1 /*
2 * Copyright 2014 Google Inc.
3 *
4 * Use of this source code is governed by a BSD-style license that can be
5 * found in the LICENSE file.
6 */
7
8 #include "src/utils/SkDashPathPriv.h"
9
10 #include "include/core/SkPaint.h"
11 #include "include/core/SkPath.h"
12 #include "include/core/SkPathEffect.h"
13 #include "include/core/SkPathMeasure.h"
14 #include "include/core/SkPoint.h"
15 #include "include/core/SkRect.h"
16 #include "include/core/SkScalar.h"
17 #include "include/core/SkStrokeRec.h"
18 #include "include/core/SkTypes.h"
19 #include "include/private/base/SkAlign.h"
20 #include "include/private/base/SkPathEnums.h"
21 #include "include/private/base/SkTo.h"
22 #include "src/core/SkPathPriv.h"
23 #include "src/core/SkPointPriv.h"
24
25 #include <algorithm>
26 #include <cmath>
27 #include <cstdint>
28 #include <iterator>
29
is_even(int x)30 static inline int is_even(int x) {
31 return !(x & 1);
32 }
33
find_first_interval(const SkScalar intervals[],SkScalar phase,int32_t * index,int count)34 static SkScalar find_first_interval(const SkScalar intervals[], SkScalar phase,
35 int32_t* index, int count) {
36 for (int i = 0; i < count; ++i) {
37 SkScalar gap = intervals[i];
38 if (phase > gap || (phase == gap && gap)) {
39 phase -= gap;
40 } else {
41 *index = i;
42 return gap - phase;
43 }
44 }
45 // If we get here, phase "appears" to be larger than our length. This
46 // shouldn't happen with perfect precision, but we can accumulate errors
47 // during the initial length computation (rounding can make our sum be too
48 // big or too small. In that event, we just have to eat the error here.
49 *index = 0;
50 return intervals[0];
51 }
52
CalcDashParameters(SkScalar phase,const SkScalar intervals[],int32_t count,SkScalar * initialDashLength,int32_t * initialDashIndex,SkScalar * intervalLength,SkScalar * adjustedPhase)53 void SkDashPath::CalcDashParameters(SkScalar phase, const SkScalar intervals[], int32_t count,
54 SkScalar* initialDashLength, int32_t* initialDashIndex,
55 SkScalar* intervalLength, SkScalar* adjustedPhase) {
56 SkScalar len = 0;
57 for (int i = 0; i < count; i++) {
58 len += intervals[i];
59 }
60 *intervalLength = len;
61 // Adjust phase to be between 0 and len, "flipping" phase if negative.
62 // e.g., if len is 100, then phase of -20 (or -120) is equivalent to 80
63 if (adjustedPhase) {
64 if (phase < 0) {
65 phase = -phase;
66 if (phase > len) {
67 phase = SkScalarMod(phase, len);
68 }
69 phase = len - phase;
70
71 // Due to finite precision, it's possible that phase == len,
72 // even after the subtract (if len >>> phase), so fix that here.
73 // This fixes http://crbug.com/124652 .
74 SkASSERT(phase <= len);
75 if (phase == len) {
76 phase = 0;
77 }
78 } else if (phase >= len) {
79 phase = SkScalarMod(phase, len);
80 }
81 *adjustedPhase = phase;
82 }
83 SkASSERT(phase >= 0 && phase < len);
84
85 *initialDashLength = find_first_interval(intervals, phase,
86 initialDashIndex, count);
87
88 SkASSERT(*initialDashLength >= 0);
89 SkASSERT(*initialDashIndex >= 0 && *initialDashIndex < count);
90 }
91
outset_for_stroke(SkRect * rect,const SkStrokeRec & rec)92 static void outset_for_stroke(SkRect* rect, const SkStrokeRec& rec) {
93 SkScalar radius = SkScalarHalf(rec.getWidth());
94 if (0 == radius) {
95 radius = SK_Scalar1; // hairlines
96 }
97 if (SkPaint::kMiter_Join == rec.getJoin()) {
98 radius *= rec.getMiter();
99 }
100 rect->outset(radius, radius);
101 }
102
103 // If line is zero-length, bump out the end by a tiny amount
104 // to draw endcaps. The bump factor is sized so that
105 // SkPoint::Distance() computes a non-zero length.
106 // Offsets SK_ScalarNearlyZero or smaller create empty paths when Iter measures length.
107 // Large values are scaled by SK_ScalarNearlyZero so significant bits change.
adjust_zero_length_line(SkPoint pts[2])108 static void adjust_zero_length_line(SkPoint pts[2]) {
109 SkASSERT(pts[0] == pts[1]);
110 pts[1].fX += std::max(1.001f, pts[1].fX) * SK_ScalarNearlyZero;
111 }
112
clip_line(SkPoint pts[2],const SkRect & bounds,SkScalar intervalLength,SkScalar priorPhase)113 static bool clip_line(SkPoint pts[2], const SkRect& bounds, SkScalar intervalLength,
114 SkScalar priorPhase) {
115 SkVector dxy = pts[1] - pts[0];
116
117 // only horizontal or vertical lines
118 if (dxy.fX && dxy.fY) {
119 return false;
120 }
121 int xyOffset = SkToBool(dxy.fY); // 0 to adjust horizontal, 1 to adjust vertical
122
123 SkScalar minXY = (&pts[0].fX)[xyOffset];
124 SkScalar maxXY = (&pts[1].fX)[xyOffset];
125 bool swapped = maxXY < minXY;
126 if (swapped) {
127 using std::swap;
128 swap(minXY, maxXY);
129 }
130
131 SkASSERT(minXY <= maxXY);
132 SkScalar leftTop = (&bounds.fLeft)[xyOffset];
133 SkScalar rightBottom = (&bounds.fRight)[xyOffset];
134 if (maxXY < leftTop || minXY > rightBottom) {
135 return false;
136 }
137
138 // Now we actually perform the chop, removing the excess to the left/top and
139 // right/bottom of the bounds (keeping our new line "in phase" with the dash,
140 // hence the (mod intervalLength).
141
142 if (minXY < leftTop) {
143 minXY = leftTop - SkScalarMod(leftTop - minXY, intervalLength);
144 if (!swapped) {
145 minXY -= priorPhase; // for rectangles, adjust by prior phase
146 }
147 }
148 if (maxXY > rightBottom) {
149 maxXY = rightBottom + SkScalarMod(maxXY - rightBottom, intervalLength);
150 if (swapped) {
151 maxXY += priorPhase; // for rectangles, adjust by prior phase
152 }
153 }
154
155 SkASSERT(maxXY >= minXY);
156 if (swapped) {
157 using std::swap;
158 swap(minXY, maxXY);
159 }
160 (&pts[0].fX)[xyOffset] = minXY;
161 (&pts[1].fX)[xyOffset] = maxXY;
162
163 if (minXY == maxXY) {
164 adjust_zero_length_line(pts);
165 }
166 return true;
167 }
168
169 // Handles only lines and rects.
170 // If cull_path() returns true, dstPath is the new smaller path,
171 // otherwise dstPath may have been changed but you should ignore it.
cull_path(const SkPath & srcPath,const SkStrokeRec & rec,const SkRect * cullRect,SkScalar intervalLength,SkPath * dstPath)172 static bool cull_path(const SkPath& srcPath, const SkStrokeRec& rec,
173 const SkRect* cullRect, SkScalar intervalLength, SkPath* dstPath) {
174 if (!cullRect) {
175 SkPoint pts[2];
176 if (srcPath.isLine(pts) && pts[0] == pts[1]) {
177 adjust_zero_length_line(pts);
178 dstPath->moveTo(pts[0]);
179 dstPath->lineTo(pts[1]);
180 return true;
181 }
182 return false;
183 }
184
185 SkRect bounds;
186 bounds = *cullRect;
187 outset_for_stroke(&bounds, rec);
188
189 {
190 SkPoint pts[2];
191 if (srcPath.isLine(pts)) {
192 if (clip_line(pts, bounds, intervalLength, 0)) {
193 dstPath->moveTo(pts[0]);
194 dstPath->lineTo(pts[1]);
195 return true;
196 }
197 return false;
198 }
199 }
200
201 if (srcPath.isRect(nullptr)) {
202 // We'll break the rect into four lines, culling each separately.
203 SkPath::Iter iter(srcPath, false);
204
205 SkPoint pts[4]; // Rects are all moveTo and lineTo, so we'll only use pts[0] and pts[1].
206 SkAssertResult(SkPath::kMove_Verb == iter.next(pts));
207
208 double accum = 0; // Sum of unculled edge lengths to keep the phase correct.
209 // Intentionally a double to minimize the risk of overflow and drift.
210 while (iter.next(pts) == SkPath::kLine_Verb) {
211 // Notice this vector v and accum work with the original unclipped length.
212 SkVector v = pts[1] - pts[0];
213
214 if (clip_line(pts, bounds, intervalLength, std::fmod(accum, intervalLength))) {
215 // pts[0] may have just been changed by clip_line().
216 // If that's not where we ended the previous lineTo(), we need to moveTo() there.
217 SkPoint last;
218 if (!dstPath->getLastPt(&last) || last != pts[0]) {
219 dstPath->moveTo(pts[0]);
220 }
221 dstPath->lineTo(pts[1]);
222 }
223
224 // We either just traveled v.fX horizontally or v.fY vertically.
225 SkASSERT(v.fX == 0 || v.fY == 0);
226 accum += SkScalarAbs(v.fX + v.fY);
227 }
228 return !dstPath->isEmpty();
229 }
230
231 return false;
232 }
233
234 class SpecialLineRec {
235 public:
init(const SkPath & src,SkPath * dst,SkStrokeRec * rec,int intervalCount,SkScalar intervalLength)236 bool init(const SkPath& src, SkPath* dst, SkStrokeRec* rec,
237 int intervalCount, SkScalar intervalLength) {
238 if (rec->isHairlineStyle() || !src.isLine(fPts)) {
239 return false;
240 }
241
242 // can relax this in the future, if we handle square and round caps
243 if (SkPaint::kButt_Cap != rec->getCap()) {
244 return false;
245 }
246
247 SkScalar pathLength = SkPoint::Distance(fPts[0], fPts[1]);
248
249 fTangent = fPts[1] - fPts[0];
250 if (fTangent.isZero()) {
251 return false;
252 }
253
254 fPathLength = pathLength;
255 fTangent.scale(SkScalarInvert(pathLength));
256 SkPointPriv::RotateCCW(fTangent, &fNormal);
257 fNormal.scale(SkScalarHalf(rec->getWidth()));
258
259 // now estimate how many quads will be added to the path
260 // resulting segments = pathLen * intervalCount / intervalLen
261 // resulting points = 4 * segments
262
263 SkScalar ptCount = pathLength * intervalCount / (float)intervalLength;
264 ptCount = std::min(ptCount, SkDashPath::kMaxDashCount);
265 if (SkScalarIsNaN(ptCount)) {
266 return false;
267 }
268 int n = SkScalarCeilToInt(ptCount) << 2;
269 dst->incReserve(n);
270
271 // we will take care of the stroking
272 rec->setFillStyle();
273 return true;
274 }
275
addSegment(SkScalar d0,SkScalar d1,SkPath * path) const276 void addSegment(SkScalar d0, SkScalar d1, SkPath* path) const {
277 SkASSERT(d0 <= fPathLength);
278 // clamp the segment to our length
279 if (d1 > fPathLength) {
280 d1 = fPathLength;
281 }
282
283 SkScalar x0 = fPts[0].fX + fTangent.fX * d0;
284 SkScalar x1 = fPts[0].fX + fTangent.fX * d1;
285 SkScalar y0 = fPts[0].fY + fTangent.fY * d0;
286 SkScalar y1 = fPts[0].fY + fTangent.fY * d1;
287
288 SkPoint pts[4];
289 pts[0].set(x0 + fNormal.fX, y0 + fNormal.fY); // moveTo
290 pts[1].set(x1 + fNormal.fX, y1 + fNormal.fY); // lineTo
291 pts[2].set(x1 - fNormal.fX, y1 - fNormal.fY); // lineTo
292 pts[3].set(x0 - fNormal.fX, y0 - fNormal.fY); // lineTo
293
294 path->addPoly(pts, std::size(pts), false);
295 }
296
297 private:
298 SkPoint fPts[2];
299 SkVector fTangent;
300 SkVector fNormal;
301 SkScalar fPathLength;
302 };
303
304
InternalFilter(SkPath * dst,const SkPath & src,SkStrokeRec * rec,const SkRect * cullRect,const SkScalar aIntervals[],int32_t count,SkScalar initialDashLength,int32_t initialDashIndex,SkScalar intervalLength,SkScalar startPhase,StrokeRecApplication strokeRecApplication)305 bool SkDashPath::InternalFilter(SkPath* dst, const SkPath& src, SkStrokeRec* rec,
306 const SkRect* cullRect, const SkScalar aIntervals[],
307 int32_t count, SkScalar initialDashLength, int32_t initialDashIndex,
308 SkScalar intervalLength, SkScalar startPhase,
309 StrokeRecApplication strokeRecApplication) {
310 // we must always have an even number of intervals
311 SkASSERT(is_even(count));
312
313 // we do nothing if the src wants to be filled
314 SkStrokeRec::Style style = rec->getStyle();
315 if (SkStrokeRec::kFill_Style == style || SkStrokeRec::kStrokeAndFill_Style == style) {
316 return false;
317 }
318
319 const SkScalar* intervals = aIntervals;
320 SkScalar dashCount = 0;
321 int segCount = 0;
322
323 SkPath cullPathStorage;
324 const SkPath* srcPtr = &src;
325 if (cull_path(src, *rec, cullRect, intervalLength, &cullPathStorage)) {
326 // if rect is closed, starts in a dash, and ends in a dash, add the initial join
327 // potentially a better fix is described here: bug.skia.org/7445
328 if (src.isRect(nullptr) && src.isLastContourClosed() && is_even(initialDashIndex)) {
329 SkScalar pathLength = SkPathMeasure(src, false, rec->getResScale()).getLength();
330 #if defined(SK_LEGACY_RECT_DASHING_BUG)
331 SkScalar endPhase = SkScalarMod(pathLength + initialDashLength, intervalLength);
332 #else
333 SkScalar endPhase = SkScalarMod(pathLength + startPhase, intervalLength);
334 #endif
335 int index = 0;
336 while (endPhase > intervals[index]) {
337 endPhase -= intervals[index++];
338 SkASSERT(index <= count);
339 if (index == count) {
340 // We have run out of intervals. endPhase "should" never get to this point,
341 // but it could if the subtracts underflowed. Hence we will pin it as if it
342 // perfectly ran through the intervals.
343 // See crbug.com/875494 (and skbug.com/8274)
344 endPhase = 0;
345 break;
346 }
347 }
348 // if dash ends inside "on", or ends at beginning of "off"
349 if (is_even(index) == (endPhase > 0)) {
350 SkPoint midPoint = src.getPoint(0);
351 // get vector at end of rect
352 int last = src.countPoints() - 1;
353 while (midPoint == src.getPoint(last)) {
354 --last;
355 SkASSERT(last >= 0);
356 }
357 // get vector at start of rect
358 int next = 1;
359 while (midPoint == src.getPoint(next)) {
360 ++next;
361 SkASSERT(next < last);
362 }
363 SkVector v = midPoint - src.getPoint(last);
364 const SkScalar kTinyOffset = SK_ScalarNearlyZero;
365 // scale vector to make start of tiny right angle
366 v *= kTinyOffset;
367 cullPathStorage.moveTo(midPoint - v);
368 cullPathStorage.lineTo(midPoint);
369 v = midPoint - src.getPoint(next);
370 // scale vector to make end of tiny right angle
371 v *= kTinyOffset;
372 cullPathStorage.lineTo(midPoint - v);
373 }
374 }
375 srcPtr = &cullPathStorage;
376 }
377
378 SpecialLineRec lineRec;
379 bool specialLine = (StrokeRecApplication::kAllow == strokeRecApplication) &&
380 lineRec.init(*srcPtr, dst, rec, count >> 1, intervalLength);
381
382 SkPathMeasure meas(*srcPtr, false, rec->getResScale());
383
384 do {
385 bool skipFirstSegment = meas.isClosed();
386 bool addedSegment = false;
387 SkScalar length = meas.getLength();
388 int index = initialDashIndex;
389
390 // Since the path length / dash length ratio may be arbitrarily large, we can exert
391 // significant memory pressure while attempting to build the filtered path. To avoid this,
392 // we simply give up dashing beyond a certain threshold.
393 //
394 // The original bug report (http://crbug.com/165432) is based on a path yielding more than
395 // 90 million dash segments and crashing the memory allocator. A limit of 1 million
396 // segments seems reasonable: at 2 verbs per segment * 9 bytes per verb, this caps the
397 // maximum dash memory overhead at roughly 17MB per path.
398 dashCount += length * (count >> 1) / intervalLength;
399 if (dashCount > kMaxDashCount) {
400 dst->reset();
401 return false;
402 }
403
404 // Using double precision to avoid looping indefinitely due to single precision rounding
405 // (for extreme path_length/dash_length ratios). See test_infinite_dash() unittest.
406 double distance = 0;
407 double dlen = initialDashLength;
408
409 while (distance < length) {
410 SkASSERT(dlen >= 0);
411 addedSegment = false;
412 if (is_even(index) && !skipFirstSegment) {
413 addedSegment = true;
414 ++segCount;
415
416 if (specialLine) {
417 lineRec.addSegment(SkDoubleToScalar(distance),
418 SkDoubleToScalar(distance + dlen),
419 dst);
420 } else {
421 meas.getSegment(SkDoubleToScalar(distance),
422 SkDoubleToScalar(distance + dlen),
423 dst, true);
424 }
425 }
426 distance += dlen;
427
428 // clear this so we only respect it the first time around
429 skipFirstSegment = false;
430
431 // wrap around our intervals array if necessary
432 index += 1;
433 SkASSERT(index <= count);
434 if (index == count) {
435 index = 0;
436 }
437
438 // fetch our next dlen
439 dlen = intervals[index];
440 }
441
442 // extend if we ended on a segment and we need to join up with the (skipped) initial segment
443 if (meas.isClosed() && is_even(initialDashIndex) &&
444 initialDashLength >= 0) {
445 meas.getSegment(0, initialDashLength, dst, !addedSegment);
446 ++segCount;
447 }
448 } while (meas.nextContour());
449
450 // TODO: do we still need this?
451 if (segCount > 1) {
452 SkPathPriv::SetConvexity(*dst, SkPathConvexity::kConcave);
453 }
454
455 return true;
456 }
457
FilterDashPath(SkPath * dst,const SkPath & src,SkStrokeRec * rec,const SkRect * cullRect,const SkPathEffect::DashInfo & info)458 bool SkDashPath::FilterDashPath(SkPath* dst, const SkPath& src, SkStrokeRec* rec,
459 const SkRect* cullRect, const SkPathEffect::DashInfo& info) {
460 if (!ValidDashPath(info.fPhase, info.fIntervals, info.fCount)) {
461 return false;
462 }
463 SkScalar initialDashLength = 0;
464 int32_t initialDashIndex = 0;
465 SkScalar intervalLength = 0;
466 CalcDashParameters(info.fPhase, info.fIntervals, info.fCount,
467 &initialDashLength, &initialDashIndex, &intervalLength);
468 return InternalFilter(dst, src, rec, cullRect, info.fIntervals, info.fCount, initialDashLength,
469 initialDashIndex, intervalLength, info.fPhase);
470 }
471
ValidDashPath(SkScalar phase,const SkScalar intervals[],int32_t count)472 bool SkDashPath::ValidDashPath(SkScalar phase, const SkScalar intervals[], int32_t count) {
473 if (count < 2 || !SkIsAlign2(count)) {
474 return false;
475 }
476 SkScalar length = 0;
477 for (int i = 0; i < count; i++) {
478 if (intervals[i] < 0) {
479 return false;
480 }
481 length += intervals[i];
482 }
483 // watch out for values that might make us go out of bounds
484 return length > 0 && SkScalarIsFinite(phase) && SkScalarIsFinite(length);
485 }
486