• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 //===-- Analysis.cpp - CodeGen LLVM IR Analysis Utilities -----------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines several CodeGen-specific LLVM IR analysis utilities.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "llvm/CodeGen/Analysis.h"
14 #include "llvm/Analysis/ValueTracking.h"
15 #include "llvm/CodeGen/MachineFunction.h"
16 #include "llvm/CodeGen/TargetInstrInfo.h"
17 #include "llvm/CodeGen/TargetLowering.h"
18 #include "llvm/CodeGen/TargetSubtargetInfo.h"
19 #include "llvm/IR/DataLayout.h"
20 #include "llvm/IR/DerivedTypes.h"
21 #include "llvm/IR/Function.h"
22 #include "llvm/IR/Instructions.h"
23 #include "llvm/IR/IntrinsicInst.h"
24 #include "llvm/IR/LLVMContext.h"
25 #include "llvm/IR/Module.h"
26 #include "llvm/Support/ErrorHandling.h"
27 #include "llvm/Support/MathExtras.h"
28 #include "llvm/Transforms/Utils/GlobalStatus.h"
29 
30 using namespace llvm;
31 
32 /// Compute the linearized index of a member in a nested aggregate/struct/array
33 /// by recursing and accumulating CurIndex as long as there are indices in the
34 /// index list.
ComputeLinearIndex(Type * Ty,const unsigned * Indices,const unsigned * IndicesEnd,unsigned CurIndex)35 unsigned llvm::ComputeLinearIndex(Type *Ty,
36                                   const unsigned *Indices,
37                                   const unsigned *IndicesEnd,
38                                   unsigned CurIndex) {
39   // Base case: We're done.
40   if (Indices && Indices == IndicesEnd)
41     return CurIndex;
42 
43   // Given a struct type, recursively traverse the elements.
44   if (StructType *STy = dyn_cast<StructType>(Ty)) {
45     for (StructType::element_iterator EB = STy->element_begin(),
46                                       EI = EB,
47                                       EE = STy->element_end();
48         EI != EE; ++EI) {
49       if (Indices && *Indices == unsigned(EI - EB))
50         return ComputeLinearIndex(*EI, Indices+1, IndicesEnd, CurIndex);
51       CurIndex = ComputeLinearIndex(*EI, nullptr, nullptr, CurIndex);
52     }
53     assert(!Indices && "Unexpected out of bound");
54     return CurIndex;
55   }
56   // Given an array type, recursively traverse the elements.
57   else if (ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
58     Type *EltTy = ATy->getElementType();
59     unsigned NumElts = ATy->getNumElements();
60     // Compute the Linear offset when jumping one element of the array
61     unsigned EltLinearOffset = ComputeLinearIndex(EltTy, nullptr, nullptr, 0);
62     if (Indices) {
63       assert(*Indices < NumElts && "Unexpected out of bound");
64       // If the indice is inside the array, compute the index to the requested
65       // elt and recurse inside the element with the end of the indices list
66       CurIndex += EltLinearOffset* *Indices;
67       return ComputeLinearIndex(EltTy, Indices+1, IndicesEnd, CurIndex);
68     }
69     CurIndex += EltLinearOffset*NumElts;
70     return CurIndex;
71   }
72   // We haven't found the type we're looking for, so keep searching.
73   return CurIndex + 1;
74 }
75 
76 /// ComputeValueVTs - Given an LLVM IR type, compute a sequence of
77 /// EVTs that represent all the individual underlying
78 /// non-aggregate types that comprise it.
79 ///
80 /// If Offsets is non-null, it points to a vector to be filled in
81 /// with the in-memory offsets of each of the individual values.
82 ///
ComputeValueVTs(const TargetLowering & TLI,const DataLayout & DL,Type * Ty,SmallVectorImpl<EVT> & ValueVTs,SmallVectorImpl<EVT> * MemVTs,SmallVectorImpl<uint64_t> * Offsets,uint64_t StartingOffset)83 void llvm::ComputeValueVTs(const TargetLowering &TLI, const DataLayout &DL,
84                            Type *Ty, SmallVectorImpl<EVT> &ValueVTs,
85                            SmallVectorImpl<EVT> *MemVTs,
86                            SmallVectorImpl<uint64_t> *Offsets,
87                            uint64_t StartingOffset) {
88   // Given a struct type, recursively traverse the elements.
89   if (StructType *STy = dyn_cast<StructType>(Ty)) {
90     const StructLayout *SL = DL.getStructLayout(STy);
91     for (StructType::element_iterator EB = STy->element_begin(),
92                                       EI = EB,
93                                       EE = STy->element_end();
94          EI != EE; ++EI)
95       ComputeValueVTs(TLI, DL, *EI, ValueVTs, MemVTs, Offsets,
96                       StartingOffset + SL->getElementOffset(EI - EB));
97     return;
98   }
99   // Given an array type, recursively traverse the elements.
100   if (ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
101     Type *EltTy = ATy->getElementType();
102     uint64_t EltSize = DL.getTypeAllocSize(EltTy);
103     for (unsigned i = 0, e = ATy->getNumElements(); i != e; ++i)
104       ComputeValueVTs(TLI, DL, EltTy, ValueVTs, MemVTs, Offsets,
105                       StartingOffset + i * EltSize);
106     return;
107   }
108   // Interpret void as zero return values.
109   if (Ty->isVoidTy())
110     return;
111   // Base case: we can get an EVT for this LLVM IR type.
112   ValueVTs.push_back(TLI.getValueType(DL, Ty));
113   if (MemVTs)
114     MemVTs->push_back(TLI.getMemValueType(DL, Ty));
115   if (Offsets)
116     Offsets->push_back(StartingOffset);
117 }
118 
ComputeValueVTs(const TargetLowering & TLI,const DataLayout & DL,Type * Ty,SmallVectorImpl<EVT> & ValueVTs,SmallVectorImpl<uint64_t> * Offsets,uint64_t StartingOffset)119 void llvm::ComputeValueVTs(const TargetLowering &TLI, const DataLayout &DL,
120                            Type *Ty, SmallVectorImpl<EVT> &ValueVTs,
121                            SmallVectorImpl<uint64_t> *Offsets,
122                            uint64_t StartingOffset) {
123   return ComputeValueVTs(TLI, DL, Ty, ValueVTs, /*MemVTs=*/nullptr, Offsets,
124                          StartingOffset);
125 }
126 
computeValueLLTs(const DataLayout & DL,Type & Ty,SmallVectorImpl<LLT> & ValueTys,SmallVectorImpl<uint64_t> * Offsets,uint64_t StartingOffset)127 void llvm::computeValueLLTs(const DataLayout &DL, Type &Ty,
128                             SmallVectorImpl<LLT> &ValueTys,
129                             SmallVectorImpl<uint64_t> *Offsets,
130                             uint64_t StartingOffset) {
131   // Given a struct type, recursively traverse the elements.
132   if (StructType *STy = dyn_cast<StructType>(&Ty)) {
133     const StructLayout *SL = DL.getStructLayout(STy);
134     for (unsigned I = 0, E = STy->getNumElements(); I != E; ++I)
135       computeValueLLTs(DL, *STy->getElementType(I), ValueTys, Offsets,
136                        StartingOffset + SL->getElementOffset(I));
137     return;
138   }
139   // Given an array type, recursively traverse the elements.
140   if (ArrayType *ATy = dyn_cast<ArrayType>(&Ty)) {
141     Type *EltTy = ATy->getElementType();
142     uint64_t EltSize = DL.getTypeAllocSize(EltTy);
143     for (unsigned i = 0, e = ATy->getNumElements(); i != e; ++i)
144       computeValueLLTs(DL, *EltTy, ValueTys, Offsets,
145                        StartingOffset + i * EltSize);
146     return;
147   }
148   // Interpret void as zero return values.
149   if (Ty.isVoidTy())
150     return;
151   // Base case: we can get an LLT for this LLVM IR type.
152   ValueTys.push_back(getLLTForType(Ty, DL));
153   if (Offsets != nullptr)
154     Offsets->push_back(StartingOffset * 8);
155 }
156 
157 /// ExtractTypeInfo - Returns the type info, possibly bitcast, encoded in V.
ExtractTypeInfo(Value * V)158 GlobalValue *llvm::ExtractTypeInfo(Value *V) {
159   V = V->stripPointerCasts();
160   GlobalValue *GV = dyn_cast<GlobalValue>(V);
161   GlobalVariable *Var = dyn_cast<GlobalVariable>(V);
162 
163   if (Var && Var->getName() == "llvm.eh.catch.all.value") {
164     assert(Var->hasInitializer() &&
165            "The EH catch-all value must have an initializer");
166     Value *Init = Var->getInitializer();
167     GV = dyn_cast<GlobalValue>(Init);
168     if (!GV) V = cast<ConstantPointerNull>(Init);
169   }
170 
171   assert((GV || isa<ConstantPointerNull>(V)) &&
172          "TypeInfo must be a global variable or NULL");
173   return GV;
174 }
175 
176 /// hasInlineAsmMemConstraint - Return true if the inline asm instruction being
177 /// processed uses a memory 'm' constraint.
178 bool
hasInlineAsmMemConstraint(InlineAsm::ConstraintInfoVector & CInfos,const TargetLowering & TLI)179 llvm::hasInlineAsmMemConstraint(InlineAsm::ConstraintInfoVector &CInfos,
180                                 const TargetLowering &TLI) {
181   for (unsigned i = 0, e = CInfos.size(); i != e; ++i) {
182     InlineAsm::ConstraintInfo &CI = CInfos[i];
183     for (unsigned j = 0, ee = CI.Codes.size(); j != ee; ++j) {
184       TargetLowering::ConstraintType CType = TLI.getConstraintType(CI.Codes[j]);
185       if (CType == TargetLowering::C_Memory)
186         return true;
187     }
188 
189     // Indirect operand accesses access memory.
190     if (CI.isIndirect)
191       return true;
192   }
193 
194   return false;
195 }
196 
197 /// getFCmpCondCode - Return the ISD condition code corresponding to
198 /// the given LLVM IR floating-point condition code.  This includes
199 /// consideration of global floating-point math flags.
200 ///
getFCmpCondCode(FCmpInst::Predicate Pred)201 ISD::CondCode llvm::getFCmpCondCode(FCmpInst::Predicate Pred) {
202   switch (Pred) {
203   case FCmpInst::FCMP_FALSE: return ISD::SETFALSE;
204   case FCmpInst::FCMP_OEQ:   return ISD::SETOEQ;
205   case FCmpInst::FCMP_OGT:   return ISD::SETOGT;
206   case FCmpInst::FCMP_OGE:   return ISD::SETOGE;
207   case FCmpInst::FCMP_OLT:   return ISD::SETOLT;
208   case FCmpInst::FCMP_OLE:   return ISD::SETOLE;
209   case FCmpInst::FCMP_ONE:   return ISD::SETONE;
210   case FCmpInst::FCMP_ORD:   return ISD::SETO;
211   case FCmpInst::FCMP_UNO:   return ISD::SETUO;
212   case FCmpInst::FCMP_UEQ:   return ISD::SETUEQ;
213   case FCmpInst::FCMP_UGT:   return ISD::SETUGT;
214   case FCmpInst::FCMP_UGE:   return ISD::SETUGE;
215   case FCmpInst::FCMP_ULT:   return ISD::SETULT;
216   case FCmpInst::FCMP_ULE:   return ISD::SETULE;
217   case FCmpInst::FCMP_UNE:   return ISD::SETUNE;
218   case FCmpInst::FCMP_TRUE:  return ISD::SETTRUE;
219   default: llvm_unreachable("Invalid FCmp predicate opcode!");
220   }
221 }
222 
getFCmpCodeWithoutNaN(ISD::CondCode CC)223 ISD::CondCode llvm::getFCmpCodeWithoutNaN(ISD::CondCode CC) {
224   switch (CC) {
225     case ISD::SETOEQ: case ISD::SETUEQ: return ISD::SETEQ;
226     case ISD::SETONE: case ISD::SETUNE: return ISD::SETNE;
227     case ISD::SETOLT: case ISD::SETULT: return ISD::SETLT;
228     case ISD::SETOLE: case ISD::SETULE: return ISD::SETLE;
229     case ISD::SETOGT: case ISD::SETUGT: return ISD::SETGT;
230     case ISD::SETOGE: case ISD::SETUGE: return ISD::SETGE;
231     default: return CC;
232   }
233 }
234 
235 /// getICmpCondCode - Return the ISD condition code corresponding to
236 /// the given LLVM IR integer condition code.
237 ///
getICmpCondCode(ICmpInst::Predicate Pred)238 ISD::CondCode llvm::getICmpCondCode(ICmpInst::Predicate Pred) {
239   switch (Pred) {
240   case ICmpInst::ICMP_EQ:  return ISD::SETEQ;
241   case ICmpInst::ICMP_NE:  return ISD::SETNE;
242   case ICmpInst::ICMP_SLE: return ISD::SETLE;
243   case ICmpInst::ICMP_ULE: return ISD::SETULE;
244   case ICmpInst::ICMP_SGE: return ISD::SETGE;
245   case ICmpInst::ICMP_UGE: return ISD::SETUGE;
246   case ICmpInst::ICMP_SLT: return ISD::SETLT;
247   case ICmpInst::ICMP_ULT: return ISD::SETULT;
248   case ICmpInst::ICMP_SGT: return ISD::SETGT;
249   case ICmpInst::ICMP_UGT: return ISD::SETUGT;
250   default:
251     llvm_unreachable("Invalid ICmp predicate opcode!");
252   }
253 }
254 
isNoopBitcast(Type * T1,Type * T2,const TargetLoweringBase & TLI)255 static bool isNoopBitcast(Type *T1, Type *T2,
256                           const TargetLoweringBase& TLI) {
257   return T1 == T2 || (T1->isPointerTy() && T2->isPointerTy()) ||
258          (isa<VectorType>(T1) && isa<VectorType>(T2) &&
259           TLI.isTypeLegal(EVT::getEVT(T1)) && TLI.isTypeLegal(EVT::getEVT(T2)));
260 }
261 
262 /// Look through operations that will be free to find the earliest source of
263 /// this value.
264 ///
265 /// @param ValLoc If V has aggregate type, we will be interested in a particular
266 /// scalar component. This records its address; the reverse of this list gives a
267 /// sequence of indices appropriate for an extractvalue to locate the important
268 /// value. This value is updated during the function and on exit will indicate
269 /// similar information for the Value returned.
270 ///
271 /// @param DataBits If this function looks through truncate instructions, this
272 /// will record the smallest size attained.
getNoopInput(const Value * V,SmallVectorImpl<unsigned> & ValLoc,unsigned & DataBits,const TargetLoweringBase & TLI,const DataLayout & DL)273 static const Value *getNoopInput(const Value *V,
274                                  SmallVectorImpl<unsigned> &ValLoc,
275                                  unsigned &DataBits,
276                                  const TargetLoweringBase &TLI,
277                                  const DataLayout &DL) {
278   while (true) {
279     // Try to look through V1; if V1 is not an instruction, it can't be looked
280     // through.
281     const Instruction *I = dyn_cast<Instruction>(V);
282     if (!I || I->getNumOperands() == 0) return V;
283     const Value *NoopInput = nullptr;
284 
285     Value *Op = I->getOperand(0);
286     if (isa<BitCastInst>(I)) {
287       // Look through truly no-op bitcasts.
288       if (isNoopBitcast(Op->getType(), I->getType(), TLI))
289         NoopInput = Op;
290     } else if (isa<GetElementPtrInst>(I)) {
291       // Look through getelementptr
292       if (cast<GetElementPtrInst>(I)->hasAllZeroIndices())
293         NoopInput = Op;
294     } else if (isa<IntToPtrInst>(I)) {
295       // Look through inttoptr.
296       // Make sure this isn't a truncating or extending cast.  We could
297       // support this eventually, but don't bother for now.
298       if (!isa<VectorType>(I->getType()) &&
299           DL.getPointerSizeInBits() ==
300               cast<IntegerType>(Op->getType())->getBitWidth())
301         NoopInput = Op;
302     } else if (isa<PtrToIntInst>(I)) {
303       // Look through ptrtoint.
304       // Make sure this isn't a truncating or extending cast.  We could
305       // support this eventually, but don't bother for now.
306       if (!isa<VectorType>(I->getType()) &&
307           DL.getPointerSizeInBits() ==
308               cast<IntegerType>(I->getType())->getBitWidth())
309         NoopInput = Op;
310     } else if (isa<TruncInst>(I) &&
311                TLI.allowTruncateForTailCall(Op->getType(), I->getType())) {
312       DataBits = std::min((uint64_t)DataBits,
313                          I->getType()->getPrimitiveSizeInBits().getFixedSize());
314       NoopInput = Op;
315     } else if (auto CS = ImmutableCallSite(I)) {
316       const Value *ReturnedOp = CS.getReturnedArgOperand();
317       if (ReturnedOp && isNoopBitcast(ReturnedOp->getType(), I->getType(), TLI))
318         NoopInput = ReturnedOp;
319     } else if (const InsertValueInst *IVI = dyn_cast<InsertValueInst>(V)) {
320       // Value may come from either the aggregate or the scalar
321       ArrayRef<unsigned> InsertLoc = IVI->getIndices();
322       if (ValLoc.size() >= InsertLoc.size() &&
323           std::equal(InsertLoc.begin(), InsertLoc.end(), ValLoc.rbegin())) {
324         // The type being inserted is a nested sub-type of the aggregate; we
325         // have to remove those initial indices to get the location we're
326         // interested in for the operand.
327         ValLoc.resize(ValLoc.size() - InsertLoc.size());
328         NoopInput = IVI->getInsertedValueOperand();
329       } else {
330         // The struct we're inserting into has the value we're interested in, no
331         // change of address.
332         NoopInput = Op;
333       }
334     } else if (const ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(V)) {
335       // The part we're interested in will inevitably be some sub-section of the
336       // previous aggregate. Combine the two paths to obtain the true address of
337       // our element.
338       ArrayRef<unsigned> ExtractLoc = EVI->getIndices();
339       ValLoc.append(ExtractLoc.rbegin(), ExtractLoc.rend());
340       NoopInput = Op;
341     }
342     // Terminate if we couldn't find anything to look through.
343     if (!NoopInput)
344       return V;
345 
346     V = NoopInput;
347   }
348 }
349 
350 /// Return true if this scalar return value only has bits discarded on its path
351 /// from the "tail call" to the "ret". This includes the obvious noop
352 /// instructions handled by getNoopInput above as well as free truncations (or
353 /// extensions prior to the call).
slotOnlyDiscardsData(const Value * RetVal,const Value * CallVal,SmallVectorImpl<unsigned> & RetIndices,SmallVectorImpl<unsigned> & CallIndices,bool AllowDifferingSizes,const TargetLoweringBase & TLI,const DataLayout & DL)354 static bool slotOnlyDiscardsData(const Value *RetVal, const Value *CallVal,
355                                  SmallVectorImpl<unsigned> &RetIndices,
356                                  SmallVectorImpl<unsigned> &CallIndices,
357                                  bool AllowDifferingSizes,
358                                  const TargetLoweringBase &TLI,
359                                  const DataLayout &DL) {
360 
361   // Trace the sub-value needed by the return value as far back up the graph as
362   // possible, in the hope that it will intersect with the value produced by the
363   // call. In the simple case with no "returned" attribute, the hope is actually
364   // that we end up back at the tail call instruction itself.
365   unsigned BitsRequired = UINT_MAX;
366   RetVal = getNoopInput(RetVal, RetIndices, BitsRequired, TLI, DL);
367 
368   // If this slot in the value returned is undef, it doesn't matter what the
369   // call puts there, it'll be fine.
370   if (isa<UndefValue>(RetVal))
371     return true;
372 
373   // Now do a similar search up through the graph to find where the value
374   // actually returned by the "tail call" comes from. In the simple case without
375   // a "returned" attribute, the search will be blocked immediately and the loop
376   // a Noop.
377   unsigned BitsProvided = UINT_MAX;
378   CallVal = getNoopInput(CallVal, CallIndices, BitsProvided, TLI, DL);
379 
380   // There's no hope if we can't actually trace them to (the same part of!) the
381   // same value.
382   if (CallVal != RetVal || CallIndices != RetIndices)
383     return false;
384 
385   // However, intervening truncates may have made the call non-tail. Make sure
386   // all the bits that are needed by the "ret" have been provided by the "tail
387   // call". FIXME: with sufficiently cunning bit-tracking, we could look through
388   // extensions too.
389   if (BitsProvided < BitsRequired ||
390       (!AllowDifferingSizes && BitsProvided != BitsRequired))
391     return false;
392 
393   return true;
394 }
395 
396 /// For an aggregate type, determine whether a given index is within bounds or
397 /// not.
indexReallyValid(CompositeType * T,unsigned Idx)398 static bool indexReallyValid(CompositeType *T, unsigned Idx) {
399   if (ArrayType *AT = dyn_cast<ArrayType>(T))
400     return Idx < AT->getNumElements();
401 
402   return Idx < cast<StructType>(T)->getNumElements();
403 }
404 
405 /// Move the given iterators to the next leaf type in depth first traversal.
406 ///
407 /// Performs a depth-first traversal of the type as specified by its arguments,
408 /// stopping at the next leaf node (which may be a legitimate scalar type or an
409 /// empty struct or array).
410 ///
411 /// @param SubTypes List of the partial components making up the type from
412 /// outermost to innermost non-empty aggregate. The element currently
413 /// represented is SubTypes.back()->getTypeAtIndex(Path.back() - 1).
414 ///
415 /// @param Path Set of extractvalue indices leading from the outermost type
416 /// (SubTypes[0]) to the leaf node currently represented.
417 ///
418 /// @returns true if a new type was found, false otherwise. Calling this
419 /// function again on a finished iterator will repeatedly return
420 /// false. SubTypes.back()->getTypeAtIndex(Path.back()) is either an empty
421 /// aggregate or a non-aggregate
advanceToNextLeafType(SmallVectorImpl<CompositeType * > & SubTypes,SmallVectorImpl<unsigned> & Path)422 static bool advanceToNextLeafType(SmallVectorImpl<CompositeType *> &SubTypes,
423                                   SmallVectorImpl<unsigned> &Path) {
424   // First march back up the tree until we can successfully increment one of the
425   // coordinates in Path.
426   while (!Path.empty() && !indexReallyValid(SubTypes.back(), Path.back() + 1)) {
427     Path.pop_back();
428     SubTypes.pop_back();
429   }
430 
431   // If we reached the top, then the iterator is done.
432   if (Path.empty())
433     return false;
434 
435   // We know there's *some* valid leaf now, so march back down the tree picking
436   // out the left-most element at each node.
437   ++Path.back();
438   Type *DeeperType = SubTypes.back()->getTypeAtIndex(Path.back());
439   while (DeeperType->isAggregateType()) {
440     CompositeType *CT = cast<CompositeType>(DeeperType);
441     if (!indexReallyValid(CT, 0))
442       return true;
443 
444     SubTypes.push_back(CT);
445     Path.push_back(0);
446 
447     DeeperType = CT->getTypeAtIndex(0U);
448   }
449 
450   return true;
451 }
452 
453 /// Find the first non-empty, scalar-like type in Next and setup the iterator
454 /// components.
455 ///
456 /// Assuming Next is an aggregate of some kind, this function will traverse the
457 /// tree from left to right (i.e. depth-first) looking for the first
458 /// non-aggregate type which will play a role in function return.
459 ///
460 /// For example, if Next was {[0 x i64], {{}, i32, {}}, i32} then we would setup
461 /// Path as [1, 1] and SubTypes as [Next, {{}, i32, {}}] to represent the first
462 /// i32 in that type.
firstRealType(Type * Next,SmallVectorImpl<CompositeType * > & SubTypes,SmallVectorImpl<unsigned> & Path)463 static bool firstRealType(Type *Next,
464                           SmallVectorImpl<CompositeType *> &SubTypes,
465                           SmallVectorImpl<unsigned> &Path) {
466   // First initialise the iterator components to the first "leaf" node
467   // (i.e. node with no valid sub-type at any index, so {} does count as a leaf
468   // despite nominally being an aggregate).
469   while (Next->isAggregateType() &&
470          indexReallyValid(cast<CompositeType>(Next), 0)) {
471     SubTypes.push_back(cast<CompositeType>(Next));
472     Path.push_back(0);
473     Next = cast<CompositeType>(Next)->getTypeAtIndex(0U);
474   }
475 
476   // If there's no Path now, Next was originally scalar already (or empty
477   // leaf). We're done.
478   if (Path.empty())
479     return true;
480 
481   // Otherwise, use normal iteration to keep looking through the tree until we
482   // find a non-aggregate type.
483   while (SubTypes.back()->getTypeAtIndex(Path.back())->isAggregateType()) {
484     if (!advanceToNextLeafType(SubTypes, Path))
485       return false;
486   }
487 
488   return true;
489 }
490 
491 /// Set the iterator data-structures to the next non-empty, non-aggregate
492 /// subtype.
nextRealType(SmallVectorImpl<CompositeType * > & SubTypes,SmallVectorImpl<unsigned> & Path)493 static bool nextRealType(SmallVectorImpl<CompositeType *> &SubTypes,
494                          SmallVectorImpl<unsigned> &Path) {
495   do {
496     if (!advanceToNextLeafType(SubTypes, Path))
497       return false;
498 
499     assert(!Path.empty() && "found a leaf but didn't set the path?");
500   } while (SubTypes.back()->getTypeAtIndex(Path.back())->isAggregateType());
501 
502   return true;
503 }
504 
505 
506 /// Test if the given instruction is in a position to be optimized
507 /// with a tail-call. This roughly means that it's in a block with
508 /// a return and there's nothing that needs to be scheduled
509 /// between it and the return.
510 ///
511 /// This function only tests target-independent requirements.
isInTailCallPosition(ImmutableCallSite CS,const TargetMachine & TM)512 bool llvm::isInTailCallPosition(ImmutableCallSite CS, const TargetMachine &TM) {
513   const Instruction *I = CS.getInstruction();
514   const BasicBlock *ExitBB = I->getParent();
515   const Instruction *Term = ExitBB->getTerminator();
516   const ReturnInst *Ret = dyn_cast<ReturnInst>(Term);
517 
518   // The block must end in a return statement or unreachable.
519   //
520   // FIXME: Decline tailcall if it's not guaranteed and if the block ends in
521   // an unreachable, for now. The way tailcall optimization is currently
522   // implemented means it will add an epilogue followed by a jump. That is
523   // not profitable. Also, if the callee is a special function (e.g.
524   // longjmp on x86), it can end up causing miscompilation that has not
525   // been fully understood.
526   if (!Ret &&
527       ((!TM.Options.GuaranteedTailCallOpt &&
528         CS.getCallingConv() != CallingConv::Tail) || !isa<UnreachableInst>(Term)))
529     return false;
530 
531   // If I will have a chain, make sure no other instruction that will have a
532   // chain interposes between I and the return.
533   if (I->mayHaveSideEffects() || I->mayReadFromMemory() ||
534       !isSafeToSpeculativelyExecute(I))
535     for (BasicBlock::const_iterator BBI = std::prev(ExitBB->end(), 2);; --BBI) {
536       if (&*BBI == I)
537         break;
538       // Debug info intrinsics do not get in the way of tail call optimization.
539       if (isa<DbgInfoIntrinsic>(BBI))
540         continue;
541       // A lifetime end or assume intrinsic should not stop tail call
542       // optimization.
543       if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(BBI))
544         if (II->getIntrinsicID() == Intrinsic::lifetime_end ||
545             II->getIntrinsicID() == Intrinsic::assume)
546           continue;
547       if (BBI->mayHaveSideEffects() || BBI->mayReadFromMemory() ||
548           !isSafeToSpeculativelyExecute(&*BBI))
549         return false;
550     }
551 
552   const Function *F = ExitBB->getParent();
553   return returnTypeIsEligibleForTailCall(
554       F, I, Ret, *TM.getSubtargetImpl(*F)->getTargetLowering());
555 }
556 
attributesPermitTailCall(const Function * F,const Instruction * I,const ReturnInst * Ret,const TargetLoweringBase & TLI,bool * AllowDifferingSizes)557 bool llvm::attributesPermitTailCall(const Function *F, const Instruction *I,
558                                     const ReturnInst *Ret,
559                                     const TargetLoweringBase &TLI,
560                                     bool *AllowDifferingSizes) {
561   // ADS may be null, so don't write to it directly.
562   bool DummyADS;
563   bool &ADS = AllowDifferingSizes ? *AllowDifferingSizes : DummyADS;
564   ADS = true;
565 
566   AttrBuilder CallerAttrs(F->getAttributes(), AttributeList::ReturnIndex);
567   AttrBuilder CalleeAttrs(cast<CallInst>(I)->getAttributes(),
568                           AttributeList::ReturnIndex);
569 
570   // Following attributes are completely benign as far as calling convention
571   // goes, they shouldn't affect whether the call is a tail call.
572   CallerAttrs.removeAttribute(Attribute::NoAlias);
573   CalleeAttrs.removeAttribute(Attribute::NoAlias);
574   CallerAttrs.removeAttribute(Attribute::NonNull);
575   CalleeAttrs.removeAttribute(Attribute::NonNull);
576   CallerAttrs.removeAttribute(Attribute::Dereferenceable);
577   CalleeAttrs.removeAttribute(Attribute::Dereferenceable);
578   CallerAttrs.removeAttribute(Attribute::DereferenceableOrNull);
579   CalleeAttrs.removeAttribute(Attribute::DereferenceableOrNull);
580 
581   if (CallerAttrs.contains(Attribute::ZExt)) {
582     if (!CalleeAttrs.contains(Attribute::ZExt))
583       return false;
584 
585     ADS = false;
586     CallerAttrs.removeAttribute(Attribute::ZExt);
587     CalleeAttrs.removeAttribute(Attribute::ZExt);
588   } else if (CallerAttrs.contains(Attribute::SExt)) {
589     if (!CalleeAttrs.contains(Attribute::SExt))
590       return false;
591 
592     ADS = false;
593     CallerAttrs.removeAttribute(Attribute::SExt);
594     CalleeAttrs.removeAttribute(Attribute::SExt);
595   }
596 
597   // Drop sext and zext return attributes if the result is not used.
598   // This enables tail calls for code like:
599   //
600   // define void @caller() {
601   // entry:
602   //   %unused_result = tail call zeroext i1 @callee()
603   //   br label %retlabel
604   // retlabel:
605   //   ret void
606   // }
607   if (I->use_empty()) {
608     CalleeAttrs.removeAttribute(Attribute::SExt);
609     CalleeAttrs.removeAttribute(Attribute::ZExt);
610   }
611 
612   // If they're still different, there's some facet we don't understand
613   // (currently only "inreg", but in future who knows). It may be OK but the
614   // only safe option is to reject the tail call.
615   return CallerAttrs == CalleeAttrs;
616 }
617 
618 /// Check whether B is a bitcast of a pointer type to another pointer type,
619 /// which is equal to A.
isPointerBitcastEqualTo(const Value * A,const Value * B)620 static bool isPointerBitcastEqualTo(const Value *A, const Value *B) {
621   assert(A && B && "Expected non-null inputs!");
622 
623   auto *BitCastIn = dyn_cast<BitCastInst>(B);
624 
625   if (!BitCastIn)
626     return false;
627 
628   if (!A->getType()->isPointerTy() || !B->getType()->isPointerTy())
629     return false;
630 
631   return A == BitCastIn->getOperand(0);
632 }
633 
returnTypeIsEligibleForTailCall(const Function * F,const Instruction * I,const ReturnInst * Ret,const TargetLoweringBase & TLI)634 bool llvm::returnTypeIsEligibleForTailCall(const Function *F,
635                                            const Instruction *I,
636                                            const ReturnInst *Ret,
637                                            const TargetLoweringBase &TLI) {
638   // If the block ends with a void return or unreachable, it doesn't matter
639   // what the call's return type is.
640   if (!Ret || Ret->getNumOperands() == 0) return true;
641 
642   // If the return value is undef, it doesn't matter what the call's
643   // return type is.
644   if (isa<UndefValue>(Ret->getOperand(0))) return true;
645 
646   // Make sure the attributes attached to each return are compatible.
647   bool AllowDifferingSizes;
648   if (!attributesPermitTailCall(F, I, Ret, TLI, &AllowDifferingSizes))
649     return false;
650 
651   const Value *RetVal = Ret->getOperand(0), *CallVal = I;
652   // Intrinsic like llvm.memcpy has no return value, but the expanded
653   // libcall may or may not have return value. On most platforms, it
654   // will be expanded as memcpy in libc, which returns the first
655   // argument. On other platforms like arm-none-eabi, memcpy may be
656   // expanded as library call without return value, like __aeabi_memcpy.
657   const CallInst *Call = cast<CallInst>(I);
658   if (Function *F = Call->getCalledFunction()) {
659     Intrinsic::ID IID = F->getIntrinsicID();
660     if (((IID == Intrinsic::memcpy &&
661           TLI.getLibcallName(RTLIB::MEMCPY) == StringRef("memcpy")) ||
662          (IID == Intrinsic::memmove &&
663           TLI.getLibcallName(RTLIB::MEMMOVE) == StringRef("memmove")) ||
664          (IID == Intrinsic::memset &&
665           TLI.getLibcallName(RTLIB::MEMSET) == StringRef("memset"))) &&
666         (RetVal == Call->getArgOperand(0) ||
667          isPointerBitcastEqualTo(RetVal, Call->getArgOperand(0))))
668       return true;
669   }
670 
671   SmallVector<unsigned, 4> RetPath, CallPath;
672   SmallVector<CompositeType *, 4> RetSubTypes, CallSubTypes;
673 
674   bool RetEmpty = !firstRealType(RetVal->getType(), RetSubTypes, RetPath);
675   bool CallEmpty = !firstRealType(CallVal->getType(), CallSubTypes, CallPath);
676 
677   // Nothing's actually returned, it doesn't matter what the callee put there
678   // it's a valid tail call.
679   if (RetEmpty)
680     return true;
681 
682   // Iterate pairwise through each of the value types making up the tail call
683   // and the corresponding return. For each one we want to know whether it's
684   // essentially going directly from the tail call to the ret, via operations
685   // that end up not generating any code.
686   //
687   // We allow a certain amount of covariance here. For example it's permitted
688   // for the tail call to define more bits than the ret actually cares about
689   // (e.g. via a truncate).
690   do {
691     if (CallEmpty) {
692       // We've exhausted the values produced by the tail call instruction, the
693       // rest are essentially undef. The type doesn't really matter, but we need
694       // *something*.
695       Type *SlotType = RetSubTypes.back()->getTypeAtIndex(RetPath.back());
696       CallVal = UndefValue::get(SlotType);
697     }
698 
699     // The manipulations performed when we're looking through an insertvalue or
700     // an extractvalue would happen at the front of the RetPath list, so since
701     // we have to copy it anyway it's more efficient to create a reversed copy.
702     SmallVector<unsigned, 4> TmpRetPath(RetPath.rbegin(), RetPath.rend());
703     SmallVector<unsigned, 4> TmpCallPath(CallPath.rbegin(), CallPath.rend());
704 
705     // Finally, we can check whether the value produced by the tail call at this
706     // index is compatible with the value we return.
707     if (!slotOnlyDiscardsData(RetVal, CallVal, TmpRetPath, TmpCallPath,
708                               AllowDifferingSizes, TLI,
709                               F->getParent()->getDataLayout()))
710       return false;
711 
712     CallEmpty  = !nextRealType(CallSubTypes, CallPath);
713   } while(nextRealType(RetSubTypes, RetPath));
714 
715   return true;
716 }
717 
collectEHScopeMembers(DenseMap<const MachineBasicBlock *,int> & EHScopeMembership,int EHScope,const MachineBasicBlock * MBB)718 static void collectEHScopeMembers(
719     DenseMap<const MachineBasicBlock *, int> &EHScopeMembership, int EHScope,
720     const MachineBasicBlock *MBB) {
721   SmallVector<const MachineBasicBlock *, 16> Worklist = {MBB};
722   while (!Worklist.empty()) {
723     const MachineBasicBlock *Visiting = Worklist.pop_back_val();
724     // Don't follow blocks which start new scopes.
725     if (Visiting->isEHPad() && Visiting != MBB)
726       continue;
727 
728     // Add this MBB to our scope.
729     auto P = EHScopeMembership.insert(std::make_pair(Visiting, EHScope));
730 
731     // Don't revisit blocks.
732     if (!P.second) {
733       assert(P.first->second == EHScope && "MBB is part of two scopes!");
734       continue;
735     }
736 
737     // Returns are boundaries where scope transfer can occur, don't follow
738     // successors.
739     if (Visiting->isEHScopeReturnBlock())
740       continue;
741 
742     for (const MachineBasicBlock *Succ : Visiting->successors())
743       Worklist.push_back(Succ);
744   }
745 }
746 
747 DenseMap<const MachineBasicBlock *, int>
getEHScopeMembership(const MachineFunction & MF)748 llvm::getEHScopeMembership(const MachineFunction &MF) {
749   DenseMap<const MachineBasicBlock *, int> EHScopeMembership;
750 
751   // We don't have anything to do if there aren't any EH pads.
752   if (!MF.hasEHScopes())
753     return EHScopeMembership;
754 
755   int EntryBBNumber = MF.front().getNumber();
756   bool IsSEH = isAsynchronousEHPersonality(
757       classifyEHPersonality(MF.getFunction().getPersonalityFn()));
758 
759   const TargetInstrInfo *TII = MF.getSubtarget().getInstrInfo();
760   SmallVector<const MachineBasicBlock *, 16> EHScopeBlocks;
761   SmallVector<const MachineBasicBlock *, 16> UnreachableBlocks;
762   SmallVector<const MachineBasicBlock *, 16> SEHCatchPads;
763   SmallVector<std::pair<const MachineBasicBlock *, int>, 16> CatchRetSuccessors;
764   for (const MachineBasicBlock &MBB : MF) {
765     if (MBB.isEHScopeEntry()) {
766       EHScopeBlocks.push_back(&MBB);
767     } else if (IsSEH && MBB.isEHPad()) {
768       SEHCatchPads.push_back(&MBB);
769     } else if (MBB.pred_empty()) {
770       UnreachableBlocks.push_back(&MBB);
771     }
772 
773     MachineBasicBlock::const_iterator MBBI = MBB.getFirstTerminator();
774 
775     // CatchPads are not scopes for SEH so do not consider CatchRet to
776     // transfer control to another scope.
777     if (MBBI == MBB.end() || MBBI->getOpcode() != TII->getCatchReturnOpcode())
778       continue;
779 
780     // FIXME: SEH CatchPads are not necessarily in the parent function:
781     // they could be inside a finally block.
782     const MachineBasicBlock *Successor = MBBI->getOperand(0).getMBB();
783     const MachineBasicBlock *SuccessorColor = MBBI->getOperand(1).getMBB();
784     CatchRetSuccessors.push_back(
785         {Successor, IsSEH ? EntryBBNumber : SuccessorColor->getNumber()});
786   }
787 
788   // We don't have anything to do if there aren't any EH pads.
789   if (EHScopeBlocks.empty())
790     return EHScopeMembership;
791 
792   // Identify all the basic blocks reachable from the function entry.
793   collectEHScopeMembers(EHScopeMembership, EntryBBNumber, &MF.front());
794   // All blocks not part of a scope are in the parent function.
795   for (const MachineBasicBlock *MBB : UnreachableBlocks)
796     collectEHScopeMembers(EHScopeMembership, EntryBBNumber, MBB);
797   // Next, identify all the blocks inside the scopes.
798   for (const MachineBasicBlock *MBB : EHScopeBlocks)
799     collectEHScopeMembers(EHScopeMembership, MBB->getNumber(), MBB);
800   // SEH CatchPads aren't really scopes, handle them separately.
801   for (const MachineBasicBlock *MBB : SEHCatchPads)
802     collectEHScopeMembers(EHScopeMembership, EntryBBNumber, MBB);
803   // Finally, identify all the targets of a catchret.
804   for (std::pair<const MachineBasicBlock *, int> CatchRetPair :
805        CatchRetSuccessors)
806     collectEHScopeMembers(EHScopeMembership, CatchRetPair.second,
807                           CatchRetPair.first);
808   return EHScopeMembership;
809 }
810