1 //===- MachineSink.cpp - Sinking for machine instructions -----------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This pass moves instructions into successor blocks when possible, so that
10 // they aren't executed on paths where their results aren't needed.
11 //
12 // This pass is not intended to be a replacement or a complete alternative
13 // for an LLVM-IR-level sinking pass. It is only designed to sink simple
14 // constructs that are not exposed before lowering and instruction selection.
15 //
16 //===----------------------------------------------------------------------===//
17
18 #include "llvm/ADT/DenseSet.h"
19 #include "llvm/ADT/PointerIntPair.h"
20 #include "llvm/ADT/SetVector.h"
21 #include "llvm/ADT/SmallSet.h"
22 #include "llvm/ADT/SmallVector.h"
23 #include "llvm/ADT/SparseBitVector.h"
24 #include "llvm/ADT/Statistic.h"
25 #include "llvm/Analysis/AliasAnalysis.h"
26 #include "llvm/CodeGen/MachineBasicBlock.h"
27 #include "llvm/CodeGen/MachineBlockFrequencyInfo.h"
28 #include "llvm/CodeGen/MachineBranchProbabilityInfo.h"
29 #include "llvm/CodeGen/MachineDominators.h"
30 #include "llvm/CodeGen/MachineFunction.h"
31 #include "llvm/CodeGen/MachineFunctionPass.h"
32 #include "llvm/CodeGen/MachineInstr.h"
33 #include "llvm/CodeGen/MachineLoopInfo.h"
34 #include "llvm/CodeGen/MachineOperand.h"
35 #include "llvm/CodeGen/MachinePostDominators.h"
36 #include "llvm/CodeGen/MachineRegisterInfo.h"
37 #include "llvm/CodeGen/TargetInstrInfo.h"
38 #include "llvm/CodeGen/TargetRegisterInfo.h"
39 #include "llvm/CodeGen/TargetSubtargetInfo.h"
40 #include "llvm/IR/BasicBlock.h"
41 #include "llvm/IR/DebugInfoMetadata.h"
42 #include "llvm/IR/LLVMContext.h"
43 #include "llvm/InitializePasses.h"
44 #include "llvm/MC/MCRegisterInfo.h"
45 #include "llvm/Pass.h"
46 #include "llvm/Support/BranchProbability.h"
47 #include "llvm/Support/CommandLine.h"
48 #include "llvm/Support/Debug.h"
49 #include "llvm/Support/raw_ostream.h"
50 #include <algorithm>
51 #include <cassert>
52 #include <cstdint>
53 #include <map>
54 #include <utility>
55 #include <vector>
56
57 using namespace llvm;
58
59 #define DEBUG_TYPE "machine-sink"
60
61 static cl::opt<bool>
62 SplitEdges("machine-sink-split",
63 cl::desc("Split critical edges during machine sinking"),
64 cl::init(true), cl::Hidden);
65
66 static cl::opt<bool>
67 UseBlockFreqInfo("machine-sink-bfi",
68 cl::desc("Use block frequency info to find successors to sink"),
69 cl::init(true), cl::Hidden);
70
71 static cl::opt<unsigned> SplitEdgeProbabilityThreshold(
72 "machine-sink-split-probability-threshold",
73 cl::desc(
74 "Percentage threshold for splitting single-instruction critical edge. "
75 "If the branch threshold is higher than this threshold, we allow "
76 "speculative execution of up to 1 instruction to avoid branching to "
77 "splitted critical edge"),
78 cl::init(40), cl::Hidden);
79
80 STATISTIC(NumSunk, "Number of machine instructions sunk");
81 STATISTIC(NumSplit, "Number of critical edges split");
82 STATISTIC(NumCoalesces, "Number of copies coalesced");
83 STATISTIC(NumPostRACopySink, "Number of copies sunk after RA");
84
85 namespace {
86
87 class MachineSinking : public MachineFunctionPass {
88 const TargetInstrInfo *TII;
89 const TargetRegisterInfo *TRI;
90 MachineRegisterInfo *MRI; // Machine register information
91 MachineDominatorTree *DT; // Machine dominator tree
92 MachinePostDominatorTree *PDT; // Machine post dominator tree
93 MachineLoopInfo *LI;
94 const MachineBlockFrequencyInfo *MBFI;
95 const MachineBranchProbabilityInfo *MBPI;
96 AliasAnalysis *AA;
97
98 // Remember which edges have been considered for breaking.
99 SmallSet<std::pair<MachineBasicBlock*, MachineBasicBlock*>, 8>
100 CEBCandidates;
101 // Remember which edges we are about to split.
102 // This is different from CEBCandidates since those edges
103 // will be split.
104 SetVector<std::pair<MachineBasicBlock *, MachineBasicBlock *>> ToSplit;
105
106 SparseBitVector<> RegsToClearKillFlags;
107
108 using AllSuccsCache =
109 std::map<MachineBasicBlock *, SmallVector<MachineBasicBlock *, 4>>;
110
111 /// DBG_VALUE pointer and flag. The flag is true if this DBG_VALUE is
112 /// post-dominated by another DBG_VALUE of the same variable location.
113 /// This is necessary to detect sequences such as:
114 /// %0 = someinst
115 /// DBG_VALUE %0, !123, !DIExpression()
116 /// %1 = anotherinst
117 /// DBG_VALUE %1, !123, !DIExpression()
118 /// Where if %0 were to sink, the DBG_VAUE should not sink with it, as that
119 /// would re-order assignments.
120 using SeenDbgUser = PointerIntPair<MachineInstr *, 1>;
121
122 /// Record of DBG_VALUE uses of vregs in a block, so that we can identify
123 /// debug instructions to sink.
124 SmallDenseMap<unsigned, TinyPtrVector<SeenDbgUser>> SeenDbgUsers;
125
126 /// Record of debug variables that have had their locations set in the
127 /// current block.
128 DenseSet<DebugVariable> SeenDbgVars;
129
130 public:
131 static char ID; // Pass identification
132
MachineSinking()133 MachineSinking() : MachineFunctionPass(ID) {
134 initializeMachineSinkingPass(*PassRegistry::getPassRegistry());
135 }
136
137 bool runOnMachineFunction(MachineFunction &MF) override;
138
getAnalysisUsage(AnalysisUsage & AU) const139 void getAnalysisUsage(AnalysisUsage &AU) const override {
140 MachineFunctionPass::getAnalysisUsage(AU);
141 AU.addRequired<AAResultsWrapperPass>();
142 AU.addRequired<MachineDominatorTree>();
143 AU.addRequired<MachinePostDominatorTree>();
144 AU.addRequired<MachineLoopInfo>();
145 AU.addRequired<MachineBranchProbabilityInfo>();
146 AU.addPreserved<MachineLoopInfo>();
147 if (UseBlockFreqInfo)
148 AU.addRequired<MachineBlockFrequencyInfo>();
149 }
150
releaseMemory()151 void releaseMemory() override {
152 CEBCandidates.clear();
153 }
154
155 private:
156 bool ProcessBlock(MachineBasicBlock &MBB);
157 void ProcessDbgInst(MachineInstr &MI);
158 bool isWorthBreakingCriticalEdge(MachineInstr &MI,
159 MachineBasicBlock *From,
160 MachineBasicBlock *To);
161
162 /// Postpone the splitting of the given critical
163 /// edge (\p From, \p To).
164 ///
165 /// We do not split the edges on the fly. Indeed, this invalidates
166 /// the dominance information and thus triggers a lot of updates
167 /// of that information underneath.
168 /// Instead, we postpone all the splits after each iteration of
169 /// the main loop. That way, the information is at least valid
170 /// for the lifetime of an iteration.
171 ///
172 /// \return True if the edge is marked as toSplit, false otherwise.
173 /// False can be returned if, for instance, this is not profitable.
174 bool PostponeSplitCriticalEdge(MachineInstr &MI,
175 MachineBasicBlock *From,
176 MachineBasicBlock *To,
177 bool BreakPHIEdge);
178 bool SinkInstruction(MachineInstr &MI, bool &SawStore,
179 AllSuccsCache &AllSuccessors);
180
181 /// If we sink a COPY inst, some debug users of it's destination may no
182 /// longer be dominated by the COPY, and will eventually be dropped.
183 /// This is easily rectified by forwarding the non-dominated debug uses
184 /// to the copy source.
185 void SalvageUnsunkDebugUsersOfCopy(MachineInstr &,
186 MachineBasicBlock *TargetBlock);
187 bool AllUsesDominatedByBlock(unsigned Reg, MachineBasicBlock *MBB,
188 MachineBasicBlock *DefMBB,
189 bool &BreakPHIEdge, bool &LocalUse) const;
190 MachineBasicBlock *FindSuccToSinkTo(MachineInstr &MI, MachineBasicBlock *MBB,
191 bool &BreakPHIEdge, AllSuccsCache &AllSuccessors);
192 bool isProfitableToSinkTo(unsigned Reg, MachineInstr &MI,
193 MachineBasicBlock *MBB,
194 MachineBasicBlock *SuccToSinkTo,
195 AllSuccsCache &AllSuccessors);
196
197 bool PerformTrivialForwardCoalescing(MachineInstr &MI,
198 MachineBasicBlock *MBB);
199
200 SmallVector<MachineBasicBlock *, 4> &
201 GetAllSortedSuccessors(MachineInstr &MI, MachineBasicBlock *MBB,
202 AllSuccsCache &AllSuccessors) const;
203 };
204
205 } // end anonymous namespace
206
207 char MachineSinking::ID = 0;
208
209 char &llvm::MachineSinkingID = MachineSinking::ID;
210
211 INITIALIZE_PASS_BEGIN(MachineSinking, DEBUG_TYPE,
212 "Machine code sinking", false, false)
INITIALIZE_PASS_DEPENDENCY(MachineBranchProbabilityInfo)213 INITIALIZE_PASS_DEPENDENCY(MachineBranchProbabilityInfo)
214 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)
215 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo)
216 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
217 INITIALIZE_PASS_END(MachineSinking, DEBUG_TYPE,
218 "Machine code sinking", false, false)
219
220 bool MachineSinking::PerformTrivialForwardCoalescing(MachineInstr &MI,
221 MachineBasicBlock *MBB) {
222 if (!MI.isCopy())
223 return false;
224
225 Register SrcReg = MI.getOperand(1).getReg();
226 Register DstReg = MI.getOperand(0).getReg();
227 if (!Register::isVirtualRegister(SrcReg) ||
228 !Register::isVirtualRegister(DstReg) || !MRI->hasOneNonDBGUse(SrcReg))
229 return false;
230
231 const TargetRegisterClass *SRC = MRI->getRegClass(SrcReg);
232 const TargetRegisterClass *DRC = MRI->getRegClass(DstReg);
233 if (SRC != DRC)
234 return false;
235
236 MachineInstr *DefMI = MRI->getVRegDef(SrcReg);
237 if (DefMI->isCopyLike())
238 return false;
239 LLVM_DEBUG(dbgs() << "Coalescing: " << *DefMI);
240 LLVM_DEBUG(dbgs() << "*** to: " << MI);
241 MRI->replaceRegWith(DstReg, SrcReg);
242 MI.eraseFromParent();
243
244 // Conservatively, clear any kill flags, since it's possible that they are no
245 // longer correct.
246 MRI->clearKillFlags(SrcReg);
247
248 ++NumCoalesces;
249 return true;
250 }
251
252 /// AllUsesDominatedByBlock - Return true if all uses of the specified register
253 /// occur in blocks dominated by the specified block. If any use is in the
254 /// definition block, then return false since it is never legal to move def
255 /// after uses.
256 bool
AllUsesDominatedByBlock(unsigned Reg,MachineBasicBlock * MBB,MachineBasicBlock * DefMBB,bool & BreakPHIEdge,bool & LocalUse) const257 MachineSinking::AllUsesDominatedByBlock(unsigned Reg,
258 MachineBasicBlock *MBB,
259 MachineBasicBlock *DefMBB,
260 bool &BreakPHIEdge,
261 bool &LocalUse) const {
262 assert(Register::isVirtualRegister(Reg) && "Only makes sense for vregs");
263
264 // Ignore debug uses because debug info doesn't affect the code.
265 if (MRI->use_nodbg_empty(Reg))
266 return true;
267
268 // BreakPHIEdge is true if all the uses are in the successor MBB being sunken
269 // into and they are all PHI nodes. In this case, machine-sink must break
270 // the critical edge first. e.g.
271 //
272 // %bb.1: derived from LLVM BB %bb4.preheader
273 // Predecessors according to CFG: %bb.0
274 // ...
275 // %reg16385 = DEC64_32r %reg16437, implicit-def dead %eflags
276 // ...
277 // JE_4 <%bb.37>, implicit %eflags
278 // Successors according to CFG: %bb.37 %bb.2
279 //
280 // %bb.2: derived from LLVM BB %bb.nph
281 // Predecessors according to CFG: %bb.0 %bb.1
282 // %reg16386 = PHI %reg16434, %bb.0, %reg16385, %bb.1
283 BreakPHIEdge = true;
284 for (MachineOperand &MO : MRI->use_nodbg_operands(Reg)) {
285 MachineInstr *UseInst = MO.getParent();
286 unsigned OpNo = &MO - &UseInst->getOperand(0);
287 MachineBasicBlock *UseBlock = UseInst->getParent();
288 if (!(UseBlock == MBB && UseInst->isPHI() &&
289 UseInst->getOperand(OpNo+1).getMBB() == DefMBB)) {
290 BreakPHIEdge = false;
291 break;
292 }
293 }
294 if (BreakPHIEdge)
295 return true;
296
297 for (MachineOperand &MO : MRI->use_nodbg_operands(Reg)) {
298 // Determine the block of the use.
299 MachineInstr *UseInst = MO.getParent();
300 unsigned OpNo = &MO - &UseInst->getOperand(0);
301 MachineBasicBlock *UseBlock = UseInst->getParent();
302 if (UseInst->isPHI()) {
303 // PHI nodes use the operand in the predecessor block, not the block with
304 // the PHI.
305 UseBlock = UseInst->getOperand(OpNo+1).getMBB();
306 } else if (UseBlock == DefMBB) {
307 LocalUse = true;
308 return false;
309 }
310
311 // Check that it dominates.
312 if (!DT->dominates(MBB, UseBlock))
313 return false;
314 }
315
316 return true;
317 }
318
runOnMachineFunction(MachineFunction & MF)319 bool MachineSinking::runOnMachineFunction(MachineFunction &MF) {
320 if (skipFunction(MF.getFunction()))
321 return false;
322
323 LLVM_DEBUG(dbgs() << "******** Machine Sinking ********\n");
324
325 TII = MF.getSubtarget().getInstrInfo();
326 TRI = MF.getSubtarget().getRegisterInfo();
327 MRI = &MF.getRegInfo();
328 DT = &getAnalysis<MachineDominatorTree>();
329 PDT = &getAnalysis<MachinePostDominatorTree>();
330 LI = &getAnalysis<MachineLoopInfo>();
331 MBFI = UseBlockFreqInfo ? &getAnalysis<MachineBlockFrequencyInfo>() : nullptr;
332 MBPI = &getAnalysis<MachineBranchProbabilityInfo>();
333 AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
334
335 bool EverMadeChange = false;
336
337 while (true) {
338 bool MadeChange = false;
339
340 // Process all basic blocks.
341 CEBCandidates.clear();
342 ToSplit.clear();
343 for (auto &MBB: MF)
344 MadeChange |= ProcessBlock(MBB);
345
346 // If we have anything we marked as toSplit, split it now.
347 for (auto &Pair : ToSplit) {
348 auto NewSucc = Pair.first->SplitCriticalEdge(Pair.second, *this);
349 if (NewSucc != nullptr) {
350 LLVM_DEBUG(dbgs() << " *** Splitting critical edge: "
351 << printMBBReference(*Pair.first) << " -- "
352 << printMBBReference(*NewSucc) << " -- "
353 << printMBBReference(*Pair.second) << '\n');
354 MadeChange = true;
355 ++NumSplit;
356 } else
357 LLVM_DEBUG(dbgs() << " *** Not legal to break critical edge\n");
358 }
359 // If this iteration over the code changed anything, keep iterating.
360 if (!MadeChange) break;
361 EverMadeChange = true;
362 }
363
364 // Now clear any kill flags for recorded registers.
365 for (auto I : RegsToClearKillFlags)
366 MRI->clearKillFlags(I);
367 RegsToClearKillFlags.clear();
368
369 return EverMadeChange;
370 }
371
ProcessBlock(MachineBasicBlock & MBB)372 bool MachineSinking::ProcessBlock(MachineBasicBlock &MBB) {
373 // Can't sink anything out of a block that has less than two successors.
374 if (MBB.succ_size() <= 1 || MBB.empty()) return false;
375
376 // Don't bother sinking code out of unreachable blocks. In addition to being
377 // unprofitable, it can also lead to infinite looping, because in an
378 // unreachable loop there may be nowhere to stop.
379 if (!DT->isReachableFromEntry(&MBB)) return false;
380
381 bool MadeChange = false;
382
383 // Cache all successors, sorted by frequency info and loop depth.
384 AllSuccsCache AllSuccessors;
385
386 // Walk the basic block bottom-up. Remember if we saw a store.
387 MachineBasicBlock::iterator I = MBB.end();
388 --I;
389 bool ProcessedBegin, SawStore = false;
390 do {
391 MachineInstr &MI = *I; // The instruction to sink.
392
393 // Predecrement I (if it's not begin) so that it isn't invalidated by
394 // sinking.
395 ProcessedBegin = I == MBB.begin();
396 if (!ProcessedBegin)
397 --I;
398
399 if (MI.isDebugInstr()) {
400 if (MI.isDebugValue())
401 ProcessDbgInst(MI);
402 continue;
403 }
404
405 bool Joined = PerformTrivialForwardCoalescing(MI, &MBB);
406 if (Joined) {
407 MadeChange = true;
408 continue;
409 }
410
411 if (SinkInstruction(MI, SawStore, AllSuccessors)) {
412 ++NumSunk;
413 MadeChange = true;
414 }
415
416 // If we just processed the first instruction in the block, we're done.
417 } while (!ProcessedBegin);
418
419 SeenDbgUsers.clear();
420 SeenDbgVars.clear();
421
422 return MadeChange;
423 }
424
ProcessDbgInst(MachineInstr & MI)425 void MachineSinking::ProcessDbgInst(MachineInstr &MI) {
426 // When we see DBG_VALUEs for registers, record any vreg it reads, so that
427 // we know what to sink if the vreg def sinks.
428 assert(MI.isDebugValue() && "Expected DBG_VALUE for processing");
429
430 DebugVariable Var(MI.getDebugVariable(), MI.getDebugExpression(),
431 MI.getDebugLoc()->getInlinedAt());
432 bool SeenBefore = SeenDbgVars.count(Var) != 0;
433
434 MachineOperand &MO = MI.getOperand(0);
435 if (MO.isReg() && MO.getReg().isVirtual())
436 SeenDbgUsers[MO.getReg()].push_back(SeenDbgUser(&MI, SeenBefore));
437
438 // Record the variable for any DBG_VALUE, to avoid re-ordering any of them.
439 SeenDbgVars.insert(Var);
440 }
441
isWorthBreakingCriticalEdge(MachineInstr & MI,MachineBasicBlock * From,MachineBasicBlock * To)442 bool MachineSinking::isWorthBreakingCriticalEdge(MachineInstr &MI,
443 MachineBasicBlock *From,
444 MachineBasicBlock *To) {
445 // FIXME: Need much better heuristics.
446
447 // If the pass has already considered breaking this edge (during this pass
448 // through the function), then let's go ahead and break it. This means
449 // sinking multiple "cheap" instructions into the same block.
450 if (!CEBCandidates.insert(std::make_pair(From, To)).second)
451 return true;
452
453 if (!MI.isCopy() && !TII->isAsCheapAsAMove(MI))
454 return true;
455
456 if (From->isSuccessor(To) && MBPI->getEdgeProbability(From, To) <=
457 BranchProbability(SplitEdgeProbabilityThreshold, 100))
458 return true;
459
460 // MI is cheap, we probably don't want to break the critical edge for it.
461 // However, if this would allow some definitions of its source operands
462 // to be sunk then it's probably worth it.
463 for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
464 const MachineOperand &MO = MI.getOperand(i);
465 if (!MO.isReg() || !MO.isUse())
466 continue;
467 Register Reg = MO.getReg();
468 if (Reg == 0)
469 continue;
470
471 // We don't move live definitions of physical registers,
472 // so sinking their uses won't enable any opportunities.
473 if (Register::isPhysicalRegister(Reg))
474 continue;
475
476 // If this instruction is the only user of a virtual register,
477 // check if breaking the edge will enable sinking
478 // both this instruction and the defining instruction.
479 if (MRI->hasOneNonDBGUse(Reg)) {
480 // If the definition resides in same MBB,
481 // claim it's likely we can sink these together.
482 // If definition resides elsewhere, we aren't
483 // blocking it from being sunk so don't break the edge.
484 MachineInstr *DefMI = MRI->getVRegDef(Reg);
485 if (DefMI->getParent() == MI.getParent())
486 return true;
487 }
488 }
489
490 return false;
491 }
492
PostponeSplitCriticalEdge(MachineInstr & MI,MachineBasicBlock * FromBB,MachineBasicBlock * ToBB,bool BreakPHIEdge)493 bool MachineSinking::PostponeSplitCriticalEdge(MachineInstr &MI,
494 MachineBasicBlock *FromBB,
495 MachineBasicBlock *ToBB,
496 bool BreakPHIEdge) {
497 if (!isWorthBreakingCriticalEdge(MI, FromBB, ToBB))
498 return false;
499
500 // Avoid breaking back edge. From == To means backedge for single BB loop.
501 if (!SplitEdges || FromBB == ToBB)
502 return false;
503
504 // Check for backedges of more "complex" loops.
505 if (LI->getLoopFor(FromBB) == LI->getLoopFor(ToBB) &&
506 LI->isLoopHeader(ToBB))
507 return false;
508
509 // It's not always legal to break critical edges and sink the computation
510 // to the edge.
511 //
512 // %bb.1:
513 // v1024
514 // Beq %bb.3
515 // <fallthrough>
516 // %bb.2:
517 // ... no uses of v1024
518 // <fallthrough>
519 // %bb.3:
520 // ...
521 // = v1024
522 //
523 // If %bb.1 -> %bb.3 edge is broken and computation of v1024 is inserted:
524 //
525 // %bb.1:
526 // ...
527 // Bne %bb.2
528 // %bb.4:
529 // v1024 =
530 // B %bb.3
531 // %bb.2:
532 // ... no uses of v1024
533 // <fallthrough>
534 // %bb.3:
535 // ...
536 // = v1024
537 //
538 // This is incorrect since v1024 is not computed along the %bb.1->%bb.2->%bb.3
539 // flow. We need to ensure the new basic block where the computation is
540 // sunk to dominates all the uses.
541 // It's only legal to break critical edge and sink the computation to the
542 // new block if all the predecessors of "To", except for "From", are
543 // not dominated by "From". Given SSA property, this means these
544 // predecessors are dominated by "To".
545 //
546 // There is no need to do this check if all the uses are PHI nodes. PHI
547 // sources are only defined on the specific predecessor edges.
548 if (!BreakPHIEdge) {
549 for (MachineBasicBlock::pred_iterator PI = ToBB->pred_begin(),
550 E = ToBB->pred_end(); PI != E; ++PI) {
551 if (*PI == FromBB)
552 continue;
553 if (!DT->dominates(ToBB, *PI))
554 return false;
555 }
556 }
557
558 ToSplit.insert(std::make_pair(FromBB, ToBB));
559
560 return true;
561 }
562
563 /// isProfitableToSinkTo - Return true if it is profitable to sink MI.
isProfitableToSinkTo(unsigned Reg,MachineInstr & MI,MachineBasicBlock * MBB,MachineBasicBlock * SuccToSinkTo,AllSuccsCache & AllSuccessors)564 bool MachineSinking::isProfitableToSinkTo(unsigned Reg, MachineInstr &MI,
565 MachineBasicBlock *MBB,
566 MachineBasicBlock *SuccToSinkTo,
567 AllSuccsCache &AllSuccessors) {
568 assert (SuccToSinkTo && "Invalid SinkTo Candidate BB");
569
570 if (MBB == SuccToSinkTo)
571 return false;
572
573 // It is profitable if SuccToSinkTo does not post dominate current block.
574 if (!PDT->dominates(SuccToSinkTo, MBB))
575 return true;
576
577 // It is profitable to sink an instruction from a deeper loop to a shallower
578 // loop, even if the latter post-dominates the former (PR21115).
579 if (LI->getLoopDepth(MBB) > LI->getLoopDepth(SuccToSinkTo))
580 return true;
581
582 // Check if only use in post dominated block is PHI instruction.
583 bool NonPHIUse = false;
584 for (MachineInstr &UseInst : MRI->use_nodbg_instructions(Reg)) {
585 MachineBasicBlock *UseBlock = UseInst.getParent();
586 if (UseBlock == SuccToSinkTo && !UseInst.isPHI())
587 NonPHIUse = true;
588 }
589 if (!NonPHIUse)
590 return true;
591
592 // If SuccToSinkTo post dominates then also it may be profitable if MI
593 // can further profitably sinked into another block in next round.
594 bool BreakPHIEdge = false;
595 // FIXME - If finding successor is compile time expensive then cache results.
596 if (MachineBasicBlock *MBB2 =
597 FindSuccToSinkTo(MI, SuccToSinkTo, BreakPHIEdge, AllSuccessors))
598 return isProfitableToSinkTo(Reg, MI, SuccToSinkTo, MBB2, AllSuccessors);
599
600 // If SuccToSinkTo is final destination and it is a post dominator of current
601 // block then it is not profitable to sink MI into SuccToSinkTo block.
602 return false;
603 }
604
605 /// Get the sorted sequence of successors for this MachineBasicBlock, possibly
606 /// computing it if it was not already cached.
607 SmallVector<MachineBasicBlock *, 4> &
GetAllSortedSuccessors(MachineInstr & MI,MachineBasicBlock * MBB,AllSuccsCache & AllSuccessors) const608 MachineSinking::GetAllSortedSuccessors(MachineInstr &MI, MachineBasicBlock *MBB,
609 AllSuccsCache &AllSuccessors) const {
610 // Do we have the sorted successors in cache ?
611 auto Succs = AllSuccessors.find(MBB);
612 if (Succs != AllSuccessors.end())
613 return Succs->second;
614
615 SmallVector<MachineBasicBlock *, 4> AllSuccs(MBB->succ_begin(),
616 MBB->succ_end());
617
618 // Handle cases where sinking can happen but where the sink point isn't a
619 // successor. For example:
620 //
621 // x = computation
622 // if () {} else {}
623 // use x
624 //
625 const std::vector<MachineDomTreeNode *> &Children =
626 DT->getNode(MBB)->getChildren();
627 for (const auto &DTChild : Children)
628 // DomTree children of MBB that have MBB as immediate dominator are added.
629 if (DTChild->getIDom()->getBlock() == MI.getParent() &&
630 // Skip MBBs already added to the AllSuccs vector above.
631 !MBB->isSuccessor(DTChild->getBlock()))
632 AllSuccs.push_back(DTChild->getBlock());
633
634 // Sort Successors according to their loop depth or block frequency info.
635 llvm::stable_sort(
636 AllSuccs, [this](const MachineBasicBlock *L, const MachineBasicBlock *R) {
637 uint64_t LHSFreq = MBFI ? MBFI->getBlockFreq(L).getFrequency() : 0;
638 uint64_t RHSFreq = MBFI ? MBFI->getBlockFreq(R).getFrequency() : 0;
639 bool HasBlockFreq = LHSFreq != 0 && RHSFreq != 0;
640 return HasBlockFreq ? LHSFreq < RHSFreq
641 : LI->getLoopDepth(L) < LI->getLoopDepth(R);
642 });
643
644 auto it = AllSuccessors.insert(std::make_pair(MBB, AllSuccs));
645
646 return it.first->second;
647 }
648
649 /// FindSuccToSinkTo - Find a successor to sink this instruction to.
650 MachineBasicBlock *
FindSuccToSinkTo(MachineInstr & MI,MachineBasicBlock * MBB,bool & BreakPHIEdge,AllSuccsCache & AllSuccessors)651 MachineSinking::FindSuccToSinkTo(MachineInstr &MI, MachineBasicBlock *MBB,
652 bool &BreakPHIEdge,
653 AllSuccsCache &AllSuccessors) {
654 assert (MBB && "Invalid MachineBasicBlock!");
655
656 // Loop over all the operands of the specified instruction. If there is
657 // anything we can't handle, bail out.
658
659 // SuccToSinkTo - This is the successor to sink this instruction to, once we
660 // decide.
661 MachineBasicBlock *SuccToSinkTo = nullptr;
662 for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
663 const MachineOperand &MO = MI.getOperand(i);
664 if (!MO.isReg()) continue; // Ignore non-register operands.
665
666 Register Reg = MO.getReg();
667 if (Reg == 0) continue;
668
669 if (Register::isPhysicalRegister(Reg)) {
670 if (MO.isUse()) {
671 // If the physreg has no defs anywhere, it's just an ambient register
672 // and we can freely move its uses. Alternatively, if it's allocatable,
673 // it could get allocated to something with a def during allocation.
674 if (!MRI->isConstantPhysReg(Reg))
675 return nullptr;
676 } else if (!MO.isDead()) {
677 // A def that isn't dead. We can't move it.
678 return nullptr;
679 }
680 } else {
681 // Virtual register uses are always safe to sink.
682 if (MO.isUse()) continue;
683
684 // If it's not safe to move defs of the register class, then abort.
685 if (!TII->isSafeToMoveRegClassDefs(MRI->getRegClass(Reg)))
686 return nullptr;
687
688 // Virtual register defs can only be sunk if all their uses are in blocks
689 // dominated by one of the successors.
690 if (SuccToSinkTo) {
691 // If a previous operand picked a block to sink to, then this operand
692 // must be sinkable to the same block.
693 bool LocalUse = false;
694 if (!AllUsesDominatedByBlock(Reg, SuccToSinkTo, MBB,
695 BreakPHIEdge, LocalUse))
696 return nullptr;
697
698 continue;
699 }
700
701 // Otherwise, we should look at all the successors and decide which one
702 // we should sink to. If we have reliable block frequency information
703 // (frequency != 0) available, give successors with smaller frequencies
704 // higher priority, otherwise prioritize smaller loop depths.
705 for (MachineBasicBlock *SuccBlock :
706 GetAllSortedSuccessors(MI, MBB, AllSuccessors)) {
707 bool LocalUse = false;
708 if (AllUsesDominatedByBlock(Reg, SuccBlock, MBB,
709 BreakPHIEdge, LocalUse)) {
710 SuccToSinkTo = SuccBlock;
711 break;
712 }
713 if (LocalUse)
714 // Def is used locally, it's never safe to move this def.
715 return nullptr;
716 }
717
718 // If we couldn't find a block to sink to, ignore this instruction.
719 if (!SuccToSinkTo)
720 return nullptr;
721 if (!isProfitableToSinkTo(Reg, MI, MBB, SuccToSinkTo, AllSuccessors))
722 return nullptr;
723 }
724 }
725
726 // It is not possible to sink an instruction into its own block. This can
727 // happen with loops.
728 if (MBB == SuccToSinkTo)
729 return nullptr;
730
731 // It's not safe to sink instructions to EH landing pad. Control flow into
732 // landing pad is implicitly defined.
733 if (SuccToSinkTo && SuccToSinkTo->isEHPad())
734 return nullptr;
735
736 return SuccToSinkTo;
737 }
738
739 /// Return true if MI is likely to be usable as a memory operation by the
740 /// implicit null check optimization.
741 ///
742 /// This is a "best effort" heuristic, and should not be relied upon for
743 /// correctness. This returning true does not guarantee that the implicit null
744 /// check optimization is legal over MI, and this returning false does not
745 /// guarantee MI cannot possibly be used to do a null check.
SinkingPreventsImplicitNullCheck(MachineInstr & MI,const TargetInstrInfo * TII,const TargetRegisterInfo * TRI)746 static bool SinkingPreventsImplicitNullCheck(MachineInstr &MI,
747 const TargetInstrInfo *TII,
748 const TargetRegisterInfo *TRI) {
749 using MachineBranchPredicate = TargetInstrInfo::MachineBranchPredicate;
750
751 auto *MBB = MI.getParent();
752 if (MBB->pred_size() != 1)
753 return false;
754
755 auto *PredMBB = *MBB->pred_begin();
756 auto *PredBB = PredMBB->getBasicBlock();
757
758 // Frontends that don't use implicit null checks have no reason to emit
759 // branches with make.implicit metadata, and this function should always
760 // return false for them.
761 if (!PredBB ||
762 !PredBB->getTerminator()->getMetadata(LLVMContext::MD_make_implicit))
763 return false;
764
765 const MachineOperand *BaseOp;
766 int64_t Offset;
767 if (!TII->getMemOperandWithOffset(MI, BaseOp, Offset, TRI))
768 return false;
769
770 if (!BaseOp->isReg())
771 return false;
772
773 if (!(MI.mayLoad() && !MI.isPredicable()))
774 return false;
775
776 MachineBranchPredicate MBP;
777 if (TII->analyzeBranchPredicate(*PredMBB, MBP, false))
778 return false;
779
780 return MBP.LHS.isReg() && MBP.RHS.isImm() && MBP.RHS.getImm() == 0 &&
781 (MBP.Predicate == MachineBranchPredicate::PRED_NE ||
782 MBP.Predicate == MachineBranchPredicate::PRED_EQ) &&
783 MBP.LHS.getReg() == BaseOp->getReg();
784 }
785
786 /// If the sunk instruction is a copy, try to forward the copy instead of
787 /// leaving an 'undef' DBG_VALUE in the original location. Don't do this if
788 /// there's any subregister weirdness involved. Returns true if copy
789 /// propagation occurred.
attemptDebugCopyProp(MachineInstr & SinkInst,MachineInstr & DbgMI)790 static bool attemptDebugCopyProp(MachineInstr &SinkInst, MachineInstr &DbgMI) {
791 const MachineRegisterInfo &MRI = SinkInst.getMF()->getRegInfo();
792 const TargetInstrInfo &TII = *SinkInst.getMF()->getSubtarget().getInstrInfo();
793
794 // Copy DBG_VALUE operand and set the original to undef. We then check to
795 // see whether this is something that can be copy-forwarded. If it isn't,
796 // continue around the loop.
797 MachineOperand DbgMO = DbgMI.getOperand(0);
798
799 const MachineOperand *SrcMO = nullptr, *DstMO = nullptr;
800 auto CopyOperands = TII.isCopyInstr(SinkInst);
801 if (!CopyOperands)
802 return false;
803 SrcMO = CopyOperands->Source;
804 DstMO = CopyOperands->Destination;
805
806 // Check validity of forwarding this copy.
807 bool PostRA = MRI.getNumVirtRegs() == 0;
808
809 // Trying to forward between physical and virtual registers is too hard.
810 if (DbgMO.getReg().isVirtual() != SrcMO->getReg().isVirtual())
811 return false;
812
813 // Only try virtual register copy-forwarding before regalloc, and physical
814 // register copy-forwarding after regalloc.
815 bool arePhysRegs = !DbgMO.getReg().isVirtual();
816 if (arePhysRegs != PostRA)
817 return false;
818
819 // Pre-regalloc, only forward if all subregisters agree (or there are no
820 // subregs at all). More analysis might recover some forwardable copies.
821 if (!PostRA && (DbgMO.getSubReg() != SrcMO->getSubReg() ||
822 DbgMO.getSubReg() != DstMO->getSubReg()))
823 return false;
824
825 // Post-regalloc, we may be sinking a DBG_VALUE of a sub or super-register
826 // of this copy. Only forward the copy if the DBG_VALUE operand exactly
827 // matches the copy destination.
828 if (PostRA && DbgMO.getReg() != DstMO->getReg())
829 return false;
830
831 DbgMI.getOperand(0).setReg(SrcMO->getReg());
832 DbgMI.getOperand(0).setSubReg(SrcMO->getSubReg());
833 return true;
834 }
835
836 /// Sink an instruction and its associated debug instructions.
performSink(MachineInstr & MI,MachineBasicBlock & SuccToSinkTo,MachineBasicBlock::iterator InsertPos,SmallVectorImpl<MachineInstr * > & DbgValuesToSink)837 static void performSink(MachineInstr &MI, MachineBasicBlock &SuccToSinkTo,
838 MachineBasicBlock::iterator InsertPos,
839 SmallVectorImpl<MachineInstr *> &DbgValuesToSink) {
840
841 // If we cannot find a location to use (merge with), then we erase the debug
842 // location to prevent debug-info driven tools from potentially reporting
843 // wrong location information.
844 if (!SuccToSinkTo.empty() && InsertPos != SuccToSinkTo.end())
845 MI.setDebugLoc(DILocation::getMergedLocation(MI.getDebugLoc(),
846 InsertPos->getDebugLoc()));
847 else
848 MI.setDebugLoc(DebugLoc());
849
850 // Move the instruction.
851 MachineBasicBlock *ParentBlock = MI.getParent();
852 SuccToSinkTo.splice(InsertPos, ParentBlock, MI,
853 ++MachineBasicBlock::iterator(MI));
854
855 // Sink a copy of debug users to the insert position. Mark the original
856 // DBG_VALUE location as 'undef', indicating that any earlier variable
857 // location should be terminated as we've optimised away the value at this
858 // point.
859 for (SmallVectorImpl<MachineInstr *>::iterator DBI = DbgValuesToSink.begin(),
860 DBE = DbgValuesToSink.end();
861 DBI != DBE; ++DBI) {
862 MachineInstr *DbgMI = *DBI;
863 MachineInstr *NewDbgMI = DbgMI->getMF()->CloneMachineInstr(*DBI);
864 SuccToSinkTo.insert(InsertPos, NewDbgMI);
865
866 if (!attemptDebugCopyProp(MI, *DbgMI))
867 DbgMI->getOperand(0).setReg(0);
868 }
869 }
870
871 /// SinkInstruction - Determine whether it is safe to sink the specified machine
872 /// instruction out of its current block into a successor.
SinkInstruction(MachineInstr & MI,bool & SawStore,AllSuccsCache & AllSuccessors)873 bool MachineSinking::SinkInstruction(MachineInstr &MI, bool &SawStore,
874 AllSuccsCache &AllSuccessors) {
875 // Don't sink instructions that the target prefers not to sink.
876 if (!TII->shouldSink(MI))
877 return false;
878
879 // Check if it's safe to move the instruction.
880 if (!MI.isSafeToMove(AA, SawStore))
881 return false;
882
883 // Convergent operations may not be made control-dependent on additional
884 // values.
885 if (MI.isConvergent())
886 return false;
887
888 // Don't break implicit null checks. This is a performance heuristic, and not
889 // required for correctness.
890 if (SinkingPreventsImplicitNullCheck(MI, TII, TRI))
891 return false;
892
893 // FIXME: This should include support for sinking instructions within the
894 // block they are currently in to shorten the live ranges. We often get
895 // instructions sunk into the top of a large block, but it would be better to
896 // also sink them down before their first use in the block. This xform has to
897 // be careful not to *increase* register pressure though, e.g. sinking
898 // "x = y + z" down if it kills y and z would increase the live ranges of y
899 // and z and only shrink the live range of x.
900
901 bool BreakPHIEdge = false;
902 MachineBasicBlock *ParentBlock = MI.getParent();
903 MachineBasicBlock *SuccToSinkTo =
904 FindSuccToSinkTo(MI, ParentBlock, BreakPHIEdge, AllSuccessors);
905
906 // If there are no outputs, it must have side-effects.
907 if (!SuccToSinkTo)
908 return false;
909
910 // If the instruction to move defines a dead physical register which is live
911 // when leaving the basic block, don't move it because it could turn into a
912 // "zombie" define of that preg. E.g., EFLAGS. (<rdar://problem/8030636>)
913 for (unsigned I = 0, E = MI.getNumOperands(); I != E; ++I) {
914 const MachineOperand &MO = MI.getOperand(I);
915 if (!MO.isReg()) continue;
916 Register Reg = MO.getReg();
917 if (Reg == 0 || !Register::isPhysicalRegister(Reg))
918 continue;
919 if (SuccToSinkTo->isLiveIn(Reg))
920 return false;
921 }
922
923 LLVM_DEBUG(dbgs() << "Sink instr " << MI << "\tinto block " << *SuccToSinkTo);
924
925 // If the block has multiple predecessors, this is a critical edge.
926 // Decide if we can sink along it or need to break the edge.
927 if (SuccToSinkTo->pred_size() > 1) {
928 // We cannot sink a load across a critical edge - there may be stores in
929 // other code paths.
930 bool TryBreak = false;
931 bool store = true;
932 if (!MI.isSafeToMove(AA, store)) {
933 LLVM_DEBUG(dbgs() << " *** NOTE: Won't sink load along critical edge.\n");
934 TryBreak = true;
935 }
936
937 // We don't want to sink across a critical edge if we don't dominate the
938 // successor. We could be introducing calculations to new code paths.
939 if (!TryBreak && !DT->dominates(ParentBlock, SuccToSinkTo)) {
940 LLVM_DEBUG(dbgs() << " *** NOTE: Critical edge found\n");
941 TryBreak = true;
942 }
943
944 // Don't sink instructions into a loop.
945 if (!TryBreak && LI->isLoopHeader(SuccToSinkTo)) {
946 LLVM_DEBUG(dbgs() << " *** NOTE: Loop header found\n");
947 TryBreak = true;
948 }
949
950 // Otherwise we are OK with sinking along a critical edge.
951 if (!TryBreak)
952 LLVM_DEBUG(dbgs() << "Sinking along critical edge.\n");
953 else {
954 // Mark this edge as to be split.
955 // If the edge can actually be split, the next iteration of the main loop
956 // will sink MI in the newly created block.
957 bool Status =
958 PostponeSplitCriticalEdge(MI, ParentBlock, SuccToSinkTo, BreakPHIEdge);
959 if (!Status)
960 LLVM_DEBUG(dbgs() << " *** PUNTING: Not legal or profitable to "
961 "break critical edge\n");
962 // The instruction will not be sunk this time.
963 return false;
964 }
965 }
966
967 if (BreakPHIEdge) {
968 // BreakPHIEdge is true if all the uses are in the successor MBB being
969 // sunken into and they are all PHI nodes. In this case, machine-sink must
970 // break the critical edge first.
971 bool Status = PostponeSplitCriticalEdge(MI, ParentBlock,
972 SuccToSinkTo, BreakPHIEdge);
973 if (!Status)
974 LLVM_DEBUG(dbgs() << " *** PUNTING: Not legal or profitable to "
975 "break critical edge\n");
976 // The instruction will not be sunk this time.
977 return false;
978 }
979
980 // Determine where to insert into. Skip phi nodes.
981 MachineBasicBlock::iterator InsertPos = SuccToSinkTo->begin();
982 while (InsertPos != SuccToSinkTo->end() && InsertPos->isPHI())
983 ++InsertPos;
984
985 // Collect debug users of any vreg that this inst defines.
986 SmallVector<MachineInstr *, 4> DbgUsersToSink;
987 for (auto &MO : MI.operands()) {
988 if (!MO.isReg() || !MO.isDef() || !MO.getReg().isVirtual())
989 continue;
990 if (!SeenDbgUsers.count(MO.getReg()))
991 continue;
992
993 // Sink any users that don't pass any other DBG_VALUEs for this variable.
994 auto &Users = SeenDbgUsers[MO.getReg()];
995 for (auto &User : Users) {
996 MachineInstr *DbgMI = User.getPointer();
997 if (User.getInt()) {
998 // This DBG_VALUE would re-order assignments. If we can't copy-propagate
999 // it, it can't be recovered. Set it undef.
1000 if (!attemptDebugCopyProp(MI, *DbgMI))
1001 DbgMI->getOperand(0).setReg(0);
1002 } else {
1003 DbgUsersToSink.push_back(DbgMI);
1004 }
1005 }
1006 }
1007
1008 // After sinking, some debug users may not be dominated any more. If possible,
1009 // copy-propagate their operands. As it's expensive, don't do this if there's
1010 // no debuginfo in the program.
1011 if (MI.getMF()->getFunction().getSubprogram() && MI.isCopy())
1012 SalvageUnsunkDebugUsersOfCopy(MI, SuccToSinkTo);
1013
1014 performSink(MI, *SuccToSinkTo, InsertPos, DbgUsersToSink);
1015
1016 // Conservatively, clear any kill flags, since it's possible that they are no
1017 // longer correct.
1018 // Note that we have to clear the kill flags for any register this instruction
1019 // uses as we may sink over another instruction which currently kills the
1020 // used registers.
1021 for (MachineOperand &MO : MI.operands()) {
1022 if (MO.isReg() && MO.isUse())
1023 RegsToClearKillFlags.set(MO.getReg()); // Remember to clear kill flags.
1024 }
1025
1026 return true;
1027 }
1028
SalvageUnsunkDebugUsersOfCopy(MachineInstr & MI,MachineBasicBlock * TargetBlock)1029 void MachineSinking::SalvageUnsunkDebugUsersOfCopy(
1030 MachineInstr &MI, MachineBasicBlock *TargetBlock) {
1031 assert(MI.isCopy());
1032 assert(MI.getOperand(1).isReg());
1033
1034 // Enumerate all users of vreg operands that are def'd. Skip those that will
1035 // be sunk. For the rest, if they are not dominated by the block we will sink
1036 // MI into, propagate the copy source to them.
1037 SmallVector<MachineInstr *, 4> DbgDefUsers;
1038 const MachineRegisterInfo &MRI = MI.getMF()->getRegInfo();
1039 for (auto &MO : MI.operands()) {
1040 if (!MO.isReg() || !MO.isDef() || !MO.getReg().isVirtual())
1041 continue;
1042 for (auto &User : MRI.use_instructions(MO.getReg())) {
1043 if (!User.isDebugValue() || DT->dominates(TargetBlock, User.getParent()))
1044 continue;
1045
1046 // If is in same block, will either sink or be use-before-def.
1047 if (User.getParent() == MI.getParent())
1048 continue;
1049
1050 assert(User.getOperand(0).isReg() &&
1051 "DBG_VALUE user of vreg, but non reg operand?");
1052 DbgDefUsers.push_back(&User);
1053 }
1054 }
1055
1056 // Point the users of this copy that are no longer dominated, at the source
1057 // of the copy.
1058 for (auto *User : DbgDefUsers) {
1059 User->getOperand(0).setReg(MI.getOperand(1).getReg());
1060 User->getOperand(0).setSubReg(MI.getOperand(1).getSubReg());
1061 }
1062 }
1063
1064 //===----------------------------------------------------------------------===//
1065 // This pass is not intended to be a replacement or a complete alternative
1066 // for the pre-ra machine sink pass. It is only designed to sink COPY
1067 // instructions which should be handled after RA.
1068 //
1069 // This pass sinks COPY instructions into a successor block, if the COPY is not
1070 // used in the current block and the COPY is live-in to a single successor
1071 // (i.e., doesn't require the COPY to be duplicated). This avoids executing the
1072 // copy on paths where their results aren't needed. This also exposes
1073 // additional opportunites for dead copy elimination and shrink wrapping.
1074 //
1075 // These copies were either not handled by or are inserted after the MachineSink
1076 // pass. As an example of the former case, the MachineSink pass cannot sink
1077 // COPY instructions with allocatable source registers; for AArch64 these type
1078 // of copy instructions are frequently used to move function parameters (PhyReg)
1079 // into virtual registers in the entry block.
1080 //
1081 // For the machine IR below, this pass will sink %w19 in the entry into its
1082 // successor (%bb.1) because %w19 is only live-in in %bb.1.
1083 // %bb.0:
1084 // %wzr = SUBSWri %w1, 1
1085 // %w19 = COPY %w0
1086 // Bcc 11, %bb.2
1087 // %bb.1:
1088 // Live Ins: %w19
1089 // BL @fun
1090 // %w0 = ADDWrr %w0, %w19
1091 // RET %w0
1092 // %bb.2:
1093 // %w0 = COPY %wzr
1094 // RET %w0
1095 // As we sink %w19 (CSR in AArch64) into %bb.1, the shrink-wrapping pass will be
1096 // able to see %bb.0 as a candidate.
1097 //===----------------------------------------------------------------------===//
1098 namespace {
1099
1100 class PostRAMachineSinking : public MachineFunctionPass {
1101 public:
1102 bool runOnMachineFunction(MachineFunction &MF) override;
1103
1104 static char ID;
PostRAMachineSinking()1105 PostRAMachineSinking() : MachineFunctionPass(ID) {}
getPassName() const1106 StringRef getPassName() const override { return "PostRA Machine Sink"; }
1107
getAnalysisUsage(AnalysisUsage & AU) const1108 void getAnalysisUsage(AnalysisUsage &AU) const override {
1109 AU.setPreservesCFG();
1110 MachineFunctionPass::getAnalysisUsage(AU);
1111 }
1112
getRequiredProperties() const1113 MachineFunctionProperties getRequiredProperties() const override {
1114 return MachineFunctionProperties().set(
1115 MachineFunctionProperties::Property::NoVRegs);
1116 }
1117
1118 private:
1119 /// Track which register units have been modified and used.
1120 LiveRegUnits ModifiedRegUnits, UsedRegUnits;
1121
1122 /// Track DBG_VALUEs of (unmodified) register units. Each DBG_VALUE has an
1123 /// entry in this map for each unit it touches.
1124 DenseMap<unsigned, TinyPtrVector<MachineInstr *>> SeenDbgInstrs;
1125
1126 /// Sink Copy instructions unused in the same block close to their uses in
1127 /// successors.
1128 bool tryToSinkCopy(MachineBasicBlock &BB, MachineFunction &MF,
1129 const TargetRegisterInfo *TRI, const TargetInstrInfo *TII);
1130 };
1131 } // namespace
1132
1133 char PostRAMachineSinking::ID = 0;
1134 char &llvm::PostRAMachineSinkingID = PostRAMachineSinking::ID;
1135
1136 INITIALIZE_PASS(PostRAMachineSinking, "postra-machine-sink",
1137 "PostRA Machine Sink", false, false)
1138
aliasWithRegsInLiveIn(MachineBasicBlock & MBB,unsigned Reg,const TargetRegisterInfo * TRI)1139 static bool aliasWithRegsInLiveIn(MachineBasicBlock &MBB, unsigned Reg,
1140 const TargetRegisterInfo *TRI) {
1141 LiveRegUnits LiveInRegUnits(*TRI);
1142 LiveInRegUnits.addLiveIns(MBB);
1143 return !LiveInRegUnits.available(Reg);
1144 }
1145
1146 static MachineBasicBlock *
getSingleLiveInSuccBB(MachineBasicBlock & CurBB,const SmallPtrSetImpl<MachineBasicBlock * > & SinkableBBs,unsigned Reg,const TargetRegisterInfo * TRI)1147 getSingleLiveInSuccBB(MachineBasicBlock &CurBB,
1148 const SmallPtrSetImpl<MachineBasicBlock *> &SinkableBBs,
1149 unsigned Reg, const TargetRegisterInfo *TRI) {
1150 // Try to find a single sinkable successor in which Reg is live-in.
1151 MachineBasicBlock *BB = nullptr;
1152 for (auto *SI : SinkableBBs) {
1153 if (aliasWithRegsInLiveIn(*SI, Reg, TRI)) {
1154 // If BB is set here, Reg is live-in to at least two sinkable successors,
1155 // so quit.
1156 if (BB)
1157 return nullptr;
1158 BB = SI;
1159 }
1160 }
1161 // Reg is not live-in to any sinkable successors.
1162 if (!BB)
1163 return nullptr;
1164
1165 // Check if any register aliased with Reg is live-in in other successors.
1166 for (auto *SI : CurBB.successors()) {
1167 if (!SinkableBBs.count(SI) && aliasWithRegsInLiveIn(*SI, Reg, TRI))
1168 return nullptr;
1169 }
1170 return BB;
1171 }
1172
1173 static MachineBasicBlock *
getSingleLiveInSuccBB(MachineBasicBlock & CurBB,const SmallPtrSetImpl<MachineBasicBlock * > & SinkableBBs,ArrayRef<unsigned> DefedRegsInCopy,const TargetRegisterInfo * TRI)1174 getSingleLiveInSuccBB(MachineBasicBlock &CurBB,
1175 const SmallPtrSetImpl<MachineBasicBlock *> &SinkableBBs,
1176 ArrayRef<unsigned> DefedRegsInCopy,
1177 const TargetRegisterInfo *TRI) {
1178 MachineBasicBlock *SingleBB = nullptr;
1179 for (auto DefReg : DefedRegsInCopy) {
1180 MachineBasicBlock *BB =
1181 getSingleLiveInSuccBB(CurBB, SinkableBBs, DefReg, TRI);
1182 if (!BB || (SingleBB && SingleBB != BB))
1183 return nullptr;
1184 SingleBB = BB;
1185 }
1186 return SingleBB;
1187 }
1188
clearKillFlags(MachineInstr * MI,MachineBasicBlock & CurBB,SmallVectorImpl<unsigned> & UsedOpsInCopy,LiveRegUnits & UsedRegUnits,const TargetRegisterInfo * TRI)1189 static void clearKillFlags(MachineInstr *MI, MachineBasicBlock &CurBB,
1190 SmallVectorImpl<unsigned> &UsedOpsInCopy,
1191 LiveRegUnits &UsedRegUnits,
1192 const TargetRegisterInfo *TRI) {
1193 for (auto U : UsedOpsInCopy) {
1194 MachineOperand &MO = MI->getOperand(U);
1195 Register SrcReg = MO.getReg();
1196 if (!UsedRegUnits.available(SrcReg)) {
1197 MachineBasicBlock::iterator NI = std::next(MI->getIterator());
1198 for (MachineInstr &UI : make_range(NI, CurBB.end())) {
1199 if (UI.killsRegister(SrcReg, TRI)) {
1200 UI.clearRegisterKills(SrcReg, TRI);
1201 MO.setIsKill(true);
1202 break;
1203 }
1204 }
1205 }
1206 }
1207 }
1208
updateLiveIn(MachineInstr * MI,MachineBasicBlock * SuccBB,SmallVectorImpl<unsigned> & UsedOpsInCopy,SmallVectorImpl<unsigned> & DefedRegsInCopy)1209 static void updateLiveIn(MachineInstr *MI, MachineBasicBlock *SuccBB,
1210 SmallVectorImpl<unsigned> &UsedOpsInCopy,
1211 SmallVectorImpl<unsigned> &DefedRegsInCopy) {
1212 MachineFunction &MF = *SuccBB->getParent();
1213 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
1214 for (unsigned DefReg : DefedRegsInCopy)
1215 for (MCSubRegIterator S(DefReg, TRI, true); S.isValid(); ++S)
1216 SuccBB->removeLiveIn(*S);
1217 for (auto U : UsedOpsInCopy) {
1218 Register SrcReg = MI->getOperand(U).getReg();
1219 LaneBitmask Mask;
1220 for (MCRegUnitMaskIterator S(SrcReg, TRI); S.isValid(); ++S) {
1221 Mask |= (*S).second;
1222 }
1223 SuccBB->addLiveIn(SrcReg, Mask.any() ? Mask : LaneBitmask::getAll());
1224 }
1225 SuccBB->sortUniqueLiveIns();
1226 }
1227
hasRegisterDependency(MachineInstr * MI,SmallVectorImpl<unsigned> & UsedOpsInCopy,SmallVectorImpl<unsigned> & DefedRegsInCopy,LiveRegUnits & ModifiedRegUnits,LiveRegUnits & UsedRegUnits)1228 static bool hasRegisterDependency(MachineInstr *MI,
1229 SmallVectorImpl<unsigned> &UsedOpsInCopy,
1230 SmallVectorImpl<unsigned> &DefedRegsInCopy,
1231 LiveRegUnits &ModifiedRegUnits,
1232 LiveRegUnits &UsedRegUnits) {
1233 bool HasRegDependency = false;
1234 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
1235 MachineOperand &MO = MI->getOperand(i);
1236 if (!MO.isReg())
1237 continue;
1238 Register Reg = MO.getReg();
1239 if (!Reg)
1240 continue;
1241 if (MO.isDef()) {
1242 if (!ModifiedRegUnits.available(Reg) || !UsedRegUnits.available(Reg)) {
1243 HasRegDependency = true;
1244 break;
1245 }
1246 DefedRegsInCopy.push_back(Reg);
1247
1248 // FIXME: instead of isUse(), readsReg() would be a better fix here,
1249 // For example, we can ignore modifications in reg with undef. However,
1250 // it's not perfectly clear if skipping the internal read is safe in all
1251 // other targets.
1252 } else if (MO.isUse()) {
1253 if (!ModifiedRegUnits.available(Reg)) {
1254 HasRegDependency = true;
1255 break;
1256 }
1257 UsedOpsInCopy.push_back(i);
1258 }
1259 }
1260 return HasRegDependency;
1261 }
1262
getRegUnits(unsigned Reg,const TargetRegisterInfo * TRI)1263 static SmallSet<unsigned, 4> getRegUnits(unsigned Reg,
1264 const TargetRegisterInfo *TRI) {
1265 SmallSet<unsigned, 4> RegUnits;
1266 for (auto RI = MCRegUnitIterator(Reg, TRI); RI.isValid(); ++RI)
1267 RegUnits.insert(*RI);
1268 return RegUnits;
1269 }
1270
tryToSinkCopy(MachineBasicBlock & CurBB,MachineFunction & MF,const TargetRegisterInfo * TRI,const TargetInstrInfo * TII)1271 bool PostRAMachineSinking::tryToSinkCopy(MachineBasicBlock &CurBB,
1272 MachineFunction &MF,
1273 const TargetRegisterInfo *TRI,
1274 const TargetInstrInfo *TII) {
1275 SmallPtrSet<MachineBasicBlock *, 2> SinkableBBs;
1276 // FIXME: For now, we sink only to a successor which has a single predecessor
1277 // so that we can directly sink COPY instructions to the successor without
1278 // adding any new block or branch instruction.
1279 for (MachineBasicBlock *SI : CurBB.successors())
1280 if (!SI->livein_empty() && SI->pred_size() == 1)
1281 SinkableBBs.insert(SI);
1282
1283 if (SinkableBBs.empty())
1284 return false;
1285
1286 bool Changed = false;
1287
1288 // Track which registers have been modified and used between the end of the
1289 // block and the current instruction.
1290 ModifiedRegUnits.clear();
1291 UsedRegUnits.clear();
1292 SeenDbgInstrs.clear();
1293
1294 for (auto I = CurBB.rbegin(), E = CurBB.rend(); I != E;) {
1295 MachineInstr *MI = &*I;
1296 ++I;
1297
1298 // Track the operand index for use in Copy.
1299 SmallVector<unsigned, 2> UsedOpsInCopy;
1300 // Track the register number defed in Copy.
1301 SmallVector<unsigned, 2> DefedRegsInCopy;
1302
1303 // We must sink this DBG_VALUE if its operand is sunk. To avoid searching
1304 // for DBG_VALUEs later, record them when they're encountered.
1305 if (MI->isDebugValue()) {
1306 auto &MO = MI->getOperand(0);
1307 if (MO.isReg() && Register::isPhysicalRegister(MO.getReg())) {
1308 // Bail if we can already tell the sink would be rejected, rather
1309 // than needlessly accumulating lots of DBG_VALUEs.
1310 if (hasRegisterDependency(MI, UsedOpsInCopy, DefedRegsInCopy,
1311 ModifiedRegUnits, UsedRegUnits))
1312 continue;
1313
1314 // Record debug use of each reg unit.
1315 SmallSet<unsigned, 4> Units = getRegUnits(MO.getReg(), TRI);
1316 for (unsigned Reg : Units)
1317 SeenDbgInstrs[Reg].push_back(MI);
1318 }
1319 continue;
1320 }
1321
1322 if (MI->isDebugInstr())
1323 continue;
1324
1325 // Do not move any instruction across function call.
1326 if (MI->isCall())
1327 return false;
1328
1329 if (!MI->isCopy() || !MI->getOperand(0).isRenamable()) {
1330 LiveRegUnits::accumulateUsedDefed(*MI, ModifiedRegUnits, UsedRegUnits,
1331 TRI);
1332 continue;
1333 }
1334
1335 // Don't sink the COPY if it would violate a register dependency.
1336 if (hasRegisterDependency(MI, UsedOpsInCopy, DefedRegsInCopy,
1337 ModifiedRegUnits, UsedRegUnits)) {
1338 LiveRegUnits::accumulateUsedDefed(*MI, ModifiedRegUnits, UsedRegUnits,
1339 TRI);
1340 continue;
1341 }
1342 assert((!UsedOpsInCopy.empty() && !DefedRegsInCopy.empty()) &&
1343 "Unexpect SrcReg or DefReg");
1344 MachineBasicBlock *SuccBB =
1345 getSingleLiveInSuccBB(CurBB, SinkableBBs, DefedRegsInCopy, TRI);
1346 // Don't sink if we cannot find a single sinkable successor in which Reg
1347 // is live-in.
1348 if (!SuccBB) {
1349 LiveRegUnits::accumulateUsedDefed(*MI, ModifiedRegUnits, UsedRegUnits,
1350 TRI);
1351 continue;
1352 }
1353 assert((SuccBB->pred_size() == 1 && *SuccBB->pred_begin() == &CurBB) &&
1354 "Unexpected predecessor");
1355
1356 // Collect DBG_VALUEs that must sink with this copy. We've previously
1357 // recorded which reg units that DBG_VALUEs read, if this instruction
1358 // writes any of those units then the corresponding DBG_VALUEs must sink.
1359 SetVector<MachineInstr *> DbgValsToSinkSet;
1360 SmallVector<MachineInstr *, 4> DbgValsToSink;
1361 for (auto &MO : MI->operands()) {
1362 if (!MO.isReg() || !MO.isDef())
1363 continue;
1364
1365 SmallSet<unsigned, 4> Units = getRegUnits(MO.getReg(), TRI);
1366 for (unsigned Reg : Units)
1367 for (auto *MI : SeenDbgInstrs.lookup(Reg))
1368 DbgValsToSinkSet.insert(MI);
1369 }
1370 DbgValsToSink.insert(DbgValsToSink.begin(), DbgValsToSinkSet.begin(),
1371 DbgValsToSinkSet.end());
1372
1373 // Clear the kill flag if SrcReg is killed between MI and the end of the
1374 // block.
1375 clearKillFlags(MI, CurBB, UsedOpsInCopy, UsedRegUnits, TRI);
1376 MachineBasicBlock::iterator InsertPos = SuccBB->getFirstNonPHI();
1377 performSink(*MI, *SuccBB, InsertPos, DbgValsToSink);
1378 updateLiveIn(MI, SuccBB, UsedOpsInCopy, DefedRegsInCopy);
1379
1380 Changed = true;
1381 ++NumPostRACopySink;
1382 }
1383 return Changed;
1384 }
1385
runOnMachineFunction(MachineFunction & MF)1386 bool PostRAMachineSinking::runOnMachineFunction(MachineFunction &MF) {
1387 if (skipFunction(MF.getFunction()))
1388 return false;
1389
1390 bool Changed = false;
1391 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
1392 const TargetInstrInfo *TII = MF.getSubtarget().getInstrInfo();
1393
1394 ModifiedRegUnits.init(*TRI);
1395 UsedRegUnits.init(*TRI);
1396 for (auto &BB : MF)
1397 Changed |= tryToSinkCopy(BB, MF, TRI, TII);
1398
1399 return Changed;
1400 }
1401