• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 //===- SyncDependenceAnalysis.cpp - Divergent Branch Dependence Calculation
2 //--===//
3 //
4 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
5 // See https://llvm.org/LICENSE.txt for license information.
6 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements an algorithm that returns for a divergent branch
11 // the set of basic blocks whose phi nodes become divergent due to divergent
12 // control. These are the blocks that are reachable by two disjoint paths from
13 // the branch or loop exits that have a reaching path that is disjoint from a
14 // path to the loop latch.
15 //
16 // The SyncDependenceAnalysis is used in the DivergenceAnalysis to model
17 // control-induced divergence in phi nodes.
18 //
19 // -- Summary --
20 // The SyncDependenceAnalysis lazily computes sync dependences [3].
21 // The analysis evaluates the disjoint path criterion [2] by a reduction
22 // to SSA construction. The SSA construction algorithm is implemented as
23 // a simple data-flow analysis [1].
24 //
25 // [1] "A Simple, Fast Dominance Algorithm", SPI '01, Cooper, Harvey and Kennedy
26 // [2] "Efficiently Computing Static Single Assignment Form
27 //     and the Control Dependence Graph", TOPLAS '91,
28 //           Cytron, Ferrante, Rosen, Wegman and Zadeck
29 // [3] "Improving Performance of OpenCL on CPUs", CC '12, Karrenberg and Hack
30 // [4] "Divergence Analysis", TOPLAS '13, Sampaio, Souza, Collange and Pereira
31 //
32 // -- Sync dependence --
33 // Sync dependence [4] characterizes the control flow aspect of the
34 // propagation of branch divergence. For example,
35 //
36 //   %cond = icmp slt i32 %tid, 10
37 //   br i1 %cond, label %then, label %else
38 // then:
39 //   br label %merge
40 // else:
41 //   br label %merge
42 // merge:
43 //   %a = phi i32 [ 0, %then ], [ 1, %else ]
44 //
45 // Suppose %tid holds the thread ID. Although %a is not data dependent on %tid
46 // because %tid is not on its use-def chains, %a is sync dependent on %tid
47 // because the branch "br i1 %cond" depends on %tid and affects which value %a
48 // is assigned to.
49 //
50 // -- Reduction to SSA construction --
51 // There are two disjoint paths from A to X, if a certain variant of SSA
52 // construction places a phi node in X under the following set-up scheme [2].
53 //
54 // This variant of SSA construction ignores incoming undef values.
55 // That is paths from the entry without a definition do not result in
56 // phi nodes.
57 //
58 //       entry
59 //     /      \
60 //    A        \
61 //  /   \       Y
62 // B     C     /
63 //  \   /  \  /
64 //    D     E
65 //     \   /
66 //       F
67 // Assume that A contains a divergent branch. We are interested
68 // in the set of all blocks where each block is reachable from A
69 // via two disjoint paths. This would be the set {D, F} in this
70 // case.
71 // To generally reduce this query to SSA construction we introduce
72 // a virtual variable x and assign to x different values in each
73 // successor block of A.
74 //           entry
75 //         /      \
76 //        A        \
77 //      /   \       Y
78 // x = 0   x = 1   /
79 //      \  /   \  /
80 //        D     E
81 //         \   /
82 //           F
83 // Our flavor of SSA construction for x will construct the following
84 //            entry
85 //          /      \
86 //         A        \
87 //       /   \       Y
88 // x0 = 0   x1 = 1  /
89 //       \   /   \ /
90 //      x2=phi    E
91 //         \     /
92 //          x3=phi
93 // The blocks D and F contain phi nodes and are thus each reachable
94 // by two disjoins paths from A.
95 //
96 // -- Remarks --
97 // In case of loop exits we need to check the disjoint path criterion for loops
98 // [2]. To this end, we check whether the definition of x differs between the
99 // loop exit and the loop header (_after_ SSA construction).
100 //
101 //===----------------------------------------------------------------------===//
102 #include "llvm/ADT/PostOrderIterator.h"
103 #include "llvm/ADT/SmallPtrSet.h"
104 #include "llvm/Analysis/PostDominators.h"
105 #include "llvm/Analysis/SyncDependenceAnalysis.h"
106 #include "llvm/IR/BasicBlock.h"
107 #include "llvm/IR/CFG.h"
108 #include "llvm/IR/Dominators.h"
109 #include "llvm/IR/Function.h"
110 
111 #include <stack>
112 #include <unordered_set>
113 
114 #define DEBUG_TYPE "sync-dependence"
115 
116 namespace llvm {
117 
118 ConstBlockSet SyncDependenceAnalysis::EmptyBlockSet;
119 
SyncDependenceAnalysis(const DominatorTree & DT,const PostDominatorTree & PDT,const LoopInfo & LI)120 SyncDependenceAnalysis::SyncDependenceAnalysis(const DominatorTree &DT,
121                                                const PostDominatorTree &PDT,
122                                                const LoopInfo &LI)
123     : FuncRPOT(DT.getRoot()->getParent()), DT(DT), PDT(PDT), LI(LI) {}
124 
~SyncDependenceAnalysis()125 SyncDependenceAnalysis::~SyncDependenceAnalysis() {}
126 
127 using FunctionRPOT = ReversePostOrderTraversal<const Function *>;
128 
129 // divergence propagator for reducible CFGs
130 struct DivergencePropagator {
131   const FunctionRPOT &FuncRPOT;
132   const DominatorTree &DT;
133   const PostDominatorTree &PDT;
134   const LoopInfo &LI;
135 
136   // identified join points
137   std::unique_ptr<ConstBlockSet> JoinBlocks;
138 
139   // reached loop exits (by a path disjoint to a path to the loop header)
140   SmallPtrSet<const BasicBlock *, 4> ReachedLoopExits;
141 
142   // if DefMap[B] == C then C is the dominating definition at block B
143   // if DefMap[B] ~ undef then we haven't seen B yet
144   // if DefMap[B] == B then B is a join point of disjoint paths from X or B is
145   // an immediate successor of X (initial value).
146   using DefiningBlockMap = std::map<const BasicBlock *, const BasicBlock *>;
147   DefiningBlockMap DefMap;
148 
149   // all blocks with pending visits
150   std::unordered_set<const BasicBlock *> PendingUpdates;
151 
DivergencePropagatorllvm::DivergencePropagator152   DivergencePropagator(const FunctionRPOT &FuncRPOT, const DominatorTree &DT,
153                        const PostDominatorTree &PDT, const LoopInfo &LI)
154       : FuncRPOT(FuncRPOT), DT(DT), PDT(PDT), LI(LI),
155         JoinBlocks(new ConstBlockSet) {}
156 
157   // set the definition at @block and mark @block as pending for a visit
addPendingllvm::DivergencePropagator158   void addPending(const BasicBlock &Block, const BasicBlock &DefBlock) {
159     bool WasAdded = DefMap.emplace(&Block, &DefBlock).second;
160     if (WasAdded)
161       PendingUpdates.insert(&Block);
162   }
163 
printDefsllvm::DivergencePropagator164   void printDefs(raw_ostream &Out) {
165     Out << "Propagator::DefMap {\n";
166     for (const auto *Block : FuncRPOT) {
167       auto It = DefMap.find(Block);
168       Out << Block->getName() << " : ";
169       if (It == DefMap.end()) {
170         Out << "\n";
171       } else {
172         const auto *DefBlock = It->second;
173         Out << (DefBlock ? DefBlock->getName() : "<null>") << "\n";
174       }
175     }
176     Out << "}\n";
177   }
178 
179   // process @succBlock with reaching definition @defBlock
180   // the original divergent branch was in @parentLoop (if any)
visitSuccessorllvm::DivergencePropagator181   void visitSuccessor(const BasicBlock &SuccBlock, const Loop *ParentLoop,
182                       const BasicBlock &DefBlock) {
183 
184     // @succBlock is a loop exit
185     if (ParentLoop && !ParentLoop->contains(&SuccBlock)) {
186       DefMap.emplace(&SuccBlock, &DefBlock);
187       ReachedLoopExits.insert(&SuccBlock);
188       return;
189     }
190 
191     // first reaching def?
192     auto ItLastDef = DefMap.find(&SuccBlock);
193     if (ItLastDef == DefMap.end()) {
194       addPending(SuccBlock, DefBlock);
195       return;
196     }
197 
198     // a join of at least two definitions
199     if (ItLastDef->second != &DefBlock) {
200       // do we know this join already?
201       if (!JoinBlocks->insert(&SuccBlock).second)
202         return;
203 
204       // update the definition
205       addPending(SuccBlock, SuccBlock);
206     }
207   }
208 
209   // find all blocks reachable by two disjoint paths from @rootTerm.
210   // This method works for both divergent terminators and loops with
211   // divergent exits.
212   // @rootBlock is either the block containing the branch or the header of the
213   // divergent loop.
214   // @nodeSuccessors is the set of successors of the node (Loop or Terminator)
215   // headed by @rootBlock.
216   // @parentLoop is the parent loop of the Loop or the loop that contains the
217   // Terminator.
218   template <typename SuccessorIterable>
219   std::unique_ptr<ConstBlockSet>
computeJoinPointsllvm::DivergencePropagator220   computeJoinPoints(const BasicBlock &RootBlock,
221                     SuccessorIterable NodeSuccessors, const Loop *ParentLoop) {
222     assert(JoinBlocks);
223 
224     LLVM_DEBUG(dbgs() << "SDA:computeJoinPoints. Parent loop: " << (ParentLoop ? ParentLoop->getName() : "<null>") << "\n" );
225 
226     // bootstrap with branch targets
227     for (const auto *SuccBlock : NodeSuccessors) {
228       DefMap.emplace(SuccBlock, SuccBlock);
229 
230       if (ParentLoop && !ParentLoop->contains(SuccBlock)) {
231         // immediate loop exit from node.
232         ReachedLoopExits.insert(SuccBlock);
233       } else {
234         // regular successor
235         PendingUpdates.insert(SuccBlock);
236       }
237     }
238 
239     LLVM_DEBUG(
240       dbgs() << "SDA: rpo order:\n";
241       for (const auto * RpoBlock : FuncRPOT) {
242         dbgs() << "- " << RpoBlock->getName() << "\n";
243       }
244     );
245 
246     auto ItBeginRPO = FuncRPOT.begin();
247 
248     // skip until term (TODO RPOT won't let us start at @term directly)
249     for (; *ItBeginRPO != &RootBlock; ++ItBeginRPO) {}
250 
251     auto ItEndRPO = FuncRPOT.end();
252     assert(ItBeginRPO != ItEndRPO);
253 
254     // propagate definitions at the immediate successors of the node in RPO
255     auto ItBlockRPO = ItBeginRPO;
256     while ((++ItBlockRPO != ItEndRPO) &&
257            !PendingUpdates.empty()) {
258       const auto *Block = *ItBlockRPO;
259       LLVM_DEBUG(dbgs() << "SDA::joins. visiting " << Block->getName() << "\n");
260 
261       // skip Block if not pending update
262       auto ItPending = PendingUpdates.find(Block);
263       if (ItPending == PendingUpdates.end())
264         continue;
265       PendingUpdates.erase(ItPending);
266 
267       // propagate definition at Block to its successors
268       auto ItDef = DefMap.find(Block);
269       const auto *DefBlock = ItDef->second;
270       assert(DefBlock);
271 
272       auto *BlockLoop = LI.getLoopFor(Block);
273       if (ParentLoop &&
274           (ParentLoop != BlockLoop && ParentLoop->contains(BlockLoop))) {
275         // if the successor is the header of a nested loop pretend its a
276         // single node with the loop's exits as successors
277         SmallVector<BasicBlock *, 4> BlockLoopExits;
278         BlockLoop->getExitBlocks(BlockLoopExits);
279         for (const auto *BlockLoopExit : BlockLoopExits) {
280           visitSuccessor(*BlockLoopExit, ParentLoop, *DefBlock);
281         }
282 
283       } else {
284         // the successors are either on the same loop level or loop exits
285         for (const auto *SuccBlock : successors(Block)) {
286           visitSuccessor(*SuccBlock, ParentLoop, *DefBlock);
287         }
288       }
289     }
290 
291     LLVM_DEBUG(dbgs() << "SDA::joins. After propagation:\n"; printDefs(dbgs()));
292 
293     // We need to know the definition at the parent loop header to decide
294     // whether the definition at the header is different from the definition at
295     // the loop exits, which would indicate a divergent loop exits.
296     //
297     // A // loop header
298     // |
299     // B // nested loop header
300     // |
301     // C -> X (exit from B loop) -..-> (A latch)
302     // |
303     // D -> back to B (B latch)
304     // |
305     // proper exit from both loops
306     //
307     // analyze reached loop exits
308     if (!ReachedLoopExits.empty()) {
309       const BasicBlock *ParentLoopHeader =
310           ParentLoop ? ParentLoop->getHeader() : nullptr;
311 
312       assert(ParentLoop);
313       auto ItHeaderDef = DefMap.find(ParentLoopHeader);
314       const auto *HeaderDefBlock = (ItHeaderDef == DefMap.end()) ? nullptr : ItHeaderDef->second;
315 
316       LLVM_DEBUG(printDefs(dbgs()));
317       assert(HeaderDefBlock && "no definition at header of carrying loop");
318 
319       for (const auto *ExitBlock : ReachedLoopExits) {
320         auto ItExitDef = DefMap.find(ExitBlock);
321         assert((ItExitDef != DefMap.end()) &&
322                "no reaching def at reachable loop exit");
323         if (ItExitDef->second != HeaderDefBlock) {
324           JoinBlocks->insert(ExitBlock);
325         }
326       }
327     }
328 
329     return std::move(JoinBlocks);
330   }
331 };
332 
join_blocks(const Loop & Loop)333 const ConstBlockSet &SyncDependenceAnalysis::join_blocks(const Loop &Loop) {
334   using LoopExitVec = SmallVector<BasicBlock *, 4>;
335   LoopExitVec LoopExits;
336   Loop.getExitBlocks(LoopExits);
337   if (LoopExits.size() < 1) {
338     return EmptyBlockSet;
339   }
340 
341   // already available in cache?
342   auto ItCached = CachedLoopExitJoins.find(&Loop);
343   if (ItCached != CachedLoopExitJoins.end()) {
344     return *ItCached->second;
345   }
346 
347   // compute all join points
348   DivergencePropagator Propagator{FuncRPOT, DT, PDT, LI};
349   auto JoinBlocks = Propagator.computeJoinPoints<const LoopExitVec &>(
350       *Loop.getHeader(), LoopExits, Loop.getParentLoop());
351 
352   auto ItInserted = CachedLoopExitJoins.emplace(&Loop, std::move(JoinBlocks));
353   assert(ItInserted.second);
354   return *ItInserted.first->second;
355 }
356 
357 const ConstBlockSet &
join_blocks(const Instruction & Term)358 SyncDependenceAnalysis::join_blocks(const Instruction &Term) {
359   // trivial case
360   if (Term.getNumSuccessors() < 1) {
361     return EmptyBlockSet;
362   }
363 
364   // already available in cache?
365   auto ItCached = CachedBranchJoins.find(&Term);
366   if (ItCached != CachedBranchJoins.end())
367     return *ItCached->second;
368 
369   // compute all join points
370   DivergencePropagator Propagator{FuncRPOT, DT, PDT, LI};
371   const auto &TermBlock = *Term.getParent();
372   auto JoinBlocks = Propagator.computeJoinPoints<succ_const_range>(
373       TermBlock, successors(Term.getParent()), LI.getLoopFor(&TermBlock));
374 
375   auto ItInserted = CachedBranchJoins.emplace(&Term, std::move(JoinBlocks));
376   assert(ItInserted.second);
377   return *ItInserted.first->second;
378 }
379 
380 } // namespace llvm
381