roots = intersectRay(rootVals);
164         for (int index = 0; index < roots; ++index) {
165             double cubicT = rootVals[index];
166             double lineT = findLineT(cubicT);
167             SkDPoint pt;
168             if (pinTs(&cubicT, &lineT, &pt, kPointUninitialized) && uniqueAnswer(cubicT, pt)) {
169                 fIntersections->insert(cubicT, lineT, pt);
170             }
171         }
172         checkCoincident();
173         return fIntersections->used();
174     }
175 
HorizontalIntersect(const SkDCubic & c,double axisIntercept,double roots[3])176     static int HorizontalIntersect(const SkDCubic& c, double axisIntercept, double roots[3]) {
177         double A, B, C, D;
178         SkDCubic::Coefficients(&c[0].fY, &A, &B, &C, &D);
179         D -= axisIntercept;
180         int count = SkDCubic::RootsValidT(A, B, C, D, roots);
181         for (int index = 0; index < count; ++index) {
182             SkDPoint calcPt = c.ptAtT(roots[index]);
183             if (!approximately_equal(calcPt.fY, axisIntercept)) {
184                 double extremeTs[6];
185                 int extrema = SkDCubic::FindExtrema(&c[0].fY, extremeTs);
186                 count = c.searchRoots(extremeTs, extrema, axisIntercept, SkDCubic::kYAxis, roots);
187                 break;
188             }
189         }
190         return count;
191     }
192 
horizontalIntersect(double axisIntercept,double left,double right,bool flipped)193     int horizontalIntersect(double axisIntercept, double left, double right, bool flipped) {
194         addExactHorizontalEndPoints(left, right, axisIntercept);
195         if (fAllowNear) {
196             addNearHorizontalEndPoints(left, right, axisIntercept);
197         }
198         double roots[3];
199         int count = HorizontalIntersect(fCubic, axisIntercept, roots);
200         for (int index = 0; index < count; ++index) {
201             double cubicT = roots[index];
202             SkDPoint pt = { fCubic.ptAtT(cubicT).fX,  axisIntercept };
203             double lineT = (pt.fX - left) / (right - left);
204             if (pinTs(&cubicT, &lineT, &pt, kPointInitialized) && uniqueAnswer(cubicT, pt)) {
205                 fIntersections->insert(cubicT, lineT, pt);
206             }
207         }
208         if (flipped) {
209             fIntersections->flip();
210         }
211         checkCoincident();
212         return fIntersections->used();
213     }
214 
uniqueAnswer(double cubicT,const SkDPoint & pt)215         bool uniqueAnswer(double cubicT, const SkDPoint& pt) {
216             for (int inner = 0; inner < fIntersections->used(); ++inner) {
217                 if (fIntersections->pt(inner) != pt) {
218                     continue;
219                 }
220                 double existingCubicT = (*fIntersections)[0][inner];
221                 if (cubicT == existingCubicT) {
222                     return false;
223                 }
224                 // check if midway on cubic is also same point. If so, discard this
225                 double cubicMidT = (existingCubicT + cubicT) / 2;
226                 SkDPoint cubicMidPt = fCubic.ptAtT(cubicMidT);
227                 if (cubicMidPt.approximatelyEqual(pt)) {
228                     return false;
229                 }
230             }
231 #if ONE_OFF_DEBUG
232             SkDPoint cPt = fCubic.ptAtT(cubicT);
233             SkDebugf("%s pt=(%1.9g,%1.9g) cPt=(%1.9g,%1.9g)\n", __FUNCTION__, pt.fX, pt.fY,
234                     cPt.fX, cPt.fY);
235 #endif
236             return true;
237         }
238 
VerticalIntersect(const SkDCubic & c,double axisIntercept,double roots[3])239     static int VerticalIntersect(const SkDCubic& c, double axisIntercept, double roots[3]) {
240         double A, B, C, D;
241         SkDCubic::Coefficients(&c[0].fX, &A, &B, &C, &D);
242         D -= axisIntercept;
243         int count = SkDCubic::RootsValidT(A, B, C, D, roots);
244         for (int index = 0; index < count; ++index) {
245             SkDPoint calcPt = c.ptAtT(roots[index]);
246             if (!approximately_equal(calcPt.fX, axisIntercept)) {
247                 double extremeTs[6];
248                 int extrema = SkDCubic::FindExtrema(&c[0].fX, extremeTs);
249                 count = c.searchRoots(extremeTs, extrema, axisIntercept, SkDCubic::kXAxis, roots);
250                 break;
251             }
252         }
253         return count;
254     }
255 
verticalIntersect(double axisIntercept,double top,double bottom,bool flipped)256     int verticalIntersect(double axisIntercept, double top, double bottom, bool flipped) {
257         addExactVerticalEndPoints(top, bottom, axisIntercept);
258         if (fAllowNear) {
259             addNearVerticalEndPoints(top, bottom, axisIntercept);
260         }
261         double roots[3];
262         int count = VerticalIntersect(fCubic, axisIntercept, roots);
263         for (int index = 0; index < count; ++index) {
264             double cubicT = roots[index];
265             SkDPoint pt = { axisIntercept, fCubic.ptAtT(cubicT).fY };
266             double lineT = (pt.fY - top) / (bottom - top);
267             if (pinTs(&cubicT, &lineT, &pt, kPointInitialized) && uniqueAnswer(cubicT, pt)) {
268                 fIntersections->insert(cubicT, lineT, pt);
269             }
270         }
271         if (flipped) {
272             fIntersections->flip();
273         }
274         checkCoincident();
275         return fIntersections->used();
276     }
277 
278     protected:
279 
addExactEndPoints()280     void addExactEndPoints() {
281         for (int cIndex = 0; cIndex < 4; cIndex += 3) {
282             double lineT = fLine.exactPoint(fCubic[cIndex]);
283             if (lineT < 0) {
284                 continue;
285             }
286             double cubicT = (double) (cIndex >> 1);
287             fIntersections->insert(cubicT, lineT, fCubic[cIndex]);
288         }
289     }
290 
291     /* Note that this does not look for endpoints of the line that are near the cubic.
292        These points are found later when check ends looks for missing points */
addNearEndPoints()293     void addNearEndPoints() {
294         for (int cIndex = 0; cIndex < 4; cIndex += 3) {
295             double cubicT = (double) (cIndex >> 1);
296             if (fIntersections->hasT(cubicT)) {
297                 continue;
298             }
299             double lineT = fLine.nearPoint(fCubic[cIndex], nullptr);
300             if (lineT < 0) {
301                 continue;
302             }
303             fIntersections->insert(cubicT, lineT, fCubic[cIndex]);
304         }
305         this->addLineNearEndPoints();
306     }
307 
addLineNearEndPoints()308     void addLineNearEndPoints() {
309         for (int lIndex = 0; lIndex < 2; ++lIndex) {
310             double lineT = (double) lIndex;
311             if (fIntersections->hasOppT(lineT)) {
312                 continue;
313             }
314             double cubicT = ((SkDCurve*) &fCubic)->nearPoint(SkPath::kCubic_Verb,
315                 fLine[lIndex], fLine[!lIndex]);
316             if (cubicT < 0) {
317                 continue;
318             }
319             fIntersections->insert(cubicT, lineT, fLine[lIndex]);
320         }
321     }
322 
addExactHorizontalEndPoints(double left,double right,double y)323     void addExactHorizontalEndPoints(double left, double right, double y) {
324         for (int cIndex = 0; cIndex < 4; cIndex += 3) {
325             double lineT = SkDLine::ExactPointH(fCubic[cIndex], left, right, y);
326             if (lineT < 0) {
327                 continue;
328             }
329             double cubicT = (double) (cIndex >> 1);
330             fIntersections->insert(cubicT, lineT, fCubic[cIndex]);
331         }
332     }
333 
addNearHorizontalEndPoints(double left,double right,double y)334     void addNearHorizontalEndPoints(double left, double right, double y) {
335         for (int cIndex = 0; cIndex < 4; cIndex += 3) {
336             double cubicT = (double) (cIndex >> 1);
337             if (fIntersections->hasT(cubicT)) {
338                 continue;
339             }
340             double lineT = SkDLine::NearPointH(fCubic[cIndex], left, right, y);
341             if (lineT < 0) {
342                 continue;
343             }
344             fIntersections->insert(cubicT, lineT, fCubic[cIndex]);
345         }
346         this->addLineNearEndPoints();
347     }
348 
addExactVerticalEndPoints(double top,double bottom,double x)349     void addExactVerticalEndPoints(double top, double bottom, double x) {
350         for (int cIndex = 0; cIndex < 4; cIndex += 3) {
351             double lineT = SkDLine::ExactPointV(fCubic[cIndex], top, bottom, x);
352             if (lineT < 0) {
353                 continue;
354             }
355             double cubicT = (double) (cIndex >> 1);
356             fIntersections->insert(cubicT, lineT, fCubic[cIndex]);
357         }
358     }
359 
addNearVerticalEndPoints(double top,double bottom,double x)360     void addNearVerticalEndPoints(double top, double bottom, double x) {
361         for (int cIndex = 0; cIndex < 4; cIndex += 3) {
362             double cubicT = (double) (cIndex >> 1);
363             if (fIntersections->hasT(cubicT)) {
364                 continue;
365             }
366             double lineT = SkDLine::NearPointV(fCubic[cIndex], top, bottom, x);
367             if (lineT < 0) {
368                 continue;
369             }
370             fIntersections->insert(cubicT, lineT, fCubic[cIndex]);
371         }
372         this->addLineNearEndPoints();
373     }
374 
findLineT(double t)375     double findLineT(double t) {
376         SkDPoint xy = fCubic.ptAtT(t);
377         double dx = fLine[1].fX - fLine[0].fX;
378         double dy = fLine[1].fY - fLine[0].fY;
379         if (fabs(dx) > fabs(dy)) {
380             return (xy.fX - fLine[0].fX) / dx;
381         }
382         return (xy.fY - fLine[0].fY) / dy;
383     }
384 
pinTs(double * cubicT,double * lineT,SkDPoint * pt,PinTPoint ptSet)385     bool pinTs(double* cubicT, double* lineT, SkDPoint* pt, PinTPoint ptSet) {
386         if (!approximately_one_or_less(*lineT)) {
387             return false;
388         }
389         if (!approximately_zero_or_more(*lineT)) {
390             return false;
391         }
392         double cT = *cubicT = SkPinT(*cubicT);
393         double lT = *lineT = SkPinT(*lineT);
394         SkDPoint lPt = fLine.ptAtT(lT);
395         SkDPoint cPt = fCubic.ptAtT(cT);
396         if (!lPt.roughlyEqual(cPt)) {
397             return false;
398         }
399         // FIXME: if points are roughly equal but not approximately equal, need to do
400         // a binary search like quad/quad intersection to find more precise t values
401         if (lT == 0 || lT == 1 || (ptSet == kPointUninitialized && cT != 0 && cT != 1)) {
402             *pt = lPt;
403         } else if (ptSet == kPointUninitialized) {
404             *pt = cPt;
405         }
406         SkPoint gridPt = pt->asSkPoint();
407         if (gridPt == fLine[0].asSkPoint()) {
408             *lineT = 0;
409         } else if (gridPt == fLine[1].asSkPoint()) {
410             *lineT = 1;
411         }
412         if (gridPt == fCubic[0].asSkPoint() && approximately_equal(*cubicT, 0)) {
413             *cubicT = 0;
414         } else if (gridPt == fCubic[3].asSkPoint() && approximately_equal(*cubicT, 1)) {
415             *cubicT = 1;
416         }
417         return true;
418     }
419 
420 private:
421     const SkDCubic& fCubic;
422     const SkDLine& fLine;
423     SkIntersections* fIntersections;
424     bool fAllowNear;
425 };
426 
horizontal(const SkDCubic & cubic,double left,double right,double y,bool flipped)427 int SkIntersections::horizontal(const SkDCubic& cubic, double left, double right, double y,
428         bool flipped) {
429     SkDLine line = {{{ left, y }, { right, y }}};
430     LineCubicIntersections c(cubic, line, this);
431     return c.horizontalIntersect(y, left, right, flipped);
432 }
433 
vertical(const SkDCubic & cubic,double top,double bottom,double x,bool flipped)434 int SkIntersections::vertical(const SkDCubic& cubic, double top, double bottom, double x,
435         bool flipped) {
436     SkDLine line = {{{ x, top }, { x, bottom }}};
437     LineCubicIntersections c(cubic, line, this);
438     return c.verticalIntersect(x, top, bottom, flipped);
439 }
440 
intersect(const SkDCubic & cubic,const SkDLine & line)441 int SkIntersections::intersect(const SkDCubic& cubic, const SkDLine& line) {
442     LineCubicIntersections c(cubic, line, this);
443     c.allowNear(fAllowNear);
444     return c.intersect();
445 }
446 
intersectRay(const SkDCubic & cubic,const SkDLine & line)447 int SkIntersections::intersectRay(const SkDCubic& cubic, const SkDLine& line) {
448     LineCubicIntersections c(cubic, line, this);
449     fUsed = c.intersectRay(fT[0]);
450     for (int index = 0; index < fUsed; ++index) {
451         fPt[index] = cubic.ptAtT(fT[0][index]);
452     }
453     return fUsed;
454 }
455 
456 // SkDCubic accessors to Intersection utilities
457 
horizontalIntersect(double yIntercept,double roots[3]) const458 int SkDCubic::horizontalIntersect(double yIntercept, double roots[3]) const {
459     return LineCubicIntersections::HorizontalIntersect(*this, yIntercept, roots);
460 }
461 
verticalIntersect(double xIntercept,double roots[3]) const462 int SkDCubic::verticalIntersect(double xIntercept, double roots[3]) const {
463     return LineCubicIntersections::VerticalIntersect(*this, xIntercept, roots);
464 }
465