1 //===- MustExecute.cpp - Printer for isGuaranteedToExecute ----------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8
9 #include "llvm/Analysis/MustExecute.h"
10 #include "llvm/ADT/PostOrderIterator.h"
11 #include "llvm/Analysis/CFG.h"
12 #include "llvm/Analysis/InstructionSimplify.h"
13 #include "llvm/Analysis/LoopInfo.h"
14 #include "llvm/Analysis/Passes.h"
15 #include "llvm/Analysis/PostDominators.h"
16 #include "llvm/Analysis/ValueTracking.h"
17 #include "llvm/IR/AssemblyAnnotationWriter.h"
18 #include "llvm/IR/DataLayout.h"
19 #include "llvm/IR/InstIterator.h"
20 #include "llvm/IR/LLVMContext.h"
21 #include "llvm/IR/Module.h"
22 #include "llvm/InitializePasses.h"
23 #include "llvm/Support/ErrorHandling.h"
24 #include "llvm/Support/FormattedStream.h"
25 #include "llvm/Support/raw_ostream.h"
26
27 using namespace llvm;
28
29 #define DEBUG_TYPE "must-execute"
30
31 const DenseMap<BasicBlock *, ColorVector> &
getBlockColors() const32 LoopSafetyInfo::getBlockColors() const {
33 return BlockColors;
34 }
35
copyColors(BasicBlock * New,BasicBlock * Old)36 void LoopSafetyInfo::copyColors(BasicBlock *New, BasicBlock *Old) {
37 ColorVector &ColorsForNewBlock = BlockColors[New];
38 ColorVector &ColorsForOldBlock = BlockColors[Old];
39 ColorsForNewBlock = ColorsForOldBlock;
40 }
41
blockMayThrow(const BasicBlock * BB) const42 bool SimpleLoopSafetyInfo::blockMayThrow(const BasicBlock *BB) const {
43 (void)BB;
44 return anyBlockMayThrow();
45 }
46
anyBlockMayThrow() const47 bool SimpleLoopSafetyInfo::anyBlockMayThrow() const {
48 return MayThrow;
49 }
50
computeLoopSafetyInfo(const Loop * CurLoop)51 void SimpleLoopSafetyInfo::computeLoopSafetyInfo(const Loop *CurLoop) {
52 assert(CurLoop != nullptr && "CurLoop can't be null");
53 BasicBlock *Header = CurLoop->getHeader();
54 // Iterate over header and compute safety info.
55 HeaderMayThrow = !isGuaranteedToTransferExecutionToSuccessor(Header);
56 MayThrow = HeaderMayThrow;
57 // Iterate over loop instructions and compute safety info.
58 // Skip header as it has been computed and stored in HeaderMayThrow.
59 // The first block in loopinfo.Blocks is guaranteed to be the header.
60 assert(Header == *CurLoop->getBlocks().begin() &&
61 "First block must be header");
62 for (Loop::block_iterator BB = std::next(CurLoop->block_begin()),
63 BBE = CurLoop->block_end();
64 (BB != BBE) && !MayThrow; ++BB)
65 MayThrow |= !isGuaranteedToTransferExecutionToSuccessor(*BB);
66
67 computeBlockColors(CurLoop);
68 }
69
blockMayThrow(const BasicBlock * BB) const70 bool ICFLoopSafetyInfo::blockMayThrow(const BasicBlock *BB) const {
71 return ICF.hasICF(BB);
72 }
73
anyBlockMayThrow() const74 bool ICFLoopSafetyInfo::anyBlockMayThrow() const {
75 return MayThrow;
76 }
77
computeLoopSafetyInfo(const Loop * CurLoop)78 void ICFLoopSafetyInfo::computeLoopSafetyInfo(const Loop *CurLoop) {
79 assert(CurLoop != nullptr && "CurLoop can't be null");
80 ICF.clear();
81 MW.clear();
82 MayThrow = false;
83 // Figure out the fact that at least one block may throw.
84 for (auto &BB : CurLoop->blocks())
85 if (ICF.hasICF(&*BB)) {
86 MayThrow = true;
87 break;
88 }
89 computeBlockColors(CurLoop);
90 }
91
insertInstructionTo(const Instruction * Inst,const BasicBlock * BB)92 void ICFLoopSafetyInfo::insertInstructionTo(const Instruction *Inst,
93 const BasicBlock *BB) {
94 ICF.insertInstructionTo(Inst, BB);
95 MW.insertInstructionTo(Inst, BB);
96 }
97
removeInstruction(const Instruction * Inst)98 void ICFLoopSafetyInfo::removeInstruction(const Instruction *Inst) {
99 ICF.removeInstruction(Inst);
100 MW.removeInstruction(Inst);
101 }
102
computeBlockColors(const Loop * CurLoop)103 void LoopSafetyInfo::computeBlockColors(const Loop *CurLoop) {
104 // Compute funclet colors if we might sink/hoist in a function with a funclet
105 // personality routine.
106 Function *Fn = CurLoop->getHeader()->getParent();
107 if (Fn->hasPersonalityFn())
108 if (Constant *PersonalityFn = Fn->getPersonalityFn())
109 if (isScopedEHPersonality(classifyEHPersonality(PersonalityFn)))
110 BlockColors = colorEHFunclets(*Fn);
111 }
112
113 /// Return true if we can prove that the given ExitBlock is not reached on the
114 /// first iteration of the given loop. That is, the backedge of the loop must
115 /// be executed before the ExitBlock is executed in any dynamic execution trace.
CanProveNotTakenFirstIteration(const BasicBlock * ExitBlock,const DominatorTree * DT,const Loop * CurLoop)116 static bool CanProveNotTakenFirstIteration(const BasicBlock *ExitBlock,
117 const DominatorTree *DT,
118 const Loop *CurLoop) {
119 auto *CondExitBlock = ExitBlock->getSinglePredecessor();
120 if (!CondExitBlock)
121 // expect unique exits
122 return false;
123 assert(CurLoop->contains(CondExitBlock) && "meaning of exit block");
124 auto *BI = dyn_cast<BranchInst>(CondExitBlock->getTerminator());
125 if (!BI || !BI->isConditional())
126 return false;
127 // If condition is constant and false leads to ExitBlock then we always
128 // execute the true branch.
129 if (auto *Cond = dyn_cast<ConstantInt>(BI->getCondition()))
130 return BI->getSuccessor(Cond->getZExtValue() ? 1 : 0) == ExitBlock;
131 auto *Cond = dyn_cast<CmpInst>(BI->getCondition());
132 if (!Cond)
133 return false;
134 // todo: this would be a lot more powerful if we used scev, but all the
135 // plumbing is currently missing to pass a pointer in from the pass
136 // Check for cmp (phi [x, preheader] ...), y where (pred x, y is known
137 auto *LHS = dyn_cast<PHINode>(Cond->getOperand(0));
138 auto *RHS = Cond->getOperand(1);
139 if (!LHS || LHS->getParent() != CurLoop->getHeader())
140 return false;
141 auto DL = ExitBlock->getModule()->getDataLayout();
142 auto *IVStart = LHS->getIncomingValueForBlock(CurLoop->getLoopPreheader());
143 auto *SimpleValOrNull = SimplifyCmpInst(Cond->getPredicate(),
144 IVStart, RHS,
145 {DL, /*TLI*/ nullptr,
146 DT, /*AC*/ nullptr, BI});
147 auto *SimpleCst = dyn_cast_or_null<Constant>(SimpleValOrNull);
148 if (!SimpleCst)
149 return false;
150 if (ExitBlock == BI->getSuccessor(0))
151 return SimpleCst->isZeroValue();
152 assert(ExitBlock == BI->getSuccessor(1) && "implied by above");
153 return SimpleCst->isAllOnesValue();
154 }
155
156 /// Collect all blocks from \p CurLoop which lie on all possible paths from
157 /// the header of \p CurLoop (inclusive) to BB (exclusive) into the set
158 /// \p Predecessors. If \p BB is the header, \p Predecessors will be empty.
collectTransitivePredecessors(const Loop * CurLoop,const BasicBlock * BB,SmallPtrSetImpl<const BasicBlock * > & Predecessors)159 static void collectTransitivePredecessors(
160 const Loop *CurLoop, const BasicBlock *BB,
161 SmallPtrSetImpl<const BasicBlock *> &Predecessors) {
162 assert(Predecessors.empty() && "Garbage in predecessors set?");
163 assert(CurLoop->contains(BB) && "Should only be called for loop blocks!");
164 if (BB == CurLoop->getHeader())
165 return;
166 SmallVector<const BasicBlock *, 4> WorkList;
167 for (auto *Pred : predecessors(BB)) {
168 Predecessors.insert(Pred);
169 WorkList.push_back(Pred);
170 }
171 while (!WorkList.empty()) {
172 auto *Pred = WorkList.pop_back_val();
173 assert(CurLoop->contains(Pred) && "Should only reach loop blocks!");
174 // We are not interested in backedges and we don't want to leave loop.
175 if (Pred == CurLoop->getHeader())
176 continue;
177 // TODO: If BB lies in an inner loop of CurLoop, this will traverse over all
178 // blocks of this inner loop, even those that are always executed AFTER the
179 // BB. It may make our analysis more conservative than it could be, see test
180 // @nested and @nested_no_throw in test/Analysis/MustExecute/loop-header.ll.
181 // We can ignore backedge of all loops containing BB to get a sligtly more
182 // optimistic result.
183 for (auto *PredPred : predecessors(Pred))
184 if (Predecessors.insert(PredPred).second)
185 WorkList.push_back(PredPred);
186 }
187 }
188
allLoopPathsLeadToBlock(const Loop * CurLoop,const BasicBlock * BB,const DominatorTree * DT) const189 bool LoopSafetyInfo::allLoopPathsLeadToBlock(const Loop *CurLoop,
190 const BasicBlock *BB,
191 const DominatorTree *DT) const {
192 assert(CurLoop->contains(BB) && "Should only be called for loop blocks!");
193
194 // Fast path: header is always reached once the loop is entered.
195 if (BB == CurLoop->getHeader())
196 return true;
197
198 // Collect all transitive predecessors of BB in the same loop. This set will
199 // be a subset of the blocks within the loop.
200 SmallPtrSet<const BasicBlock *, 4> Predecessors;
201 collectTransitivePredecessors(CurLoop, BB, Predecessors);
202
203 // Make sure that all successors of, all predecessors of BB which are not
204 // dominated by BB, are either:
205 // 1) BB,
206 // 2) Also predecessors of BB,
207 // 3) Exit blocks which are not taken on 1st iteration.
208 // Memoize blocks we've already checked.
209 SmallPtrSet<const BasicBlock *, 4> CheckedSuccessors;
210 for (auto *Pred : Predecessors) {
211 // Predecessor block may throw, so it has a side exit.
212 if (blockMayThrow(Pred))
213 return false;
214
215 // BB dominates Pred, so if Pred runs, BB must run.
216 // This is true when Pred is a loop latch.
217 if (DT->dominates(BB, Pred))
218 continue;
219
220 for (auto *Succ : successors(Pred))
221 if (CheckedSuccessors.insert(Succ).second &&
222 Succ != BB && !Predecessors.count(Succ))
223 // By discharging conditions that are not executed on the 1st iteration,
224 // we guarantee that *at least* on the first iteration all paths from
225 // header that *may* execute will lead us to the block of interest. So
226 // that if we had virtually peeled one iteration away, in this peeled
227 // iteration the set of predecessors would contain only paths from
228 // header to BB without any exiting edges that may execute.
229 //
230 // TODO: We only do it for exiting edges currently. We could use the
231 // same function to skip some of the edges within the loop if we know
232 // that they will not be taken on the 1st iteration.
233 //
234 // TODO: If we somehow know the number of iterations in loop, the same
235 // check may be done for any arbitrary N-th iteration as long as N is
236 // not greater than minimum number of iterations in this loop.
237 if (CurLoop->contains(Succ) ||
238 !CanProveNotTakenFirstIteration(Succ, DT, CurLoop))
239 return false;
240 }
241
242 // All predecessors can only lead us to BB.
243 return true;
244 }
245
246 /// Returns true if the instruction in a loop is guaranteed to execute at least
247 /// once.
isGuaranteedToExecute(const Instruction & Inst,const DominatorTree * DT,const Loop * CurLoop) const248 bool SimpleLoopSafetyInfo::isGuaranteedToExecute(const Instruction &Inst,
249 const DominatorTree *DT,
250 const Loop *CurLoop) const {
251 // If the instruction is in the header block for the loop (which is very
252 // common), it is always guaranteed to dominate the exit blocks. Since this
253 // is a common case, and can save some work, check it now.
254 if (Inst.getParent() == CurLoop->getHeader())
255 // If there's a throw in the header block, we can't guarantee we'll reach
256 // Inst unless we can prove that Inst comes before the potential implicit
257 // exit. At the moment, we use a (cheap) hack for the common case where
258 // the instruction of interest is the first one in the block.
259 return !HeaderMayThrow ||
260 Inst.getParent()->getFirstNonPHIOrDbg() == &Inst;
261
262 // If there is a path from header to exit or latch that doesn't lead to our
263 // instruction's block, return false.
264 return allLoopPathsLeadToBlock(CurLoop, Inst.getParent(), DT);
265 }
266
isGuaranteedToExecute(const Instruction & Inst,const DominatorTree * DT,const Loop * CurLoop) const267 bool ICFLoopSafetyInfo::isGuaranteedToExecute(const Instruction &Inst,
268 const DominatorTree *DT,
269 const Loop *CurLoop) const {
270 return !ICF.isDominatedByICFIFromSameBlock(&Inst) &&
271 allLoopPathsLeadToBlock(CurLoop, Inst.getParent(), DT);
272 }
273
doesNotWriteMemoryBefore(const BasicBlock * BB,const Loop * CurLoop) const274 bool ICFLoopSafetyInfo::doesNotWriteMemoryBefore(const BasicBlock *BB,
275 const Loop *CurLoop) const {
276 assert(CurLoop->contains(BB) && "Should only be called for loop blocks!");
277
278 // Fast path: there are no instructions before header.
279 if (BB == CurLoop->getHeader())
280 return true;
281
282 // Collect all transitive predecessors of BB in the same loop. This set will
283 // be a subset of the blocks within the loop.
284 SmallPtrSet<const BasicBlock *, 4> Predecessors;
285 collectTransitivePredecessors(CurLoop, BB, Predecessors);
286 // Find if there any instruction in either predecessor that could write
287 // to memory.
288 for (auto *Pred : Predecessors)
289 if (MW.mayWriteToMemory(Pred))
290 return false;
291 return true;
292 }
293
doesNotWriteMemoryBefore(const Instruction & I,const Loop * CurLoop) const294 bool ICFLoopSafetyInfo::doesNotWriteMemoryBefore(const Instruction &I,
295 const Loop *CurLoop) const {
296 auto *BB = I.getParent();
297 assert(CurLoop->contains(BB) && "Should only be called for loop blocks!");
298 return !MW.isDominatedByMemoryWriteFromSameBlock(&I) &&
299 doesNotWriteMemoryBefore(BB, CurLoop);
300 }
301
302 namespace {
303 struct MustExecutePrinter : public FunctionPass {
304
305 static char ID; // Pass identification, replacement for typeid
MustExecutePrinter__anondcc13b480111::MustExecutePrinter306 MustExecutePrinter() : FunctionPass(ID) {
307 initializeMustExecutePrinterPass(*PassRegistry::getPassRegistry());
308 }
getAnalysisUsage__anondcc13b480111::MustExecutePrinter309 void getAnalysisUsage(AnalysisUsage &AU) const override {
310 AU.setPreservesAll();
311 AU.addRequired<DominatorTreeWrapperPass>();
312 AU.addRequired<LoopInfoWrapperPass>();
313 }
314 bool runOnFunction(Function &F) override;
315 };
316 struct MustBeExecutedContextPrinter : public ModulePass {
317 static char ID;
318
MustBeExecutedContextPrinter__anondcc13b480111::MustBeExecutedContextPrinter319 MustBeExecutedContextPrinter() : ModulePass(ID) {
320 initializeMustBeExecutedContextPrinterPass(*PassRegistry::getPassRegistry());
321 }
getAnalysisUsage__anondcc13b480111::MustBeExecutedContextPrinter322 void getAnalysisUsage(AnalysisUsage &AU) const override {
323 AU.setPreservesAll();
324 }
325 bool runOnModule(Module &M) override;
326 };
327 }
328
329 char MustExecutePrinter::ID = 0;
330 INITIALIZE_PASS_BEGIN(MustExecutePrinter, "print-mustexecute",
331 "Instructions which execute on loop entry", false, true)
INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)332 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
333 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
334 INITIALIZE_PASS_END(MustExecutePrinter, "print-mustexecute",
335 "Instructions which execute on loop entry", false, true)
336
337 FunctionPass *llvm::createMustExecutePrinter() {
338 return new MustExecutePrinter();
339 }
340
341 char MustBeExecutedContextPrinter::ID = 0;
342 INITIALIZE_PASS_BEGIN(
343 MustBeExecutedContextPrinter, "print-must-be-executed-contexts",
344 "print the must-be-executed-contexed for all instructions", false, true)
INITIALIZE_PASS_DEPENDENCY(PostDominatorTreeWrapperPass)345 INITIALIZE_PASS_DEPENDENCY(PostDominatorTreeWrapperPass)
346 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
347 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
348 INITIALIZE_PASS_END(MustBeExecutedContextPrinter,
349 "print-must-be-executed-contexts",
350 "print the must-be-executed-contexed for all instructions",
351 false, true)
352
353 ModulePass *llvm::createMustBeExecutedContextPrinter() {
354 return new MustBeExecutedContextPrinter();
355 }
356
runOnModule(Module & M)357 bool MustBeExecutedContextPrinter::runOnModule(Module &M) {
358 // We provide non-PM analysis here because the old PM doesn't like to query
359 // function passes from a module pass.
360 SmallVector<PostDominatorTree *, 8> PDTs;
361 SmallVector<DominatorTree *, 8> DTs;
362 SmallVector<LoopInfo *, 8> LIs;
363
364 GetterTy<LoopInfo> LIGetter = [&](const Function &F) {
365 DominatorTree *DT = new DominatorTree(const_cast<Function &>(F));
366 LoopInfo *LI = new LoopInfo(*DT);
367 DTs.push_back(DT);
368 LIs.push_back(LI);
369 return LI;
370 };
371 GetterTy<PostDominatorTree> PDTGetter = [&](const Function &F) {
372 PostDominatorTree *PDT = new PostDominatorTree(const_cast<Function &>(F));
373 PDTs.push_back(PDT);
374 return PDT;
375 };
376 MustBeExecutedContextExplorer Explorer(true, LIGetter, PDTGetter);
377 for (Function &F : M) {
378 for (Instruction &I : instructions(F)) {
379 dbgs() << "-- Explore context of: " << I << "\n";
380 for (const Instruction *CI : Explorer.range(&I))
381 dbgs() << " [F: " << CI->getFunction()->getName() << "] " << *CI
382 << "\n";
383 }
384 }
385
386 DeleteContainerPointers(PDTs);
387 DeleteContainerPointers(LIs);
388 DeleteContainerPointers(DTs);
389 return false;
390 }
391
isMustExecuteIn(const Instruction & I,Loop * L,DominatorTree * DT)392 static bool isMustExecuteIn(const Instruction &I, Loop *L, DominatorTree *DT) {
393 // TODO: merge these two routines. For the moment, we display the best
394 // result obtained by *either* implementation. This is a bit unfair since no
395 // caller actually gets the full power at the moment.
396 SimpleLoopSafetyInfo LSI;
397 LSI.computeLoopSafetyInfo(L);
398 return LSI.isGuaranteedToExecute(I, DT, L) ||
399 isGuaranteedToExecuteForEveryIteration(&I, L);
400 }
401
402 namespace {
403 /// An assembly annotator class to print must execute information in
404 /// comments.
405 class MustExecuteAnnotatedWriter : public AssemblyAnnotationWriter {
406 DenseMap<const Value*, SmallVector<Loop*, 4> > MustExec;
407
408 public:
MustExecuteAnnotatedWriter(const Function & F,DominatorTree & DT,LoopInfo & LI)409 MustExecuteAnnotatedWriter(const Function &F,
410 DominatorTree &DT, LoopInfo &LI) {
411 for (auto &I: instructions(F)) {
412 Loop *L = LI.getLoopFor(I.getParent());
413 while (L) {
414 if (isMustExecuteIn(I, L, &DT)) {
415 MustExec[&I].push_back(L);
416 }
417 L = L->getParentLoop();
418 };
419 }
420 }
MustExecuteAnnotatedWriter(const Module & M,DominatorTree & DT,LoopInfo & LI)421 MustExecuteAnnotatedWriter(const Module &M,
422 DominatorTree &DT, LoopInfo &LI) {
423 for (auto &F : M)
424 for (auto &I: instructions(F)) {
425 Loop *L = LI.getLoopFor(I.getParent());
426 while (L) {
427 if (isMustExecuteIn(I, L, &DT)) {
428 MustExec[&I].push_back(L);
429 }
430 L = L->getParentLoop();
431 };
432 }
433 }
434
435
printInfoComment(const Value & V,formatted_raw_ostream & OS)436 void printInfoComment(const Value &V, formatted_raw_ostream &OS) override {
437 if (!MustExec.count(&V))
438 return;
439
440 const auto &Loops = MustExec.lookup(&V);
441 const auto NumLoops = Loops.size();
442 if (NumLoops > 1)
443 OS << " ; (mustexec in " << NumLoops << " loops: ";
444 else
445 OS << " ; (mustexec in: ";
446
447 bool first = true;
448 for (const Loop *L : Loops) {
449 if (!first)
450 OS << ", ";
451 first = false;
452 OS << L->getHeader()->getName();
453 }
454 OS << ")";
455 }
456 };
457 } // namespace
458
runOnFunction(Function & F)459 bool MustExecutePrinter::runOnFunction(Function &F) {
460 auto &LI = getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
461 auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
462
463 MustExecuteAnnotatedWriter Writer(F, DT, LI);
464 F.print(dbgs(), &Writer);
465
466 return false;
467 }
468
469 /// Return true if \p L might be an endless loop.
maybeEndlessLoop(const Loop & L)470 static bool maybeEndlessLoop(const Loop &L) {
471 if (L.getHeader()->getParent()->hasFnAttribute(Attribute::WillReturn))
472 return false;
473 // TODO: Actually try to prove it is not.
474 // TODO: If maybeEndlessLoop is going to be expensive, cache it.
475 return true;
476 }
477
mayContainIrreducibleControl(const Function & F,const LoopInfo * LI)478 static bool mayContainIrreducibleControl(const Function &F, const LoopInfo *LI) {
479 if (!LI)
480 return false;
481 using RPOTraversal = ReversePostOrderTraversal<const Function *>;
482 RPOTraversal FuncRPOT(&F);
483 return !containsIrreducibleCFG<const BasicBlock *, const RPOTraversal,
484 const LoopInfo>(FuncRPOT, *LI);
485 }
486
487 /// Lookup \p Key in \p Map and return the result, potentially after
488 /// initializing the optional through \p Fn(\p args).
489 template <typename K, typename V, typename FnTy, typename... ArgsTy>
getOrCreateCachedOptional(K Key,DenseMap<K,Optional<V>> & Map,FnTy && Fn,ArgsTy &&...args)490 static V getOrCreateCachedOptional(K Key, DenseMap<K, Optional<V>> &Map,
491 FnTy &&Fn, ArgsTy&&... args) {
492 Optional<V> &OptVal = Map[Key];
493 if (!OptVal.hasValue())
494 OptVal = Fn(std::forward<ArgsTy>(args)...);
495 return OptVal.getValue();
496 }
497
498 const BasicBlock *
findForwardJoinPoint(const BasicBlock * InitBB)499 MustBeExecutedContextExplorer::findForwardJoinPoint(const BasicBlock *InitBB) {
500 const LoopInfo *LI = LIGetter(*InitBB->getParent());
501 const PostDominatorTree *PDT = PDTGetter(*InitBB->getParent());
502
503 LLVM_DEBUG(dbgs() << "\tFind forward join point for " << InitBB->getName()
504 << (LI ? " [LI]" : "") << (PDT ? " [PDT]" : ""));
505
506 const Function &F = *InitBB->getParent();
507 const Loop *L = LI ? LI->getLoopFor(InitBB) : nullptr;
508 const BasicBlock *HeaderBB = L ? L->getHeader() : InitBB;
509 bool WillReturnAndNoThrow = (F.hasFnAttribute(Attribute::WillReturn) ||
510 (L && !maybeEndlessLoop(*L))) &&
511 F.doesNotThrow();
512 LLVM_DEBUG(dbgs() << (L ? " [in loop]" : "")
513 << (WillReturnAndNoThrow ? " [WillReturn] [NoUnwind]" : "")
514 << "\n");
515
516 // Determine the adjacent blocks in the given direction but exclude (self)
517 // loops under certain circumstances.
518 SmallVector<const BasicBlock *, 8> Worklist;
519 for (const BasicBlock *SuccBB : successors(InitBB)) {
520 bool IsLatch = SuccBB == HeaderBB;
521 // Loop latches are ignored in forward propagation if the loop cannot be
522 // endless and may not throw: control has to go somewhere.
523 if (!WillReturnAndNoThrow || !IsLatch)
524 Worklist.push_back(SuccBB);
525 }
526 LLVM_DEBUG(dbgs() << "\t\t#Worklist: " << Worklist.size() << "\n");
527
528 // If there are no other adjacent blocks, there is no join point.
529 if (Worklist.empty())
530 return nullptr;
531
532 // If there is one adjacent block, it is the join point.
533 if (Worklist.size() == 1)
534 return Worklist[0];
535
536 // Try to determine a join block through the help of the post-dominance
537 // tree. If no tree was provided, we perform simple pattern matching for one
538 // block conditionals and one block loops only.
539 const BasicBlock *JoinBB = nullptr;
540 if (PDT)
541 if (const auto *InitNode = PDT->getNode(InitBB))
542 if (const auto *IDomNode = InitNode->getIDom())
543 JoinBB = IDomNode->getBlock();
544
545 if (!JoinBB && Worklist.size() == 2) {
546 const BasicBlock *Succ0 = Worklist[0];
547 const BasicBlock *Succ1 = Worklist[1];
548 const BasicBlock *Succ0UniqueSucc = Succ0->getUniqueSuccessor();
549 const BasicBlock *Succ1UniqueSucc = Succ1->getUniqueSuccessor();
550 if (Succ0UniqueSucc == InitBB) {
551 // InitBB -> Succ0 -> InitBB
552 // InitBB -> Succ1 = JoinBB
553 JoinBB = Succ1;
554 } else if (Succ1UniqueSucc == InitBB) {
555 // InitBB -> Succ1 -> InitBB
556 // InitBB -> Succ0 = JoinBB
557 JoinBB = Succ0;
558 } else if (Succ0 == Succ1UniqueSucc) {
559 // InitBB -> Succ0 = JoinBB
560 // InitBB -> Succ1 -> Succ0 = JoinBB
561 JoinBB = Succ0;
562 } else if (Succ1 == Succ0UniqueSucc) {
563 // InitBB -> Succ0 -> Succ1 = JoinBB
564 // InitBB -> Succ1 = JoinBB
565 JoinBB = Succ1;
566 } else if (Succ0UniqueSucc == Succ1UniqueSucc) {
567 // InitBB -> Succ0 -> JoinBB
568 // InitBB -> Succ1 -> JoinBB
569 JoinBB = Succ0UniqueSucc;
570 }
571 }
572
573 if (!JoinBB && L)
574 JoinBB = L->getUniqueExitBlock();
575
576 if (!JoinBB)
577 return nullptr;
578
579 LLVM_DEBUG(dbgs() << "\t\tJoin block candidate: " << JoinBB->getName() << "\n");
580
581 // In forward direction we check if control will for sure reach JoinBB from
582 // InitBB, thus it can not be "stopped" along the way. Ways to "stop" control
583 // are: infinite loops and instructions that do not necessarily transfer
584 // execution to their successor. To check for them we traverse the CFG from
585 // the adjacent blocks to the JoinBB, looking at all intermediate blocks.
586
587 // If we know the function is "will-return" and "no-throw" there is no need
588 // for futher checks.
589 if (!F.hasFnAttribute(Attribute::WillReturn) || !F.doesNotThrow()) {
590
591 auto BlockTransfersExecutionToSuccessor = [](const BasicBlock *BB) {
592 return isGuaranteedToTransferExecutionToSuccessor(BB);
593 };
594
595 SmallPtrSet<const BasicBlock *, 16> Visited;
596 while (!Worklist.empty()) {
597 const BasicBlock *ToBB = Worklist.pop_back_val();
598 if (ToBB == JoinBB)
599 continue;
600
601 // Make sure all loops in-between are finite.
602 if (!Visited.insert(ToBB).second) {
603 if (!F.hasFnAttribute(Attribute::WillReturn)) {
604 if (!LI)
605 return nullptr;
606
607 bool MayContainIrreducibleControl = getOrCreateCachedOptional(
608 &F, IrreducibleControlMap, mayContainIrreducibleControl, F, LI);
609 if (MayContainIrreducibleControl)
610 return nullptr;
611
612 const Loop *L = LI->getLoopFor(ToBB);
613 if (L && maybeEndlessLoop(*L))
614 return nullptr;
615 }
616
617 continue;
618 }
619
620 // Make sure the block has no instructions that could stop control
621 // transfer.
622 bool TransfersExecution = getOrCreateCachedOptional(
623 ToBB, BlockTransferMap, BlockTransfersExecutionToSuccessor, ToBB);
624 if (!TransfersExecution)
625 return nullptr;
626
627 for (const BasicBlock *AdjacentBB : successors(ToBB))
628 Worklist.push_back(AdjacentBB);
629 }
630 }
631
632 LLVM_DEBUG(dbgs() << "\tJoin block: " << JoinBB->getName() << "\n");
633 return JoinBB;
634 }
635
636 const Instruction *
getMustBeExecutedNextInstruction(MustBeExecutedIterator & It,const Instruction * PP)637 MustBeExecutedContextExplorer::getMustBeExecutedNextInstruction(
638 MustBeExecutedIterator &It, const Instruction *PP) {
639 if (!PP)
640 return PP;
641 LLVM_DEBUG(dbgs() << "Find next instruction for " << *PP << "\n");
642
643 // If we explore only inside a given basic block we stop at terminators.
644 if (!ExploreInterBlock && PP->isTerminator()) {
645 LLVM_DEBUG(dbgs() << "\tReached terminator in intra-block mode, done\n");
646 return nullptr;
647 }
648
649 // If we do not traverse the call graph we check if we can make progress in
650 // the current function. First, check if the instruction is guaranteed to
651 // transfer execution to the successor.
652 bool TransfersExecution = isGuaranteedToTransferExecutionToSuccessor(PP);
653 if (!TransfersExecution)
654 return nullptr;
655
656 // If this is not a terminator we know that there is a single instruction
657 // after this one that is executed next if control is transfered. If not,
658 // we can try to go back to a call site we entered earlier. If none exists, we
659 // do not know any instruction that has to be executd next.
660 if (!PP->isTerminator()) {
661 const Instruction *NextPP = PP->getNextNode();
662 LLVM_DEBUG(dbgs() << "\tIntermediate instruction does transfer control\n");
663 return NextPP;
664 }
665
666 // Finally, we have to handle terminators, trivial ones first.
667 assert(PP->isTerminator() && "Expected a terminator!");
668
669 // A terminator without a successor is not handled yet.
670 if (PP->getNumSuccessors() == 0) {
671 LLVM_DEBUG(dbgs() << "\tUnhandled terminator\n");
672 return nullptr;
673 }
674
675 // A terminator with a single successor, we will continue at the beginning of
676 // that one.
677 if (PP->getNumSuccessors() == 1) {
678 LLVM_DEBUG(
679 dbgs() << "\tUnconditional terminator, continue with successor\n");
680 return &PP->getSuccessor(0)->front();
681 }
682
683 // Multiple successors mean we need to find the join point where control flow
684 // converges again. We use the findForwardJoinPoint helper function with
685 // information about the function and helper analyses, if available.
686 if (const BasicBlock *JoinBB = findForwardJoinPoint(PP->getParent()))
687 return &JoinBB->front();
688
689 LLVM_DEBUG(dbgs() << "\tNo join point found\n");
690 return nullptr;
691 }
692
MustBeExecutedIterator(MustBeExecutedContextExplorer & Explorer,const Instruction * I)693 MustBeExecutedIterator::MustBeExecutedIterator(
694 MustBeExecutedContextExplorer &Explorer, const Instruction *I)
695 : Explorer(Explorer), CurInst(I) {
696 reset(I);
697 }
698
reset(const Instruction * I)699 void MustBeExecutedIterator::reset(const Instruction *I) {
700 CurInst = I;
701 Visited.clear();
702 Visited.insert(I);
703 }
704
advance()705 const Instruction *MustBeExecutedIterator::advance() {
706 assert(CurInst && "Cannot advance an end iterator!");
707 const Instruction *Next =
708 Explorer.getMustBeExecutedNextInstruction(*this, CurInst);
709 if (Next && !Visited.insert(Next).second)
710 Next = nullptr;
711 return Next;
712 }
713