1 //===- LegalizeDAG.cpp - Implement SelectionDAG::Legalize -----------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the SelectionDAG::Legalize method.
10 //
11 //===----------------------------------------------------------------------===//
12
13 #include "llvm/ADT/APFloat.h"
14 #include "llvm/ADT/APInt.h"
15 #include "llvm/ADT/ArrayRef.h"
16 #include "llvm/ADT/SetVector.h"
17 #include "llvm/ADT/SmallPtrSet.h"
18 #include "llvm/ADT/SmallSet.h"
19 #include "llvm/ADT/SmallVector.h"
20 #include "llvm/Analysis/TargetLibraryInfo.h"
21 #include "llvm/CodeGen/ISDOpcodes.h"
22 #include "llvm/CodeGen/MachineFunction.h"
23 #include "llvm/CodeGen/MachineJumpTableInfo.h"
24 #include "llvm/CodeGen/MachineMemOperand.h"
25 #include "llvm/CodeGen/RuntimeLibcalls.h"
26 #include "llvm/CodeGen/SelectionDAG.h"
27 #include "llvm/CodeGen/SelectionDAGNodes.h"
28 #include "llvm/CodeGen/TargetFrameLowering.h"
29 #include "llvm/CodeGen/TargetLowering.h"
30 #include "llvm/CodeGen/TargetSubtargetInfo.h"
31 #include "llvm/CodeGen/ValueTypes.h"
32 #include "llvm/IR/CallingConv.h"
33 #include "llvm/IR/Constants.h"
34 #include "llvm/IR/DataLayout.h"
35 #include "llvm/IR/DerivedTypes.h"
36 #include "llvm/IR/Function.h"
37 #include "llvm/IR/Metadata.h"
38 #include "llvm/IR/Type.h"
39 #include "llvm/Support/Casting.h"
40 #include "llvm/Support/Compiler.h"
41 #include "llvm/Support/Debug.h"
42 #include "llvm/Support/ErrorHandling.h"
43 #include "llvm/Support/MachineValueType.h"
44 #include "llvm/Support/MathExtras.h"
45 #include "llvm/Support/raw_ostream.h"
46 #include "llvm/Target/TargetMachine.h"
47 #include "llvm/Target/TargetOptions.h"
48 #include <algorithm>
49 #include <cassert>
50 #include <cstdint>
51 #include <tuple>
52 #include <utility>
53
54 using namespace llvm;
55
56 #define DEBUG_TYPE "legalizedag"
57
58 namespace {
59
60 /// Keeps track of state when getting the sign of a floating-point value as an
61 /// integer.
62 struct FloatSignAsInt {
63 EVT FloatVT;
64 SDValue Chain;
65 SDValue FloatPtr;
66 SDValue IntPtr;
67 MachinePointerInfo IntPointerInfo;
68 MachinePointerInfo FloatPointerInfo;
69 SDValue IntValue;
70 APInt SignMask;
71 uint8_t SignBit;
72 };
73
74 //===----------------------------------------------------------------------===//
75 /// This takes an arbitrary SelectionDAG as input and
76 /// hacks on it until the target machine can handle it. This involves
77 /// eliminating value sizes the machine cannot handle (promoting small sizes to
78 /// large sizes or splitting up large values into small values) as well as
79 /// eliminating operations the machine cannot handle.
80 ///
81 /// This code also does a small amount of optimization and recognition of idioms
82 /// as part of its processing. For example, if a target does not support a
83 /// 'setcc' instruction efficiently, but does support 'brcc' instruction, this
84 /// will attempt merge setcc and brc instructions into brcc's.
85 class SelectionDAGLegalize {
86 const TargetMachine &TM;
87 const TargetLowering &TLI;
88 SelectionDAG &DAG;
89
90 /// The set of nodes which have already been legalized. We hold a
91 /// reference to it in order to update as necessary on node deletion.
92 SmallPtrSetImpl<SDNode *> &LegalizedNodes;
93
94 /// A set of all the nodes updated during legalization.
95 SmallSetVector<SDNode *, 16> *UpdatedNodes;
96
getSetCCResultType(EVT VT) const97 EVT getSetCCResultType(EVT VT) const {
98 return TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
99 }
100
101 // Libcall insertion helpers.
102
103 public:
SelectionDAGLegalize(SelectionDAG & DAG,SmallPtrSetImpl<SDNode * > & LegalizedNodes,SmallSetVector<SDNode *,16> * UpdatedNodes=nullptr)104 SelectionDAGLegalize(SelectionDAG &DAG,
105 SmallPtrSetImpl<SDNode *> &LegalizedNodes,
106 SmallSetVector<SDNode *, 16> *UpdatedNodes = nullptr)
107 : TM(DAG.getTarget()), TLI(DAG.getTargetLoweringInfo()), DAG(DAG),
108 LegalizedNodes(LegalizedNodes), UpdatedNodes(UpdatedNodes) {}
109
110 /// Legalizes the given operation.
111 void LegalizeOp(SDNode *Node);
112
113 private:
114 SDValue OptimizeFloatStore(StoreSDNode *ST);
115
116 void LegalizeLoadOps(SDNode *Node);
117 void LegalizeStoreOps(SDNode *Node);
118
119 /// Some targets cannot handle a variable
120 /// insertion index for the INSERT_VECTOR_ELT instruction. In this case, it
121 /// is necessary to spill the vector being inserted into to memory, perform
122 /// the insert there, and then read the result back.
123 SDValue PerformInsertVectorEltInMemory(SDValue Vec, SDValue Val, SDValue Idx,
124 const SDLoc &dl);
125 SDValue ExpandINSERT_VECTOR_ELT(SDValue Vec, SDValue Val, SDValue Idx,
126 const SDLoc &dl);
127
128 /// Return a vector shuffle operation which
129 /// performs the same shuffe in terms of order or result bytes, but on a type
130 /// whose vector element type is narrower than the original shuffle type.
131 /// e.g. <v4i32> <0, 1, 0, 1> -> v8i16 <0, 1, 2, 3, 0, 1, 2, 3>
132 SDValue ShuffleWithNarrowerEltType(EVT NVT, EVT VT, const SDLoc &dl,
133 SDValue N1, SDValue N2,
134 ArrayRef<int> Mask) const;
135
136 bool LegalizeSetCCCondCode(EVT VT, SDValue &LHS, SDValue &RHS, SDValue &CC,
137 bool &NeedInvert, const SDLoc &dl, SDValue &Chain,
138 bool IsSignaling = false);
139
140 SDValue ExpandLibCall(RTLIB::Libcall LC, SDNode *Node, bool isSigned);
141
142 void ExpandFPLibCall(SDNode *Node, RTLIB::Libcall Call_F32,
143 RTLIB::Libcall Call_F64, RTLIB::Libcall Call_F80,
144 RTLIB::Libcall Call_F128,
145 RTLIB::Libcall Call_PPCF128,
146 SmallVectorImpl<SDValue> &Results);
147 SDValue ExpandIntLibCall(SDNode *Node, bool isSigned,
148 RTLIB::Libcall Call_I8,
149 RTLIB::Libcall Call_I16,
150 RTLIB::Libcall Call_I32,
151 RTLIB::Libcall Call_I64,
152 RTLIB::Libcall Call_I128);
153 void ExpandArgFPLibCall(SDNode *Node,
154 RTLIB::Libcall Call_F32, RTLIB::Libcall Call_F64,
155 RTLIB::Libcall Call_F80, RTLIB::Libcall Call_F128,
156 RTLIB::Libcall Call_PPCF128,
157 SmallVectorImpl<SDValue> &Results);
158 void ExpandDivRemLibCall(SDNode *Node, SmallVectorImpl<SDValue> &Results);
159 void ExpandSinCosLibCall(SDNode *Node, SmallVectorImpl<SDValue> &Results);
160
161 SDValue EmitStackConvert(SDValue SrcOp, EVT SlotVT, EVT DestVT,
162 const SDLoc &dl);
163 SDValue EmitStackConvert(SDValue SrcOp, EVT SlotVT, EVT DestVT,
164 const SDLoc &dl, SDValue ChainIn);
165 SDValue ExpandBUILD_VECTOR(SDNode *Node);
166 SDValue ExpandSPLAT_VECTOR(SDNode *Node);
167 SDValue ExpandSCALAR_TO_VECTOR(SDNode *Node);
168 void ExpandDYNAMIC_STACKALLOC(SDNode *Node,
169 SmallVectorImpl<SDValue> &Results);
170 void getSignAsIntValue(FloatSignAsInt &State, const SDLoc &DL,
171 SDValue Value) const;
172 SDValue modifySignAsInt(const FloatSignAsInt &State, const SDLoc &DL,
173 SDValue NewIntValue) const;
174 SDValue ExpandFCOPYSIGN(SDNode *Node) const;
175 SDValue ExpandFABS(SDNode *Node) const;
176 SDValue ExpandLegalINT_TO_FP(SDNode *Node, SDValue &Chain);
177 void PromoteLegalINT_TO_FP(SDNode *N, const SDLoc &dl,
178 SmallVectorImpl<SDValue> &Results);
179 void PromoteLegalFP_TO_INT(SDNode *N, const SDLoc &dl,
180 SmallVectorImpl<SDValue> &Results);
181
182 SDValue ExpandBITREVERSE(SDValue Op, const SDLoc &dl);
183 SDValue ExpandBSWAP(SDValue Op, const SDLoc &dl);
184
185 SDValue ExpandExtractFromVectorThroughStack(SDValue Op);
186 SDValue ExpandInsertToVectorThroughStack(SDValue Op);
187 SDValue ExpandVectorBuildThroughStack(SDNode* Node);
188
189 SDValue ExpandConstantFP(ConstantFPSDNode *CFP, bool UseCP);
190 SDValue ExpandConstant(ConstantSDNode *CP);
191
192 // if ExpandNode returns false, LegalizeOp falls back to ConvertNodeToLibcall
193 bool ExpandNode(SDNode *Node);
194 void ConvertNodeToLibcall(SDNode *Node);
195 void PromoteNode(SDNode *Node);
196
197 public:
198 // Node replacement helpers
199
ReplacedNode(SDNode * N)200 void ReplacedNode(SDNode *N) {
201 LegalizedNodes.erase(N);
202 if (UpdatedNodes)
203 UpdatedNodes->insert(N);
204 }
205
ReplaceNode(SDNode * Old,SDNode * New)206 void ReplaceNode(SDNode *Old, SDNode *New) {
207 LLVM_DEBUG(dbgs() << " ... replacing: "; Old->dump(&DAG);
208 dbgs() << " with: "; New->dump(&DAG));
209
210 assert(Old->getNumValues() == New->getNumValues() &&
211 "Replacing one node with another that produces a different number "
212 "of values!");
213 DAG.ReplaceAllUsesWith(Old, New);
214 if (UpdatedNodes)
215 UpdatedNodes->insert(New);
216 ReplacedNode(Old);
217 }
218
ReplaceNode(SDValue Old,SDValue New)219 void ReplaceNode(SDValue Old, SDValue New) {
220 LLVM_DEBUG(dbgs() << " ... replacing: "; Old->dump(&DAG);
221 dbgs() << " with: "; New->dump(&DAG));
222
223 DAG.ReplaceAllUsesWith(Old, New);
224 if (UpdatedNodes)
225 UpdatedNodes->insert(New.getNode());
226 ReplacedNode(Old.getNode());
227 }
228
ReplaceNode(SDNode * Old,const SDValue * New)229 void ReplaceNode(SDNode *Old, const SDValue *New) {
230 LLVM_DEBUG(dbgs() << " ... replacing: "; Old->dump(&DAG));
231
232 DAG.ReplaceAllUsesWith(Old, New);
233 for (unsigned i = 0, e = Old->getNumValues(); i != e; ++i) {
234 LLVM_DEBUG(dbgs() << (i == 0 ? " with: " : " and: ");
235 New[i]->dump(&DAG));
236 if (UpdatedNodes)
237 UpdatedNodes->insert(New[i].getNode());
238 }
239 ReplacedNode(Old);
240 }
241
ReplaceNodeWithValue(SDValue Old,SDValue New)242 void ReplaceNodeWithValue(SDValue Old, SDValue New) {
243 LLVM_DEBUG(dbgs() << " ... replacing: "; Old->dump(&DAG);
244 dbgs() << " with: "; New->dump(&DAG));
245
246 DAG.ReplaceAllUsesOfValueWith(Old, New);
247 if (UpdatedNodes)
248 UpdatedNodes->insert(New.getNode());
249 ReplacedNode(Old.getNode());
250 }
251 };
252
253 } // end anonymous namespace
254
255 /// Return a vector shuffle operation which
256 /// performs the same shuffle in terms of order or result bytes, but on a type
257 /// whose vector element type is narrower than the original shuffle type.
258 /// e.g. <v4i32> <0, 1, 0, 1> -> v8i16 <0, 1, 2, 3, 0, 1, 2, 3>
ShuffleWithNarrowerEltType(EVT NVT,EVT VT,const SDLoc & dl,SDValue N1,SDValue N2,ArrayRef<int> Mask) const259 SDValue SelectionDAGLegalize::ShuffleWithNarrowerEltType(
260 EVT NVT, EVT VT, const SDLoc &dl, SDValue N1, SDValue N2,
261 ArrayRef<int> Mask) const {
262 unsigned NumMaskElts = VT.getVectorNumElements();
263 unsigned NumDestElts = NVT.getVectorNumElements();
264 unsigned NumEltsGrowth = NumDestElts / NumMaskElts;
265
266 assert(NumEltsGrowth && "Cannot promote to vector type with fewer elts!");
267
268 if (NumEltsGrowth == 1)
269 return DAG.getVectorShuffle(NVT, dl, N1, N2, Mask);
270
271 SmallVector<int, 8> NewMask;
272 for (unsigned i = 0; i != NumMaskElts; ++i) {
273 int Idx = Mask[i];
274 for (unsigned j = 0; j != NumEltsGrowth; ++j) {
275 if (Idx < 0)
276 NewMask.push_back(-1);
277 else
278 NewMask.push_back(Idx * NumEltsGrowth + j);
279 }
280 }
281 assert(NewMask.size() == NumDestElts && "Non-integer NumEltsGrowth?");
282 assert(TLI.isShuffleMaskLegal(NewMask, NVT) && "Shuffle not legal?");
283 return DAG.getVectorShuffle(NVT, dl, N1, N2, NewMask);
284 }
285
286 /// Expands the ConstantFP node to an integer constant or
287 /// a load from the constant pool.
288 SDValue
ExpandConstantFP(ConstantFPSDNode * CFP,bool UseCP)289 SelectionDAGLegalize::ExpandConstantFP(ConstantFPSDNode *CFP, bool UseCP) {
290 bool Extend = false;
291 SDLoc dl(CFP);
292
293 // If a FP immediate is precise when represented as a float and if the
294 // target can do an extending load from float to double, we put it into
295 // the constant pool as a float, even if it's is statically typed as a
296 // double. This shrinks FP constants and canonicalizes them for targets where
297 // an FP extending load is the same cost as a normal load (such as on the x87
298 // fp stack or PPC FP unit).
299 EVT VT = CFP->getValueType(0);
300 ConstantFP *LLVMC = const_cast<ConstantFP*>(CFP->getConstantFPValue());
301 if (!UseCP) {
302 assert((VT == MVT::f64 || VT == MVT::f32) && "Invalid type expansion");
303 return DAG.getConstant(LLVMC->getValueAPF().bitcastToAPInt(), dl,
304 (VT == MVT::f64) ? MVT::i64 : MVT::i32);
305 }
306
307 APFloat APF = CFP->getValueAPF();
308 EVT OrigVT = VT;
309 EVT SVT = VT;
310
311 // We don't want to shrink SNaNs. Converting the SNaN back to its real type
312 // can cause it to be changed into a QNaN on some platforms (e.g. on SystemZ).
313 if (!APF.isSignaling()) {
314 while (SVT != MVT::f32 && SVT != MVT::f16) {
315 SVT = (MVT::SimpleValueType)(SVT.getSimpleVT().SimpleTy - 1);
316 if (ConstantFPSDNode::isValueValidForType(SVT, APF) &&
317 // Only do this if the target has a native EXTLOAD instruction from
318 // smaller type.
319 TLI.isLoadExtLegal(ISD::EXTLOAD, OrigVT, SVT) &&
320 TLI.ShouldShrinkFPConstant(OrigVT)) {
321 Type *SType = SVT.getTypeForEVT(*DAG.getContext());
322 LLVMC = cast<ConstantFP>(ConstantExpr::getFPTrunc(LLVMC, SType));
323 VT = SVT;
324 Extend = true;
325 }
326 }
327 }
328
329 SDValue CPIdx =
330 DAG.getConstantPool(LLVMC, TLI.getPointerTy(DAG.getDataLayout()));
331 unsigned Alignment = cast<ConstantPoolSDNode>(CPIdx)->getAlignment();
332 if (Extend) {
333 SDValue Result = DAG.getExtLoad(
334 ISD::EXTLOAD, dl, OrigVT, DAG.getEntryNode(), CPIdx,
335 MachinePointerInfo::getConstantPool(DAG.getMachineFunction()), VT,
336 Alignment);
337 return Result;
338 }
339 SDValue Result = DAG.getLoad(
340 OrigVT, dl, DAG.getEntryNode(), CPIdx,
341 MachinePointerInfo::getConstantPool(DAG.getMachineFunction()), Alignment);
342 return Result;
343 }
344
345 /// Expands the Constant node to a load from the constant pool.
ExpandConstant(ConstantSDNode * CP)346 SDValue SelectionDAGLegalize::ExpandConstant(ConstantSDNode *CP) {
347 SDLoc dl(CP);
348 EVT VT = CP->getValueType(0);
349 SDValue CPIdx = DAG.getConstantPool(CP->getConstantIntValue(),
350 TLI.getPointerTy(DAG.getDataLayout()));
351 unsigned Alignment = cast<ConstantPoolSDNode>(CPIdx)->getAlignment();
352 SDValue Result = DAG.getLoad(
353 VT, dl, DAG.getEntryNode(), CPIdx,
354 MachinePointerInfo::getConstantPool(DAG.getMachineFunction()), Alignment);
355 return Result;
356 }
357
358 /// Some target cannot handle a variable insertion index for the
359 /// INSERT_VECTOR_ELT instruction. In this case, it
360 /// is necessary to spill the vector being inserted into to memory, perform
361 /// the insert there, and then read the result back.
PerformInsertVectorEltInMemory(SDValue Vec,SDValue Val,SDValue Idx,const SDLoc & dl)362 SDValue SelectionDAGLegalize::PerformInsertVectorEltInMemory(SDValue Vec,
363 SDValue Val,
364 SDValue Idx,
365 const SDLoc &dl) {
366 SDValue Tmp1 = Vec;
367 SDValue Tmp2 = Val;
368 SDValue Tmp3 = Idx;
369
370 // If the target doesn't support this, we have to spill the input vector
371 // to a temporary stack slot, update the element, then reload it. This is
372 // badness. We could also load the value into a vector register (either
373 // with a "move to register" or "extload into register" instruction, then
374 // permute it into place, if the idx is a constant and if the idx is
375 // supported by the target.
376 EVT VT = Tmp1.getValueType();
377 EVT EltVT = VT.getVectorElementType();
378 SDValue StackPtr = DAG.CreateStackTemporary(VT);
379
380 int SPFI = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex();
381
382 // Store the vector.
383 SDValue Ch = DAG.getStore(
384 DAG.getEntryNode(), dl, Tmp1, StackPtr,
385 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), SPFI));
386
387 SDValue StackPtr2 = TLI.getVectorElementPointer(DAG, StackPtr, VT, Tmp3);
388
389 // Store the scalar value.
390 Ch = DAG.getTruncStore(Ch, dl, Tmp2, StackPtr2, MachinePointerInfo(), EltVT);
391 // Load the updated vector.
392 return DAG.getLoad(VT, dl, Ch, StackPtr, MachinePointerInfo::getFixedStack(
393 DAG.getMachineFunction(), SPFI));
394 }
395
ExpandINSERT_VECTOR_ELT(SDValue Vec,SDValue Val,SDValue Idx,const SDLoc & dl)396 SDValue SelectionDAGLegalize::ExpandINSERT_VECTOR_ELT(SDValue Vec, SDValue Val,
397 SDValue Idx,
398 const SDLoc &dl) {
399 if (ConstantSDNode *InsertPos = dyn_cast<ConstantSDNode>(Idx)) {
400 // SCALAR_TO_VECTOR requires that the type of the value being inserted
401 // match the element type of the vector being created, except for
402 // integers in which case the inserted value can be over width.
403 EVT EltVT = Vec.getValueType().getVectorElementType();
404 if (Val.getValueType() == EltVT ||
405 (EltVT.isInteger() && Val.getValueType().bitsGE(EltVT))) {
406 SDValue ScVec = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
407 Vec.getValueType(), Val);
408
409 unsigned NumElts = Vec.getValueType().getVectorNumElements();
410 // We generate a shuffle of InVec and ScVec, so the shuffle mask
411 // should be 0,1,2,3,4,5... with the appropriate element replaced with
412 // elt 0 of the RHS.
413 SmallVector<int, 8> ShufOps;
414 for (unsigned i = 0; i != NumElts; ++i)
415 ShufOps.push_back(i != InsertPos->getZExtValue() ? i : NumElts);
416
417 return DAG.getVectorShuffle(Vec.getValueType(), dl, Vec, ScVec, ShufOps);
418 }
419 }
420 return PerformInsertVectorEltInMemory(Vec, Val, Idx, dl);
421 }
422
OptimizeFloatStore(StoreSDNode * ST)423 SDValue SelectionDAGLegalize::OptimizeFloatStore(StoreSDNode* ST) {
424 if (!ISD::isNormalStore(ST))
425 return SDValue();
426
427 LLVM_DEBUG(dbgs() << "Optimizing float store operations\n");
428 // Turn 'store float 1.0, Ptr' -> 'store int 0x12345678, Ptr'
429 // FIXME: We shouldn't do this for TargetConstantFP's.
430 // FIXME: move this to the DAG Combiner! Note that we can't regress due
431 // to phase ordering between legalized code and the dag combiner. This
432 // probably means that we need to integrate dag combiner and legalizer
433 // together.
434 // We generally can't do this one for long doubles.
435 SDValue Chain = ST->getChain();
436 SDValue Ptr = ST->getBasePtr();
437 unsigned Alignment = ST->getAlignment();
438 MachineMemOperand::Flags MMOFlags = ST->getMemOperand()->getFlags();
439 AAMDNodes AAInfo = ST->getAAInfo();
440 SDLoc dl(ST);
441 if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(ST->getValue())) {
442 if (CFP->getValueType(0) == MVT::f32 &&
443 TLI.isTypeLegal(MVT::i32)) {
444 SDValue Con = DAG.getConstant(CFP->getValueAPF().
445 bitcastToAPInt().zextOrTrunc(32),
446 SDLoc(CFP), MVT::i32);
447 return DAG.getStore(Chain, dl, Con, Ptr, ST->getPointerInfo(), Alignment,
448 MMOFlags, AAInfo);
449 }
450
451 if (CFP->getValueType(0) == MVT::f64) {
452 // If this target supports 64-bit registers, do a single 64-bit store.
453 if (TLI.isTypeLegal(MVT::i64)) {
454 SDValue Con = DAG.getConstant(CFP->getValueAPF().bitcastToAPInt().
455 zextOrTrunc(64), SDLoc(CFP), MVT::i64);
456 return DAG.getStore(Chain, dl, Con, Ptr, ST->getPointerInfo(),
457 Alignment, MMOFlags, AAInfo);
458 }
459
460 if (TLI.isTypeLegal(MVT::i32) && !ST->isVolatile()) {
461 // Otherwise, if the target supports 32-bit registers, use 2 32-bit
462 // stores. If the target supports neither 32- nor 64-bits, this
463 // xform is certainly not worth it.
464 const APInt &IntVal = CFP->getValueAPF().bitcastToAPInt();
465 SDValue Lo = DAG.getConstant(IntVal.trunc(32), dl, MVT::i32);
466 SDValue Hi = DAG.getConstant(IntVal.lshr(32).trunc(32), dl, MVT::i32);
467 if (DAG.getDataLayout().isBigEndian())
468 std::swap(Lo, Hi);
469
470 Lo = DAG.getStore(Chain, dl, Lo, Ptr, ST->getPointerInfo(), Alignment,
471 MMOFlags, AAInfo);
472 Ptr = DAG.getMemBasePlusOffset(Ptr, 4, dl);
473 Hi = DAG.getStore(Chain, dl, Hi, Ptr,
474 ST->getPointerInfo().getWithOffset(4),
475 MinAlign(Alignment, 4U), MMOFlags, AAInfo);
476
477 return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo, Hi);
478 }
479 }
480 }
481 return SDValue(nullptr, 0);
482 }
483
LegalizeStoreOps(SDNode * Node)484 void SelectionDAGLegalize::LegalizeStoreOps(SDNode *Node) {
485 StoreSDNode *ST = cast<StoreSDNode>(Node);
486 SDValue Chain = ST->getChain();
487 SDValue Ptr = ST->getBasePtr();
488 SDLoc dl(Node);
489
490 unsigned Alignment = ST->getAlignment();
491 MachineMemOperand::Flags MMOFlags = ST->getMemOperand()->getFlags();
492 AAMDNodes AAInfo = ST->getAAInfo();
493
494 if (!ST->isTruncatingStore()) {
495 LLVM_DEBUG(dbgs() << "Legalizing store operation\n");
496 if (SDNode *OptStore = OptimizeFloatStore(ST).getNode()) {
497 ReplaceNode(ST, OptStore);
498 return;
499 }
500
501 SDValue Value = ST->getValue();
502 MVT VT = Value.getSimpleValueType();
503 switch (TLI.getOperationAction(ISD::STORE, VT)) {
504 default: llvm_unreachable("This action is not supported yet!");
505 case TargetLowering::Legal: {
506 // If this is an unaligned store and the target doesn't support it,
507 // expand it.
508 EVT MemVT = ST->getMemoryVT();
509 const DataLayout &DL = DAG.getDataLayout();
510 if (!TLI.allowsMemoryAccessForAlignment(*DAG.getContext(), DL, MemVT,
511 *ST->getMemOperand())) {
512 LLVM_DEBUG(dbgs() << "Expanding unsupported unaligned store\n");
513 SDValue Result = TLI.expandUnalignedStore(ST, DAG);
514 ReplaceNode(SDValue(ST, 0), Result);
515 } else
516 LLVM_DEBUG(dbgs() << "Legal store\n");
517 break;
518 }
519 case TargetLowering::Custom: {
520 LLVM_DEBUG(dbgs() << "Trying custom lowering\n");
521 SDValue Res = TLI.LowerOperation(SDValue(Node, 0), DAG);
522 if (Res && Res != SDValue(Node, 0))
523 ReplaceNode(SDValue(Node, 0), Res);
524 return;
525 }
526 case TargetLowering::Promote: {
527 MVT NVT = TLI.getTypeToPromoteTo(ISD::STORE, VT);
528 assert(NVT.getSizeInBits() == VT.getSizeInBits() &&
529 "Can only promote stores to same size type");
530 Value = DAG.getNode(ISD::BITCAST, dl, NVT, Value);
531 SDValue Result =
532 DAG.getStore(Chain, dl, Value, Ptr, ST->getPointerInfo(),
533 Alignment, MMOFlags, AAInfo);
534 ReplaceNode(SDValue(Node, 0), Result);
535 break;
536 }
537 }
538 return;
539 }
540
541 LLVM_DEBUG(dbgs() << "Legalizing truncating store operations\n");
542 SDValue Value = ST->getValue();
543 EVT StVT = ST->getMemoryVT();
544 unsigned StWidth = StVT.getSizeInBits();
545 auto &DL = DAG.getDataLayout();
546
547 if (StWidth != StVT.getStoreSizeInBits()) {
548 // Promote to a byte-sized store with upper bits zero if not
549 // storing an integral number of bytes. For example, promote
550 // TRUNCSTORE:i1 X -> TRUNCSTORE:i8 (and X, 1)
551 EVT NVT = EVT::getIntegerVT(*DAG.getContext(),
552 StVT.getStoreSizeInBits());
553 Value = DAG.getZeroExtendInReg(Value, dl, StVT);
554 SDValue Result =
555 DAG.getTruncStore(Chain, dl, Value, Ptr, ST->getPointerInfo(), NVT,
556 Alignment, MMOFlags, AAInfo);
557 ReplaceNode(SDValue(Node, 0), Result);
558 } else if (StWidth & (StWidth - 1)) {
559 // If not storing a power-of-2 number of bits, expand as two stores.
560 assert(!StVT.isVector() && "Unsupported truncstore!");
561 unsigned LogStWidth = Log2_32(StWidth);
562 assert(LogStWidth < 32);
563 unsigned RoundWidth = 1 << LogStWidth;
564 assert(RoundWidth < StWidth);
565 unsigned ExtraWidth = StWidth - RoundWidth;
566 assert(ExtraWidth < RoundWidth);
567 assert(!(RoundWidth % 8) && !(ExtraWidth % 8) &&
568 "Store size not an integral number of bytes!");
569 EVT RoundVT = EVT::getIntegerVT(*DAG.getContext(), RoundWidth);
570 EVT ExtraVT = EVT::getIntegerVT(*DAG.getContext(), ExtraWidth);
571 SDValue Lo, Hi;
572 unsigned IncrementSize;
573
574 if (DL.isLittleEndian()) {
575 // TRUNCSTORE:i24 X -> TRUNCSTORE:i16 X, TRUNCSTORE@+2:i8 (srl X, 16)
576 // Store the bottom RoundWidth bits.
577 Lo = DAG.getTruncStore(Chain, dl, Value, Ptr, ST->getPointerInfo(),
578 RoundVT, Alignment, MMOFlags, AAInfo);
579
580 // Store the remaining ExtraWidth bits.
581 IncrementSize = RoundWidth / 8;
582 Ptr = DAG.getMemBasePlusOffset(Ptr, IncrementSize, dl);
583 Hi = DAG.getNode(
584 ISD::SRL, dl, Value.getValueType(), Value,
585 DAG.getConstant(RoundWidth, dl,
586 TLI.getShiftAmountTy(Value.getValueType(), DL)));
587 Hi = DAG.getTruncStore(
588 Chain, dl, Hi, Ptr,
589 ST->getPointerInfo().getWithOffset(IncrementSize), ExtraVT,
590 MinAlign(Alignment, IncrementSize), MMOFlags, AAInfo);
591 } else {
592 // Big endian - avoid unaligned stores.
593 // TRUNCSTORE:i24 X -> TRUNCSTORE:i16 (srl X, 8), TRUNCSTORE@+2:i8 X
594 // Store the top RoundWidth bits.
595 Hi = DAG.getNode(
596 ISD::SRL, dl, Value.getValueType(), Value,
597 DAG.getConstant(ExtraWidth, dl,
598 TLI.getShiftAmountTy(Value.getValueType(), DL)));
599 Hi = DAG.getTruncStore(Chain, dl, Hi, Ptr, ST->getPointerInfo(),
600 RoundVT, Alignment, MMOFlags, AAInfo);
601
602 // Store the remaining ExtraWidth bits.
603 IncrementSize = RoundWidth / 8;
604 Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr,
605 DAG.getConstant(IncrementSize, dl,
606 Ptr.getValueType()));
607 Lo = DAG.getTruncStore(
608 Chain, dl, Value, Ptr,
609 ST->getPointerInfo().getWithOffset(IncrementSize), ExtraVT,
610 MinAlign(Alignment, IncrementSize), MMOFlags, AAInfo);
611 }
612
613 // The order of the stores doesn't matter.
614 SDValue Result = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo, Hi);
615 ReplaceNode(SDValue(Node, 0), Result);
616 } else {
617 switch (TLI.getTruncStoreAction(ST->getValue().getValueType(), StVT)) {
618 default: llvm_unreachable("This action is not supported yet!");
619 case TargetLowering::Legal: {
620 EVT MemVT = ST->getMemoryVT();
621 // If this is an unaligned store and the target doesn't support it,
622 // expand it.
623 if (!TLI.allowsMemoryAccessForAlignment(*DAG.getContext(), DL, MemVT,
624 *ST->getMemOperand())) {
625 SDValue Result = TLI.expandUnalignedStore(ST, DAG);
626 ReplaceNode(SDValue(ST, 0), Result);
627 }
628 break;
629 }
630 case TargetLowering::Custom: {
631 SDValue Res = TLI.LowerOperation(SDValue(Node, 0), DAG);
632 if (Res && Res != SDValue(Node, 0))
633 ReplaceNode(SDValue(Node, 0), Res);
634 return;
635 }
636 case TargetLowering::Expand:
637 assert(!StVT.isVector() &&
638 "Vector Stores are handled in LegalizeVectorOps");
639
640 SDValue Result;
641
642 // TRUNCSTORE:i16 i32 -> STORE i16
643 if (TLI.isTypeLegal(StVT)) {
644 Value = DAG.getNode(ISD::TRUNCATE, dl, StVT, Value);
645 Result = DAG.getStore(Chain, dl, Value, Ptr, ST->getPointerInfo(),
646 Alignment, MMOFlags, AAInfo);
647 } else {
648 // The in-memory type isn't legal. Truncate to the type it would promote
649 // to, and then do a truncstore.
650 Value = DAG.getNode(ISD::TRUNCATE, dl,
651 TLI.getTypeToTransformTo(*DAG.getContext(), StVT),
652 Value);
653 Result = DAG.getTruncStore(Chain, dl, Value, Ptr, ST->getPointerInfo(),
654 StVT, Alignment, MMOFlags, AAInfo);
655 }
656
657 ReplaceNode(SDValue(Node, 0), Result);
658 break;
659 }
660 }
661 }
662
LegalizeLoadOps(SDNode * Node)663 void SelectionDAGLegalize::LegalizeLoadOps(SDNode *Node) {
664 LoadSDNode *LD = cast<LoadSDNode>(Node);
665 SDValue Chain = LD->getChain(); // The chain.
666 SDValue Ptr = LD->getBasePtr(); // The base pointer.
667 SDValue Value; // The value returned by the load op.
668 SDLoc dl(Node);
669
670 ISD::LoadExtType ExtType = LD->getExtensionType();
671 if (ExtType == ISD::NON_EXTLOAD) {
672 LLVM_DEBUG(dbgs() << "Legalizing non-extending load operation\n");
673 MVT VT = Node->getSimpleValueType(0);
674 SDValue RVal = SDValue(Node, 0);
675 SDValue RChain = SDValue(Node, 1);
676
677 switch (TLI.getOperationAction(Node->getOpcode(), VT)) {
678 default: llvm_unreachable("This action is not supported yet!");
679 case TargetLowering::Legal: {
680 EVT MemVT = LD->getMemoryVT();
681 const DataLayout &DL = DAG.getDataLayout();
682 // If this is an unaligned load and the target doesn't support it,
683 // expand it.
684 if (!TLI.allowsMemoryAccessForAlignment(*DAG.getContext(), DL, MemVT,
685 *LD->getMemOperand())) {
686 std::tie(RVal, RChain) = TLI.expandUnalignedLoad(LD, DAG);
687 }
688 break;
689 }
690 case TargetLowering::Custom:
691 if (SDValue Res = TLI.LowerOperation(RVal, DAG)) {
692 RVal = Res;
693 RChain = Res.getValue(1);
694 }
695 break;
696
697 case TargetLowering::Promote: {
698 MVT NVT = TLI.getTypeToPromoteTo(Node->getOpcode(), VT);
699 assert(NVT.getSizeInBits() == VT.getSizeInBits() &&
700 "Can only promote loads to same size type");
701
702 SDValue Res = DAG.getLoad(NVT, dl, Chain, Ptr, LD->getMemOperand());
703 RVal = DAG.getNode(ISD::BITCAST, dl, VT, Res);
704 RChain = Res.getValue(1);
705 break;
706 }
707 }
708 if (RChain.getNode() != Node) {
709 assert(RVal.getNode() != Node && "Load must be completely replaced");
710 DAG.ReplaceAllUsesOfValueWith(SDValue(Node, 0), RVal);
711 DAG.ReplaceAllUsesOfValueWith(SDValue(Node, 1), RChain);
712 if (UpdatedNodes) {
713 UpdatedNodes->insert(RVal.getNode());
714 UpdatedNodes->insert(RChain.getNode());
715 }
716 ReplacedNode(Node);
717 }
718 return;
719 }
720
721 LLVM_DEBUG(dbgs() << "Legalizing extending load operation\n");
722 EVT SrcVT = LD->getMemoryVT();
723 unsigned SrcWidth = SrcVT.getSizeInBits();
724 unsigned Alignment = LD->getAlignment();
725 MachineMemOperand::Flags MMOFlags = LD->getMemOperand()->getFlags();
726 AAMDNodes AAInfo = LD->getAAInfo();
727
728 if (SrcWidth != SrcVT.getStoreSizeInBits() &&
729 // Some targets pretend to have an i1 loading operation, and actually
730 // load an i8. This trick is correct for ZEXTLOAD because the top 7
731 // bits are guaranteed to be zero; it helps the optimizers understand
732 // that these bits are zero. It is also useful for EXTLOAD, since it
733 // tells the optimizers that those bits are undefined. It would be
734 // nice to have an effective generic way of getting these benefits...
735 // Until such a way is found, don't insist on promoting i1 here.
736 (SrcVT != MVT::i1 ||
737 TLI.getLoadExtAction(ExtType, Node->getValueType(0), MVT::i1) ==
738 TargetLowering::Promote)) {
739 // Promote to a byte-sized load if not loading an integral number of
740 // bytes. For example, promote EXTLOAD:i20 -> EXTLOAD:i24.
741 unsigned NewWidth = SrcVT.getStoreSizeInBits();
742 EVT NVT = EVT::getIntegerVT(*DAG.getContext(), NewWidth);
743 SDValue Ch;
744
745 // The extra bits are guaranteed to be zero, since we stored them that
746 // way. A zext load from NVT thus automatically gives zext from SrcVT.
747
748 ISD::LoadExtType NewExtType =
749 ExtType == ISD::ZEXTLOAD ? ISD::ZEXTLOAD : ISD::EXTLOAD;
750
751 SDValue Result =
752 DAG.getExtLoad(NewExtType, dl, Node->getValueType(0), Chain, Ptr,
753 LD->getPointerInfo(), NVT, Alignment, MMOFlags, AAInfo);
754
755 Ch = Result.getValue(1); // The chain.
756
757 if (ExtType == ISD::SEXTLOAD)
758 // Having the top bits zero doesn't help when sign extending.
759 Result = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl,
760 Result.getValueType(),
761 Result, DAG.getValueType(SrcVT));
762 else if (ExtType == ISD::ZEXTLOAD || NVT == Result.getValueType())
763 // All the top bits are guaranteed to be zero - inform the optimizers.
764 Result = DAG.getNode(ISD::AssertZext, dl,
765 Result.getValueType(), Result,
766 DAG.getValueType(SrcVT));
767
768 Value = Result;
769 Chain = Ch;
770 } else if (SrcWidth & (SrcWidth - 1)) {
771 // If not loading a power-of-2 number of bits, expand as two loads.
772 assert(!SrcVT.isVector() && "Unsupported extload!");
773 unsigned LogSrcWidth = Log2_32(SrcWidth);
774 assert(LogSrcWidth < 32);
775 unsigned RoundWidth = 1 << LogSrcWidth;
776 assert(RoundWidth < SrcWidth);
777 unsigned ExtraWidth = SrcWidth - RoundWidth;
778 assert(ExtraWidth < RoundWidth);
779 assert(!(RoundWidth % 8) && !(ExtraWidth % 8) &&
780 "Load size not an integral number of bytes!");
781 EVT RoundVT = EVT::getIntegerVT(*DAG.getContext(), RoundWidth);
782 EVT ExtraVT = EVT::getIntegerVT(*DAG.getContext(), ExtraWidth);
783 SDValue Lo, Hi, Ch;
784 unsigned IncrementSize;
785 auto &DL = DAG.getDataLayout();
786
787 if (DL.isLittleEndian()) {
788 // EXTLOAD:i24 -> ZEXTLOAD:i16 | (shl EXTLOAD@+2:i8, 16)
789 // Load the bottom RoundWidth bits.
790 Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, Node->getValueType(0), Chain, Ptr,
791 LD->getPointerInfo(), RoundVT, Alignment, MMOFlags,
792 AAInfo);
793
794 // Load the remaining ExtraWidth bits.
795 IncrementSize = RoundWidth / 8;
796 Ptr = DAG.getMemBasePlusOffset(Ptr, IncrementSize, dl);
797 Hi = DAG.getExtLoad(ExtType, dl, Node->getValueType(0), Chain, Ptr,
798 LD->getPointerInfo().getWithOffset(IncrementSize),
799 ExtraVT, MinAlign(Alignment, IncrementSize), MMOFlags,
800 AAInfo);
801
802 // Build a factor node to remember that this load is independent of
803 // the other one.
804 Ch = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1),
805 Hi.getValue(1));
806
807 // Move the top bits to the right place.
808 Hi = DAG.getNode(
809 ISD::SHL, dl, Hi.getValueType(), Hi,
810 DAG.getConstant(RoundWidth, dl,
811 TLI.getShiftAmountTy(Hi.getValueType(), DL)));
812
813 // Join the hi and lo parts.
814 Value = DAG.getNode(ISD::OR, dl, Node->getValueType(0), Lo, Hi);
815 } else {
816 // Big endian - avoid unaligned loads.
817 // EXTLOAD:i24 -> (shl EXTLOAD:i16, 8) | ZEXTLOAD@+2:i8
818 // Load the top RoundWidth bits.
819 Hi = DAG.getExtLoad(ExtType, dl, Node->getValueType(0), Chain, Ptr,
820 LD->getPointerInfo(), RoundVT, Alignment, MMOFlags,
821 AAInfo);
822
823 // Load the remaining ExtraWidth bits.
824 IncrementSize = RoundWidth / 8;
825 Ptr = DAG.getMemBasePlusOffset(Ptr, IncrementSize, dl);
826 Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, Node->getValueType(0), Chain, Ptr,
827 LD->getPointerInfo().getWithOffset(IncrementSize),
828 ExtraVT, MinAlign(Alignment, IncrementSize), MMOFlags,
829 AAInfo);
830
831 // Build a factor node to remember that this load is independent of
832 // the other one.
833 Ch = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1),
834 Hi.getValue(1));
835
836 // Move the top bits to the right place.
837 Hi = DAG.getNode(
838 ISD::SHL, dl, Hi.getValueType(), Hi,
839 DAG.getConstant(ExtraWidth, dl,
840 TLI.getShiftAmountTy(Hi.getValueType(), DL)));
841
842 // Join the hi and lo parts.
843 Value = DAG.getNode(ISD::OR, dl, Node->getValueType(0), Lo, Hi);
844 }
845
846 Chain = Ch;
847 } else {
848 bool isCustom = false;
849 switch (TLI.getLoadExtAction(ExtType, Node->getValueType(0),
850 SrcVT.getSimpleVT())) {
851 default: llvm_unreachable("This action is not supported yet!");
852 case TargetLowering::Custom:
853 isCustom = true;
854 LLVM_FALLTHROUGH;
855 case TargetLowering::Legal:
856 Value = SDValue(Node, 0);
857 Chain = SDValue(Node, 1);
858
859 if (isCustom) {
860 if (SDValue Res = TLI.LowerOperation(SDValue(Node, 0), DAG)) {
861 Value = Res;
862 Chain = Res.getValue(1);
863 }
864 } else {
865 // If this is an unaligned load and the target doesn't support it,
866 // expand it.
867 EVT MemVT = LD->getMemoryVT();
868 const DataLayout &DL = DAG.getDataLayout();
869 if (!TLI.allowsMemoryAccess(*DAG.getContext(), DL, MemVT,
870 *LD->getMemOperand())) {
871 std::tie(Value, Chain) = TLI.expandUnalignedLoad(LD, DAG);
872 }
873 }
874 break;
875
876 case TargetLowering::Expand: {
877 EVT DestVT = Node->getValueType(0);
878 if (!TLI.isLoadExtLegal(ISD::EXTLOAD, DestVT, SrcVT)) {
879 // If the source type is not legal, see if there is a legal extload to
880 // an intermediate type that we can then extend further.
881 EVT LoadVT = TLI.getRegisterType(SrcVT.getSimpleVT());
882 if (TLI.isTypeLegal(SrcVT) || // Same as SrcVT == LoadVT?
883 TLI.isLoadExtLegal(ExtType, LoadVT, SrcVT)) {
884 // If we are loading a legal type, this is a non-extload followed by a
885 // full extend.
886 ISD::LoadExtType MidExtType =
887 (LoadVT == SrcVT) ? ISD::NON_EXTLOAD : ExtType;
888
889 SDValue Load = DAG.getExtLoad(MidExtType, dl, LoadVT, Chain, Ptr,
890 SrcVT, LD->getMemOperand());
891 unsigned ExtendOp =
892 ISD::getExtForLoadExtType(SrcVT.isFloatingPoint(), ExtType);
893 Value = DAG.getNode(ExtendOp, dl, Node->getValueType(0), Load);
894 Chain = Load.getValue(1);
895 break;
896 }
897
898 // Handle the special case of fp16 extloads. EXTLOAD doesn't have the
899 // normal undefined upper bits behavior to allow using an in-reg extend
900 // with the illegal FP type, so load as an integer and do the
901 // from-integer conversion.
902 if (SrcVT.getScalarType() == MVT::f16) {
903 EVT ISrcVT = SrcVT.changeTypeToInteger();
904 EVT IDestVT = DestVT.changeTypeToInteger();
905 EVT ILoadVT = TLI.getRegisterType(IDestVT.getSimpleVT());
906
907 SDValue Result = DAG.getExtLoad(ISD::ZEXTLOAD, dl, ILoadVT, Chain,
908 Ptr, ISrcVT, LD->getMemOperand());
909 Value = DAG.getNode(ISD::FP16_TO_FP, dl, DestVT, Result);
910 Chain = Result.getValue(1);
911 break;
912 }
913 }
914
915 assert(!SrcVT.isVector() &&
916 "Vector Loads are handled in LegalizeVectorOps");
917
918 // FIXME: This does not work for vectors on most targets. Sign-
919 // and zero-extend operations are currently folded into extending
920 // loads, whether they are legal or not, and then we end up here
921 // without any support for legalizing them.
922 assert(ExtType != ISD::EXTLOAD &&
923 "EXTLOAD should always be supported!");
924 // Turn the unsupported load into an EXTLOAD followed by an
925 // explicit zero/sign extend inreg.
926 SDValue Result = DAG.getExtLoad(ISD::EXTLOAD, dl,
927 Node->getValueType(0),
928 Chain, Ptr, SrcVT,
929 LD->getMemOperand());
930 SDValue ValRes;
931 if (ExtType == ISD::SEXTLOAD)
932 ValRes = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl,
933 Result.getValueType(),
934 Result, DAG.getValueType(SrcVT));
935 else
936 ValRes = DAG.getZeroExtendInReg(Result, dl, SrcVT.getScalarType());
937 Value = ValRes;
938 Chain = Result.getValue(1);
939 break;
940 }
941 }
942 }
943
944 // Since loads produce two values, make sure to remember that we legalized
945 // both of them.
946 if (Chain.getNode() != Node) {
947 assert(Value.getNode() != Node && "Load must be completely replaced");
948 DAG.ReplaceAllUsesOfValueWith(SDValue(Node, 0), Value);
949 DAG.ReplaceAllUsesOfValueWith(SDValue(Node, 1), Chain);
950 if (UpdatedNodes) {
951 UpdatedNodes->insert(Value.getNode());
952 UpdatedNodes->insert(Chain.getNode());
953 }
954 ReplacedNode(Node);
955 }
956 }
957
958 /// Return a legal replacement for the given operation, with all legal operands.
LegalizeOp(SDNode * Node)959 void SelectionDAGLegalize::LegalizeOp(SDNode *Node) {
960 LLVM_DEBUG(dbgs() << "\nLegalizing: "; Node->dump(&DAG));
961
962 // Allow illegal target nodes and illegal registers.
963 if (Node->getOpcode() == ISD::TargetConstant ||
964 Node->getOpcode() == ISD::Register)
965 return;
966
967 #ifndef NDEBUG
968 for (unsigned i = 0, e = Node->getNumValues(); i != e; ++i)
969 assert(TLI.getTypeAction(*DAG.getContext(), Node->getValueType(i)) ==
970 TargetLowering::TypeLegal &&
971 "Unexpected illegal type!");
972
973 for (const SDValue &Op : Node->op_values())
974 assert((TLI.getTypeAction(*DAG.getContext(), Op.getValueType()) ==
975 TargetLowering::TypeLegal ||
976 Op.getOpcode() == ISD::TargetConstant ||
977 Op.getOpcode() == ISD::Register) &&
978 "Unexpected illegal type!");
979 #endif
980
981 // Figure out the correct action; the way to query this varies by opcode
982 TargetLowering::LegalizeAction Action = TargetLowering::Legal;
983 bool SimpleFinishLegalizing = true;
984 switch (Node->getOpcode()) {
985 case ISD::INTRINSIC_W_CHAIN:
986 case ISD::INTRINSIC_WO_CHAIN:
987 case ISD::INTRINSIC_VOID:
988 case ISD::STACKSAVE:
989 Action = TLI.getOperationAction(Node->getOpcode(), MVT::Other);
990 break;
991 case ISD::GET_DYNAMIC_AREA_OFFSET:
992 Action = TLI.getOperationAction(Node->getOpcode(),
993 Node->getValueType(0));
994 break;
995 case ISD::VAARG:
996 Action = TLI.getOperationAction(Node->getOpcode(),
997 Node->getValueType(0));
998 if (Action != TargetLowering::Promote)
999 Action = TLI.getOperationAction(Node->getOpcode(), MVT::Other);
1000 break;
1001 case ISD::FP_TO_FP16:
1002 case ISD::SINT_TO_FP:
1003 case ISD::UINT_TO_FP:
1004 case ISD::EXTRACT_VECTOR_ELT:
1005 case ISD::LROUND:
1006 case ISD::LLROUND:
1007 case ISD::LRINT:
1008 case ISD::LLRINT:
1009 Action = TLI.getOperationAction(Node->getOpcode(),
1010 Node->getOperand(0).getValueType());
1011 break;
1012 case ISD::STRICT_SINT_TO_FP:
1013 case ISD::STRICT_UINT_TO_FP:
1014 case ISD::STRICT_LRINT:
1015 case ISD::STRICT_LLRINT:
1016 case ISD::STRICT_LROUND:
1017 case ISD::STRICT_LLROUND:
1018 // These pseudo-ops are the same as the other STRICT_ ops except
1019 // they are registered with setOperationAction() using the input type
1020 // instead of the output type.
1021 Action = TLI.getOperationAction(Node->getOpcode(),
1022 Node->getOperand(1).getValueType());
1023 break;
1024 case ISD::SIGN_EXTEND_INREG: {
1025 EVT InnerType = cast<VTSDNode>(Node->getOperand(1))->getVT();
1026 Action = TLI.getOperationAction(Node->getOpcode(), InnerType);
1027 break;
1028 }
1029 case ISD::ATOMIC_STORE:
1030 Action = TLI.getOperationAction(Node->getOpcode(),
1031 Node->getOperand(2).getValueType());
1032 break;
1033 case ISD::SELECT_CC:
1034 case ISD::STRICT_FSETCC:
1035 case ISD::STRICT_FSETCCS:
1036 case ISD::SETCC:
1037 case ISD::BR_CC: {
1038 unsigned CCOperand = Node->getOpcode() == ISD::SELECT_CC ? 4 :
1039 Node->getOpcode() == ISD::STRICT_FSETCC ? 3 :
1040 Node->getOpcode() == ISD::STRICT_FSETCCS ? 3 :
1041 Node->getOpcode() == ISD::SETCC ? 2 : 1;
1042 unsigned CompareOperand = Node->getOpcode() == ISD::BR_CC ? 2 :
1043 Node->getOpcode() == ISD::STRICT_FSETCC ? 1 :
1044 Node->getOpcode() == ISD::STRICT_FSETCCS ? 1 : 0;
1045 MVT OpVT = Node->getOperand(CompareOperand).getSimpleValueType();
1046 ISD::CondCode CCCode =
1047 cast<CondCodeSDNode>(Node->getOperand(CCOperand))->get();
1048 Action = TLI.getCondCodeAction(CCCode, OpVT);
1049 if (Action == TargetLowering::Legal) {
1050 if (Node->getOpcode() == ISD::SELECT_CC)
1051 Action = TLI.getOperationAction(Node->getOpcode(),
1052 Node->getValueType(0));
1053 else
1054 Action = TLI.getOperationAction(Node->getOpcode(), OpVT);
1055 }
1056 break;
1057 }
1058 case ISD::LOAD:
1059 case ISD::STORE:
1060 // FIXME: Model these properly. LOAD and STORE are complicated, and
1061 // STORE expects the unlegalized operand in some cases.
1062 SimpleFinishLegalizing = false;
1063 break;
1064 case ISD::CALLSEQ_START:
1065 case ISD::CALLSEQ_END:
1066 // FIXME: This shouldn't be necessary. These nodes have special properties
1067 // dealing with the recursive nature of legalization. Removing this
1068 // special case should be done as part of making LegalizeDAG non-recursive.
1069 SimpleFinishLegalizing = false;
1070 break;
1071 case ISD::EXTRACT_ELEMENT:
1072 case ISD::FLT_ROUNDS_:
1073 case ISD::MERGE_VALUES:
1074 case ISD::EH_RETURN:
1075 case ISD::FRAME_TO_ARGS_OFFSET:
1076 case ISD::EH_DWARF_CFA:
1077 case ISD::EH_SJLJ_SETJMP:
1078 case ISD::EH_SJLJ_LONGJMP:
1079 case ISD::EH_SJLJ_SETUP_DISPATCH:
1080 // These operations lie about being legal: when they claim to be legal,
1081 // they should actually be expanded.
1082 Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0));
1083 if (Action == TargetLowering::Legal)
1084 Action = TargetLowering::Expand;
1085 break;
1086 case ISD::INIT_TRAMPOLINE:
1087 case ISD::ADJUST_TRAMPOLINE:
1088 case ISD::FRAMEADDR:
1089 case ISD::RETURNADDR:
1090 case ISD::ADDROFRETURNADDR:
1091 case ISD::SPONENTRY:
1092 // These operations lie about being legal: when they claim to be legal,
1093 // they should actually be custom-lowered.
1094 Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0));
1095 if (Action == TargetLowering::Legal)
1096 Action = TargetLowering::Custom;
1097 break;
1098 case ISD::READCYCLECOUNTER:
1099 // READCYCLECOUNTER returns an i64, even if type legalization might have
1100 // expanded that to several smaller types.
1101 Action = TLI.getOperationAction(Node->getOpcode(), MVT::i64);
1102 break;
1103 case ISD::READ_REGISTER:
1104 case ISD::WRITE_REGISTER:
1105 // Named register is legal in the DAG, but blocked by register name
1106 // selection if not implemented by target (to chose the correct register)
1107 // They'll be converted to Copy(To/From)Reg.
1108 Action = TargetLowering::Legal;
1109 break;
1110 case ISD::DEBUGTRAP:
1111 Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0));
1112 if (Action == TargetLowering::Expand) {
1113 // replace ISD::DEBUGTRAP with ISD::TRAP
1114 SDValue NewVal;
1115 NewVal = DAG.getNode(ISD::TRAP, SDLoc(Node), Node->getVTList(),
1116 Node->getOperand(0));
1117 ReplaceNode(Node, NewVal.getNode());
1118 LegalizeOp(NewVal.getNode());
1119 return;
1120 }
1121 break;
1122 case ISD::SADDSAT:
1123 case ISD::UADDSAT:
1124 case ISD::SSUBSAT:
1125 case ISD::USUBSAT: {
1126 Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0));
1127 break;
1128 }
1129 case ISD::SMULFIX:
1130 case ISD::SMULFIXSAT:
1131 case ISD::UMULFIX:
1132 case ISD::UMULFIXSAT:
1133 case ISD::SDIVFIX:
1134 case ISD::UDIVFIX: {
1135 unsigned Scale = Node->getConstantOperandVal(2);
1136 Action = TLI.getFixedPointOperationAction(Node->getOpcode(),
1137 Node->getValueType(0), Scale);
1138 break;
1139 }
1140 case ISD::MSCATTER:
1141 Action = TLI.getOperationAction(Node->getOpcode(),
1142 cast<MaskedScatterSDNode>(Node)->getValue().getValueType());
1143 break;
1144 case ISD::MSTORE:
1145 Action = TLI.getOperationAction(Node->getOpcode(),
1146 cast<MaskedStoreSDNode>(Node)->getValue().getValueType());
1147 break;
1148 case ISD::VECREDUCE_FADD:
1149 case ISD::VECREDUCE_FMUL:
1150 case ISD::VECREDUCE_ADD:
1151 case ISD::VECREDUCE_MUL:
1152 case ISD::VECREDUCE_AND:
1153 case ISD::VECREDUCE_OR:
1154 case ISD::VECREDUCE_XOR:
1155 case ISD::VECREDUCE_SMAX:
1156 case ISD::VECREDUCE_SMIN:
1157 case ISD::VECREDUCE_UMAX:
1158 case ISD::VECREDUCE_UMIN:
1159 case ISD::VECREDUCE_FMAX:
1160 case ISD::VECREDUCE_FMIN:
1161 Action = TLI.getOperationAction(
1162 Node->getOpcode(), Node->getOperand(0).getValueType());
1163 break;
1164 default:
1165 if (Node->getOpcode() >= ISD::BUILTIN_OP_END) {
1166 Action = TargetLowering::Legal;
1167 } else {
1168 Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0));
1169 }
1170 break;
1171 }
1172
1173 if (SimpleFinishLegalizing) {
1174 SDNode *NewNode = Node;
1175 switch (Node->getOpcode()) {
1176 default: break;
1177 case ISD::SHL:
1178 case ISD::SRL:
1179 case ISD::SRA:
1180 case ISD::ROTL:
1181 case ISD::ROTR: {
1182 // Legalizing shifts/rotates requires adjusting the shift amount
1183 // to the appropriate width.
1184 SDValue Op0 = Node->getOperand(0);
1185 SDValue Op1 = Node->getOperand(1);
1186 if (!Op1.getValueType().isVector()) {
1187 SDValue SAO = DAG.getShiftAmountOperand(Op0.getValueType(), Op1);
1188 // The getShiftAmountOperand() may create a new operand node or
1189 // return the existing one. If new operand is created we need
1190 // to update the parent node.
1191 // Do not try to legalize SAO here! It will be automatically legalized
1192 // in the next round.
1193 if (SAO != Op1)
1194 NewNode = DAG.UpdateNodeOperands(Node, Op0, SAO);
1195 }
1196 }
1197 break;
1198 case ISD::FSHL:
1199 case ISD::FSHR:
1200 case ISD::SRL_PARTS:
1201 case ISD::SRA_PARTS:
1202 case ISD::SHL_PARTS: {
1203 // Legalizing shifts/rotates requires adjusting the shift amount
1204 // to the appropriate width.
1205 SDValue Op0 = Node->getOperand(0);
1206 SDValue Op1 = Node->getOperand(1);
1207 SDValue Op2 = Node->getOperand(2);
1208 if (!Op2.getValueType().isVector()) {
1209 SDValue SAO = DAG.getShiftAmountOperand(Op0.getValueType(), Op2);
1210 // The getShiftAmountOperand() may create a new operand node or
1211 // return the existing one. If new operand is created we need
1212 // to update the parent node.
1213 if (SAO != Op2)
1214 NewNode = DAG.UpdateNodeOperands(Node, Op0, Op1, SAO);
1215 }
1216 break;
1217 }
1218 }
1219
1220 if (NewNode != Node) {
1221 ReplaceNode(Node, NewNode);
1222 Node = NewNode;
1223 }
1224 switch (Action) {
1225 case TargetLowering::Legal:
1226 LLVM_DEBUG(dbgs() << "Legal node: nothing to do\n");
1227 return;
1228 case TargetLowering::Custom:
1229 LLVM_DEBUG(dbgs() << "Trying custom legalization\n");
1230 // FIXME: The handling for custom lowering with multiple results is
1231 // a complete mess.
1232 if (SDValue Res = TLI.LowerOperation(SDValue(Node, 0), DAG)) {
1233 if (!(Res.getNode() != Node || Res.getResNo() != 0))
1234 return;
1235
1236 if (Node->getNumValues() == 1) {
1237 LLVM_DEBUG(dbgs() << "Successfully custom legalized node\n");
1238 // We can just directly replace this node with the lowered value.
1239 ReplaceNode(SDValue(Node, 0), Res);
1240 return;
1241 }
1242
1243 SmallVector<SDValue, 8> ResultVals;
1244 for (unsigned i = 0, e = Node->getNumValues(); i != e; ++i)
1245 ResultVals.push_back(Res.getValue(i));
1246 LLVM_DEBUG(dbgs() << "Successfully custom legalized node\n");
1247 ReplaceNode(Node, ResultVals.data());
1248 return;
1249 }
1250 LLVM_DEBUG(dbgs() << "Could not custom legalize node\n");
1251 LLVM_FALLTHROUGH;
1252 case TargetLowering::Expand:
1253 if (ExpandNode(Node))
1254 return;
1255 LLVM_FALLTHROUGH;
1256 case TargetLowering::LibCall:
1257 ConvertNodeToLibcall(Node);
1258 return;
1259 case TargetLowering::Promote:
1260 PromoteNode(Node);
1261 return;
1262 }
1263 }
1264
1265 switch (Node->getOpcode()) {
1266 default:
1267 #ifndef NDEBUG
1268 dbgs() << "NODE: ";
1269 Node->dump( &DAG);
1270 dbgs() << "\n";
1271 #endif
1272 llvm_unreachable("Do not know how to legalize this operator!");
1273
1274 case ISD::CALLSEQ_START:
1275 case ISD::CALLSEQ_END:
1276 break;
1277 case ISD::LOAD:
1278 return LegalizeLoadOps(Node);
1279 case ISD::STORE:
1280 return LegalizeStoreOps(Node);
1281 }
1282 }
1283
ExpandExtractFromVectorThroughStack(SDValue Op)1284 SDValue SelectionDAGLegalize::ExpandExtractFromVectorThroughStack(SDValue Op) {
1285 SDValue Vec = Op.getOperand(0);
1286 SDValue Idx = Op.getOperand(1);
1287 SDLoc dl(Op);
1288
1289 // Before we generate a new store to a temporary stack slot, see if there is
1290 // already one that we can use. There often is because when we scalarize
1291 // vector operations (using SelectionDAG::UnrollVectorOp for example) a whole
1292 // series of EXTRACT_VECTOR_ELT nodes are generated, one for each element in
1293 // the vector. If all are expanded here, we don't want one store per vector
1294 // element.
1295
1296 // Caches for hasPredecessorHelper
1297 SmallPtrSet<const SDNode *, 32> Visited;
1298 SmallVector<const SDNode *, 16> Worklist;
1299 Visited.insert(Op.getNode());
1300 Worklist.push_back(Idx.getNode());
1301 SDValue StackPtr, Ch;
1302 for (SDNode::use_iterator UI = Vec.getNode()->use_begin(),
1303 UE = Vec.getNode()->use_end(); UI != UE; ++UI) {
1304 SDNode *User = *UI;
1305 if (StoreSDNode *ST = dyn_cast<StoreSDNode>(User)) {
1306 if (ST->isIndexed() || ST->isTruncatingStore() ||
1307 ST->getValue() != Vec)
1308 continue;
1309
1310 // Make sure that nothing else could have stored into the destination of
1311 // this store.
1312 if (!ST->getChain().reachesChainWithoutSideEffects(DAG.getEntryNode()))
1313 continue;
1314
1315 // If the index is dependent on the store we will introduce a cycle when
1316 // creating the load (the load uses the index, and by replacing the chain
1317 // we will make the index dependent on the load). Also, the store might be
1318 // dependent on the extractelement and introduce a cycle when creating
1319 // the load.
1320 if (SDNode::hasPredecessorHelper(ST, Visited, Worklist) ||
1321 ST->hasPredecessor(Op.getNode()))
1322 continue;
1323
1324 StackPtr = ST->getBasePtr();
1325 Ch = SDValue(ST, 0);
1326 break;
1327 }
1328 }
1329
1330 EVT VecVT = Vec.getValueType();
1331
1332 if (!Ch.getNode()) {
1333 // Store the value to a temporary stack slot, then LOAD the returned part.
1334 StackPtr = DAG.CreateStackTemporary(VecVT);
1335 Ch = DAG.getStore(DAG.getEntryNode(), dl, Vec, StackPtr,
1336 MachinePointerInfo());
1337 }
1338
1339 StackPtr = TLI.getVectorElementPointer(DAG, StackPtr, VecVT, Idx);
1340
1341 SDValue NewLoad;
1342
1343 if (Op.getValueType().isVector())
1344 NewLoad =
1345 DAG.getLoad(Op.getValueType(), dl, Ch, StackPtr, MachinePointerInfo());
1346 else
1347 NewLoad = DAG.getExtLoad(ISD::EXTLOAD, dl, Op.getValueType(), Ch, StackPtr,
1348 MachinePointerInfo(),
1349 VecVT.getVectorElementType());
1350
1351 // Replace the chain going out of the store, by the one out of the load.
1352 DAG.ReplaceAllUsesOfValueWith(Ch, SDValue(NewLoad.getNode(), 1));
1353
1354 // We introduced a cycle though, so update the loads operands, making sure
1355 // to use the original store's chain as an incoming chain.
1356 SmallVector<SDValue, 6> NewLoadOperands(NewLoad->op_begin(),
1357 NewLoad->op_end());
1358 NewLoadOperands[0] = Ch;
1359 NewLoad =
1360 SDValue(DAG.UpdateNodeOperands(NewLoad.getNode(), NewLoadOperands), 0);
1361 return NewLoad;
1362 }
1363
ExpandInsertToVectorThroughStack(SDValue Op)1364 SDValue SelectionDAGLegalize::ExpandInsertToVectorThroughStack(SDValue Op) {
1365 assert(Op.getValueType().isVector() && "Non-vector insert subvector!");
1366
1367 SDValue Vec = Op.getOperand(0);
1368 SDValue Part = Op.getOperand(1);
1369 SDValue Idx = Op.getOperand(2);
1370 SDLoc dl(Op);
1371
1372 // Store the value to a temporary stack slot, then LOAD the returned part.
1373 EVT VecVT = Vec.getValueType();
1374 SDValue StackPtr = DAG.CreateStackTemporary(VecVT);
1375 int FI = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex();
1376 MachinePointerInfo PtrInfo =
1377 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI);
1378
1379 // First store the whole vector.
1380 SDValue Ch = DAG.getStore(DAG.getEntryNode(), dl, Vec, StackPtr, PtrInfo);
1381
1382 // Then store the inserted part.
1383 SDValue SubStackPtr = TLI.getVectorElementPointer(DAG, StackPtr, VecVT, Idx);
1384
1385 // Store the subvector.
1386 Ch = DAG.getStore(Ch, dl, Part, SubStackPtr, MachinePointerInfo());
1387
1388 // Finally, load the updated vector.
1389 return DAG.getLoad(Op.getValueType(), dl, Ch, StackPtr, PtrInfo);
1390 }
1391
ExpandVectorBuildThroughStack(SDNode * Node)1392 SDValue SelectionDAGLegalize::ExpandVectorBuildThroughStack(SDNode* Node) {
1393 // We can't handle this case efficiently. Allocate a sufficiently
1394 // aligned object on the stack, store each element into it, then load
1395 // the result as a vector.
1396 // Create the stack frame object.
1397 EVT VT = Node->getValueType(0);
1398 EVT EltVT = VT.getVectorElementType();
1399 SDLoc dl(Node);
1400 SDValue FIPtr = DAG.CreateStackTemporary(VT);
1401 int FI = cast<FrameIndexSDNode>(FIPtr.getNode())->getIndex();
1402 MachinePointerInfo PtrInfo =
1403 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI);
1404
1405 // Emit a store of each element to the stack slot.
1406 SmallVector<SDValue, 8> Stores;
1407 unsigned TypeByteSize = EltVT.getSizeInBits() / 8;
1408 assert(TypeByteSize > 0 && "Vector element type too small for stack store!");
1409 // Store (in the right endianness) the elements to memory.
1410 for (unsigned i = 0, e = Node->getNumOperands(); i != e; ++i) {
1411 // Ignore undef elements.
1412 if (Node->getOperand(i).isUndef()) continue;
1413
1414 unsigned Offset = TypeByteSize*i;
1415
1416 SDValue Idx = DAG.getConstant(Offset, dl, FIPtr.getValueType());
1417 Idx = DAG.getMemBasePlusOffset(FIPtr, Idx, dl);
1418
1419 // If the destination vector element type is narrower than the source
1420 // element type, only store the bits necessary.
1421 if (EltVT.bitsLT(Node->getOperand(i).getValueType().getScalarType())) {
1422 Stores.push_back(DAG.getTruncStore(DAG.getEntryNode(), dl,
1423 Node->getOperand(i), Idx,
1424 PtrInfo.getWithOffset(Offset), EltVT));
1425 } else
1426 Stores.push_back(DAG.getStore(DAG.getEntryNode(), dl, Node->getOperand(i),
1427 Idx, PtrInfo.getWithOffset(Offset)));
1428 }
1429
1430 SDValue StoreChain;
1431 if (!Stores.empty()) // Not all undef elements?
1432 StoreChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores);
1433 else
1434 StoreChain = DAG.getEntryNode();
1435
1436 // Result is a load from the stack slot.
1437 return DAG.getLoad(VT, dl, StoreChain, FIPtr, PtrInfo);
1438 }
1439
1440 /// Bitcast a floating-point value to an integer value. Only bitcast the part
1441 /// containing the sign bit if the target has no integer value capable of
1442 /// holding all bits of the floating-point value.
getSignAsIntValue(FloatSignAsInt & State,const SDLoc & DL,SDValue Value) const1443 void SelectionDAGLegalize::getSignAsIntValue(FloatSignAsInt &State,
1444 const SDLoc &DL,
1445 SDValue Value) const {
1446 EVT FloatVT = Value.getValueType();
1447 unsigned NumBits = FloatVT.getSizeInBits();
1448 State.FloatVT = FloatVT;
1449 EVT IVT = EVT::getIntegerVT(*DAG.getContext(), NumBits);
1450 // Convert to an integer of the same size.
1451 if (TLI.isTypeLegal(IVT)) {
1452 State.IntValue = DAG.getNode(ISD::BITCAST, DL, IVT, Value);
1453 State.SignMask = APInt::getSignMask(NumBits);
1454 State.SignBit = NumBits - 1;
1455 return;
1456 }
1457
1458 auto &DataLayout = DAG.getDataLayout();
1459 // Store the float to memory, then load the sign part out as an integer.
1460 MVT LoadTy = TLI.getRegisterType(*DAG.getContext(), MVT::i8);
1461 // First create a temporary that is aligned for both the load and store.
1462 SDValue StackPtr = DAG.CreateStackTemporary(FloatVT, LoadTy);
1463 int FI = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex();
1464 // Then store the float to it.
1465 State.FloatPtr = StackPtr;
1466 MachineFunction &MF = DAG.getMachineFunction();
1467 State.FloatPointerInfo = MachinePointerInfo::getFixedStack(MF, FI);
1468 State.Chain = DAG.getStore(DAG.getEntryNode(), DL, Value, State.FloatPtr,
1469 State.FloatPointerInfo);
1470
1471 SDValue IntPtr;
1472 if (DataLayout.isBigEndian()) {
1473 assert(FloatVT.isByteSized() && "Unsupported floating point type!");
1474 // Load out a legal integer with the same sign bit as the float.
1475 IntPtr = StackPtr;
1476 State.IntPointerInfo = State.FloatPointerInfo;
1477 } else {
1478 // Advance the pointer so that the loaded byte will contain the sign bit.
1479 unsigned ByteOffset = (FloatVT.getSizeInBits() / 8) - 1;
1480 IntPtr = DAG.getMemBasePlusOffset(StackPtr, ByteOffset, DL);
1481 State.IntPointerInfo = MachinePointerInfo::getFixedStack(MF, FI,
1482 ByteOffset);
1483 }
1484
1485 State.IntPtr = IntPtr;
1486 State.IntValue = DAG.getExtLoad(ISD::EXTLOAD, DL, LoadTy, State.Chain, IntPtr,
1487 State.IntPointerInfo, MVT::i8);
1488 State.SignMask = APInt::getOneBitSet(LoadTy.getSizeInBits(), 7);
1489 State.SignBit = 7;
1490 }
1491
1492 /// Replace the integer value produced by getSignAsIntValue() with a new value
1493 /// and cast the result back to a floating-point type.
modifySignAsInt(const FloatSignAsInt & State,const SDLoc & DL,SDValue NewIntValue) const1494 SDValue SelectionDAGLegalize::modifySignAsInt(const FloatSignAsInt &State,
1495 const SDLoc &DL,
1496 SDValue NewIntValue) const {
1497 if (!State.Chain)
1498 return DAG.getNode(ISD::BITCAST, DL, State.FloatVT, NewIntValue);
1499
1500 // Override the part containing the sign bit in the value stored on the stack.
1501 SDValue Chain = DAG.getTruncStore(State.Chain, DL, NewIntValue, State.IntPtr,
1502 State.IntPointerInfo, MVT::i8);
1503 return DAG.getLoad(State.FloatVT, DL, Chain, State.FloatPtr,
1504 State.FloatPointerInfo);
1505 }
1506
ExpandFCOPYSIGN(SDNode * Node) const1507 SDValue SelectionDAGLegalize::ExpandFCOPYSIGN(SDNode *Node) const {
1508 SDLoc DL(Node);
1509 SDValue Mag = Node->getOperand(0);
1510 SDValue Sign = Node->getOperand(1);
1511
1512 // Get sign bit into an integer value.
1513 FloatSignAsInt SignAsInt;
1514 getSignAsIntValue(SignAsInt, DL, Sign);
1515
1516 EVT IntVT = SignAsInt.IntValue.getValueType();
1517 SDValue SignMask = DAG.getConstant(SignAsInt.SignMask, DL, IntVT);
1518 SDValue SignBit = DAG.getNode(ISD::AND, DL, IntVT, SignAsInt.IntValue,
1519 SignMask);
1520
1521 // If FABS is legal transform FCOPYSIGN(x, y) => sign(x) ? -FABS(x) : FABS(X)
1522 EVT FloatVT = Mag.getValueType();
1523 if (TLI.isOperationLegalOrCustom(ISD::FABS, FloatVT) &&
1524 TLI.isOperationLegalOrCustom(ISD::FNEG, FloatVT)) {
1525 SDValue AbsValue = DAG.getNode(ISD::FABS, DL, FloatVT, Mag);
1526 SDValue NegValue = DAG.getNode(ISD::FNEG, DL, FloatVT, AbsValue);
1527 SDValue Cond = DAG.getSetCC(DL, getSetCCResultType(IntVT), SignBit,
1528 DAG.getConstant(0, DL, IntVT), ISD::SETNE);
1529 return DAG.getSelect(DL, FloatVT, Cond, NegValue, AbsValue);
1530 }
1531
1532 // Transform Mag value to integer, and clear the sign bit.
1533 FloatSignAsInt MagAsInt;
1534 getSignAsIntValue(MagAsInt, DL, Mag);
1535 EVT MagVT = MagAsInt.IntValue.getValueType();
1536 SDValue ClearSignMask = DAG.getConstant(~MagAsInt.SignMask, DL, MagVT);
1537 SDValue ClearedSign = DAG.getNode(ISD::AND, DL, MagVT, MagAsInt.IntValue,
1538 ClearSignMask);
1539
1540 // Get the signbit at the right position for MagAsInt.
1541 int ShiftAmount = SignAsInt.SignBit - MagAsInt.SignBit;
1542 EVT ShiftVT = IntVT;
1543 if (SignBit.getValueSizeInBits() < ClearedSign.getValueSizeInBits()) {
1544 SignBit = DAG.getNode(ISD::ZERO_EXTEND, DL, MagVT, SignBit);
1545 ShiftVT = MagVT;
1546 }
1547 if (ShiftAmount > 0) {
1548 SDValue ShiftCnst = DAG.getConstant(ShiftAmount, DL, ShiftVT);
1549 SignBit = DAG.getNode(ISD::SRL, DL, ShiftVT, SignBit, ShiftCnst);
1550 } else if (ShiftAmount < 0) {
1551 SDValue ShiftCnst = DAG.getConstant(-ShiftAmount, DL, ShiftVT);
1552 SignBit = DAG.getNode(ISD::SHL, DL, ShiftVT, SignBit, ShiftCnst);
1553 }
1554 if (SignBit.getValueSizeInBits() > ClearedSign.getValueSizeInBits()) {
1555 SignBit = DAG.getNode(ISD::TRUNCATE, DL, MagVT, SignBit);
1556 }
1557
1558 // Store the part with the modified sign and convert back to float.
1559 SDValue CopiedSign = DAG.getNode(ISD::OR, DL, MagVT, ClearedSign, SignBit);
1560 return modifySignAsInt(MagAsInt, DL, CopiedSign);
1561 }
1562
ExpandFABS(SDNode * Node) const1563 SDValue SelectionDAGLegalize::ExpandFABS(SDNode *Node) const {
1564 SDLoc DL(Node);
1565 SDValue Value = Node->getOperand(0);
1566
1567 // Transform FABS(x) => FCOPYSIGN(x, 0.0) if FCOPYSIGN is legal.
1568 EVT FloatVT = Value.getValueType();
1569 if (TLI.isOperationLegalOrCustom(ISD::FCOPYSIGN, FloatVT)) {
1570 SDValue Zero = DAG.getConstantFP(0.0, DL, FloatVT);
1571 return DAG.getNode(ISD::FCOPYSIGN, DL, FloatVT, Value, Zero);
1572 }
1573
1574 // Transform value to integer, clear the sign bit and transform back.
1575 FloatSignAsInt ValueAsInt;
1576 getSignAsIntValue(ValueAsInt, DL, Value);
1577 EVT IntVT = ValueAsInt.IntValue.getValueType();
1578 SDValue ClearSignMask = DAG.getConstant(~ValueAsInt.SignMask, DL, IntVT);
1579 SDValue ClearedSign = DAG.getNode(ISD::AND, DL, IntVT, ValueAsInt.IntValue,
1580 ClearSignMask);
1581 return modifySignAsInt(ValueAsInt, DL, ClearedSign);
1582 }
1583
ExpandDYNAMIC_STACKALLOC(SDNode * Node,SmallVectorImpl<SDValue> & Results)1584 void SelectionDAGLegalize::ExpandDYNAMIC_STACKALLOC(SDNode* Node,
1585 SmallVectorImpl<SDValue> &Results) {
1586 unsigned SPReg = TLI.getStackPointerRegisterToSaveRestore();
1587 assert(SPReg && "Target cannot require DYNAMIC_STACKALLOC expansion and"
1588 " not tell us which reg is the stack pointer!");
1589 SDLoc dl(Node);
1590 EVT VT = Node->getValueType(0);
1591 SDValue Tmp1 = SDValue(Node, 0);
1592 SDValue Tmp2 = SDValue(Node, 1);
1593 SDValue Tmp3 = Node->getOperand(2);
1594 SDValue Chain = Tmp1.getOperand(0);
1595
1596 // Chain the dynamic stack allocation so that it doesn't modify the stack
1597 // pointer when other instructions are using the stack.
1598 Chain = DAG.getCALLSEQ_START(Chain, 0, 0, dl);
1599
1600 SDValue Size = Tmp2.getOperand(1);
1601 SDValue SP = DAG.getCopyFromReg(Chain, dl, SPReg, VT);
1602 Chain = SP.getValue(1);
1603 unsigned Align = cast<ConstantSDNode>(Tmp3)->getZExtValue();
1604 unsigned StackAlign =
1605 DAG.getSubtarget().getFrameLowering()->getStackAlignment();
1606 Tmp1 = DAG.getNode(ISD::SUB, dl, VT, SP, Size); // Value
1607 if (Align > StackAlign)
1608 Tmp1 = DAG.getNode(ISD::AND, dl, VT, Tmp1,
1609 DAG.getConstant(-(uint64_t)Align, dl, VT));
1610 Chain = DAG.getCopyToReg(Chain, dl, SPReg, Tmp1); // Output chain
1611
1612 Tmp2 = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(0, dl, true),
1613 DAG.getIntPtrConstant(0, dl, true), SDValue(), dl);
1614
1615 Results.push_back(Tmp1);
1616 Results.push_back(Tmp2);
1617 }
1618
1619 /// Legalize a SETCC with given LHS and RHS and condition code CC on the current
1620 /// target.
1621 ///
1622 /// If the SETCC has been legalized using AND / OR, then the legalized node
1623 /// will be stored in LHS. RHS and CC will be set to SDValue(). NeedInvert
1624 /// will be set to false.
1625 ///
1626 /// If the SETCC has been legalized by using getSetCCSwappedOperands(),
1627 /// then the values of LHS and RHS will be swapped, CC will be set to the
1628 /// new condition, and NeedInvert will be set to false.
1629 ///
1630 /// If the SETCC has been legalized using the inverse condcode, then LHS and
1631 /// RHS will be unchanged, CC will set to the inverted condcode, and NeedInvert
1632 /// will be set to true. The caller must invert the result of the SETCC with
1633 /// SelectionDAG::getLogicalNOT() or take equivalent action to swap the effect
1634 /// of a true/false result.
1635 ///
1636 /// \returns true if the SetCC has been legalized, false if it hasn't.
LegalizeSetCCCondCode(EVT VT,SDValue & LHS,SDValue & RHS,SDValue & CC,bool & NeedInvert,const SDLoc & dl,SDValue & Chain,bool IsSignaling)1637 bool SelectionDAGLegalize::LegalizeSetCCCondCode(
1638 EVT VT, SDValue &LHS, SDValue &RHS, SDValue &CC, bool &NeedInvert,
1639 const SDLoc &dl, SDValue &Chain, bool IsSignaling) {
1640 MVT OpVT = LHS.getSimpleValueType();
1641 ISD::CondCode CCCode = cast<CondCodeSDNode>(CC)->get();
1642 NeedInvert = false;
1643 switch (TLI.getCondCodeAction(CCCode, OpVT)) {
1644 default: llvm_unreachable("Unknown condition code action!");
1645 case TargetLowering::Legal:
1646 // Nothing to do.
1647 break;
1648 case TargetLowering::Expand: {
1649 ISD::CondCode InvCC = ISD::getSetCCSwappedOperands(CCCode);
1650 if (TLI.isCondCodeLegalOrCustom(InvCC, OpVT)) {
1651 std::swap(LHS, RHS);
1652 CC = DAG.getCondCode(InvCC);
1653 return true;
1654 }
1655 // Swapping operands didn't work. Try inverting the condition.
1656 bool NeedSwap = false;
1657 InvCC = getSetCCInverse(CCCode, OpVT);
1658 if (!TLI.isCondCodeLegalOrCustom(InvCC, OpVT)) {
1659 // If inverting the condition is not enough, try swapping operands
1660 // on top of it.
1661 InvCC = ISD::getSetCCSwappedOperands(InvCC);
1662 NeedSwap = true;
1663 }
1664 if (TLI.isCondCodeLegalOrCustom(InvCC, OpVT)) {
1665 CC = DAG.getCondCode(InvCC);
1666 NeedInvert = true;
1667 if (NeedSwap)
1668 std::swap(LHS, RHS);
1669 return true;
1670 }
1671
1672 ISD::CondCode CC1 = ISD::SETCC_INVALID, CC2 = ISD::SETCC_INVALID;
1673 unsigned Opc = 0;
1674 switch (CCCode) {
1675 default: llvm_unreachable("Don't know how to expand this condition!");
1676 case ISD::SETO:
1677 assert(TLI.isCondCodeLegal(ISD::SETOEQ, OpVT)
1678 && "If SETO is expanded, SETOEQ must be legal!");
1679 CC1 = ISD::SETOEQ; CC2 = ISD::SETOEQ; Opc = ISD::AND; break;
1680 case ISD::SETUO:
1681 assert(TLI.isCondCodeLegal(ISD::SETUNE, OpVT)
1682 && "If SETUO is expanded, SETUNE must be legal!");
1683 CC1 = ISD::SETUNE; CC2 = ISD::SETUNE; Opc = ISD::OR; break;
1684 case ISD::SETOEQ:
1685 case ISD::SETOGT:
1686 case ISD::SETOGE:
1687 case ISD::SETOLT:
1688 case ISD::SETOLE:
1689 case ISD::SETONE:
1690 case ISD::SETUEQ:
1691 case ISD::SETUNE:
1692 case ISD::SETUGT:
1693 case ISD::SETUGE:
1694 case ISD::SETULT:
1695 case ISD::SETULE:
1696 // If we are floating point, assign and break, otherwise fall through.
1697 if (!OpVT.isInteger()) {
1698 // We can use the 4th bit to tell if we are the unordered
1699 // or ordered version of the opcode.
1700 CC2 = ((unsigned)CCCode & 0x8U) ? ISD::SETUO : ISD::SETO;
1701 Opc = ((unsigned)CCCode & 0x8U) ? ISD::OR : ISD::AND;
1702 CC1 = (ISD::CondCode)(((int)CCCode & 0x7) | 0x10);
1703 break;
1704 }
1705 // Fallthrough if we are unsigned integer.
1706 LLVM_FALLTHROUGH;
1707 case ISD::SETLE:
1708 case ISD::SETGT:
1709 case ISD::SETGE:
1710 case ISD::SETLT:
1711 case ISD::SETNE:
1712 case ISD::SETEQ:
1713 // If all combinations of inverting the condition and swapping operands
1714 // didn't work then we have no means to expand the condition.
1715 llvm_unreachable("Don't know how to expand this condition!");
1716 }
1717
1718 SDValue SetCC1, SetCC2;
1719 if (CCCode != ISD::SETO && CCCode != ISD::SETUO) {
1720 // If we aren't the ordered or unorder operation,
1721 // then the pattern is (LHS CC1 RHS) Opc (LHS CC2 RHS).
1722 SetCC1 = DAG.getSetCC(dl, VT, LHS, RHS, CC1, Chain, IsSignaling);
1723 SetCC2 = DAG.getSetCC(dl, VT, LHS, RHS, CC2, Chain, IsSignaling);
1724 } else {
1725 // Otherwise, the pattern is (LHS CC1 LHS) Opc (RHS CC2 RHS)
1726 SetCC1 = DAG.getSetCC(dl, VT, LHS, LHS, CC1, Chain, IsSignaling);
1727 SetCC2 = DAG.getSetCC(dl, VT, RHS, RHS, CC2, Chain, IsSignaling);
1728 }
1729 if (Chain)
1730 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, SetCC1.getValue(1),
1731 SetCC2.getValue(1));
1732 LHS = DAG.getNode(Opc, dl, VT, SetCC1, SetCC2);
1733 RHS = SDValue();
1734 CC = SDValue();
1735 return true;
1736 }
1737 }
1738 return false;
1739 }
1740
1741 /// Emit a store/load combination to the stack. This stores
1742 /// SrcOp to a stack slot of type SlotVT, truncating it if needed. It then does
1743 /// a load from the stack slot to DestVT, extending it if needed.
1744 /// The resultant code need not be legal.
EmitStackConvert(SDValue SrcOp,EVT SlotVT,EVT DestVT,const SDLoc & dl)1745 SDValue SelectionDAGLegalize::EmitStackConvert(SDValue SrcOp, EVT SlotVT,
1746 EVT DestVT, const SDLoc &dl) {
1747 return EmitStackConvert(SrcOp, SlotVT, DestVT, dl, DAG.getEntryNode());
1748 }
1749
EmitStackConvert(SDValue SrcOp,EVT SlotVT,EVT DestVT,const SDLoc & dl,SDValue Chain)1750 SDValue SelectionDAGLegalize::EmitStackConvert(SDValue SrcOp, EVT SlotVT,
1751 EVT DestVT, const SDLoc &dl,
1752 SDValue Chain) {
1753 // Create the stack frame object.
1754 unsigned SrcAlign = DAG.getDataLayout().getPrefTypeAlignment(
1755 SrcOp.getValueType().getTypeForEVT(*DAG.getContext()));
1756 SDValue FIPtr = DAG.CreateStackTemporary(SlotVT, SrcAlign);
1757
1758 FrameIndexSDNode *StackPtrFI = cast<FrameIndexSDNode>(FIPtr);
1759 int SPFI = StackPtrFI->getIndex();
1760 MachinePointerInfo PtrInfo =
1761 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), SPFI);
1762
1763 unsigned SrcSize = SrcOp.getValueSizeInBits();
1764 unsigned SlotSize = SlotVT.getSizeInBits();
1765 unsigned DestSize = DestVT.getSizeInBits();
1766 Type *DestType = DestVT.getTypeForEVT(*DAG.getContext());
1767 unsigned DestAlign = DAG.getDataLayout().getPrefTypeAlignment(DestType);
1768
1769 // Emit a store to the stack slot. Use a truncstore if the input value is
1770 // later than DestVT.
1771 SDValue Store;
1772
1773 if (SrcSize > SlotSize)
1774 Store = DAG.getTruncStore(Chain, dl, SrcOp, FIPtr, PtrInfo,
1775 SlotVT, SrcAlign);
1776 else {
1777 assert(SrcSize == SlotSize && "Invalid store");
1778 Store =
1779 DAG.getStore(Chain, dl, SrcOp, FIPtr, PtrInfo, SrcAlign);
1780 }
1781
1782 // Result is a load from the stack slot.
1783 if (SlotSize == DestSize)
1784 return DAG.getLoad(DestVT, dl, Store, FIPtr, PtrInfo, DestAlign);
1785
1786 assert(SlotSize < DestSize && "Unknown extension!");
1787 return DAG.getExtLoad(ISD::EXTLOAD, dl, DestVT, Store, FIPtr, PtrInfo, SlotVT,
1788 DestAlign);
1789 }
1790
ExpandSCALAR_TO_VECTOR(SDNode * Node)1791 SDValue SelectionDAGLegalize::ExpandSCALAR_TO_VECTOR(SDNode *Node) {
1792 SDLoc dl(Node);
1793 // Create a vector sized/aligned stack slot, store the value to element #0,
1794 // then load the whole vector back out.
1795 SDValue StackPtr = DAG.CreateStackTemporary(Node->getValueType(0));
1796
1797 FrameIndexSDNode *StackPtrFI = cast<FrameIndexSDNode>(StackPtr);
1798 int SPFI = StackPtrFI->getIndex();
1799
1800 SDValue Ch = DAG.getTruncStore(
1801 DAG.getEntryNode(), dl, Node->getOperand(0), StackPtr,
1802 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), SPFI),
1803 Node->getValueType(0).getVectorElementType());
1804 return DAG.getLoad(
1805 Node->getValueType(0), dl, Ch, StackPtr,
1806 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), SPFI));
1807 }
1808
1809 static bool
ExpandBVWithShuffles(SDNode * Node,SelectionDAG & DAG,const TargetLowering & TLI,SDValue & Res)1810 ExpandBVWithShuffles(SDNode *Node, SelectionDAG &DAG,
1811 const TargetLowering &TLI, SDValue &Res) {
1812 unsigned NumElems = Node->getNumOperands();
1813 SDLoc dl(Node);
1814 EVT VT = Node->getValueType(0);
1815
1816 // Try to group the scalars into pairs, shuffle the pairs together, then
1817 // shuffle the pairs of pairs together, etc. until the vector has
1818 // been built. This will work only if all of the necessary shuffle masks
1819 // are legal.
1820
1821 // We do this in two phases; first to check the legality of the shuffles,
1822 // and next, assuming that all shuffles are legal, to create the new nodes.
1823 for (int Phase = 0; Phase < 2; ++Phase) {
1824 SmallVector<std::pair<SDValue, SmallVector<int, 16>>, 16> IntermedVals,
1825 NewIntermedVals;
1826 for (unsigned i = 0; i < NumElems; ++i) {
1827 SDValue V = Node->getOperand(i);
1828 if (V.isUndef())
1829 continue;
1830
1831 SDValue Vec;
1832 if (Phase)
1833 Vec = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, V);
1834 IntermedVals.push_back(std::make_pair(Vec, SmallVector<int, 16>(1, i)));
1835 }
1836
1837 while (IntermedVals.size() > 2) {
1838 NewIntermedVals.clear();
1839 for (unsigned i = 0, e = (IntermedVals.size() & ~1u); i < e; i += 2) {
1840 // This vector and the next vector are shuffled together (simply to
1841 // append the one to the other).
1842 SmallVector<int, 16> ShuffleVec(NumElems, -1);
1843
1844 SmallVector<int, 16> FinalIndices;
1845 FinalIndices.reserve(IntermedVals[i].second.size() +
1846 IntermedVals[i+1].second.size());
1847
1848 int k = 0;
1849 for (unsigned j = 0, f = IntermedVals[i].second.size(); j != f;
1850 ++j, ++k) {
1851 ShuffleVec[k] = j;
1852 FinalIndices.push_back(IntermedVals[i].second[j]);
1853 }
1854 for (unsigned j = 0, f = IntermedVals[i+1].second.size(); j != f;
1855 ++j, ++k) {
1856 ShuffleVec[k] = NumElems + j;
1857 FinalIndices.push_back(IntermedVals[i+1].second[j]);
1858 }
1859
1860 SDValue Shuffle;
1861 if (Phase)
1862 Shuffle = DAG.getVectorShuffle(VT, dl, IntermedVals[i].first,
1863 IntermedVals[i+1].first,
1864 ShuffleVec);
1865 else if (!TLI.isShuffleMaskLegal(ShuffleVec, VT))
1866 return false;
1867 NewIntermedVals.push_back(
1868 std::make_pair(Shuffle, std::move(FinalIndices)));
1869 }
1870
1871 // If we had an odd number of defined values, then append the last
1872 // element to the array of new vectors.
1873 if ((IntermedVals.size() & 1) != 0)
1874 NewIntermedVals.push_back(IntermedVals.back());
1875
1876 IntermedVals.swap(NewIntermedVals);
1877 }
1878
1879 assert(IntermedVals.size() <= 2 && IntermedVals.size() > 0 &&
1880 "Invalid number of intermediate vectors");
1881 SDValue Vec1 = IntermedVals[0].first;
1882 SDValue Vec2;
1883 if (IntermedVals.size() > 1)
1884 Vec2 = IntermedVals[1].first;
1885 else if (Phase)
1886 Vec2 = DAG.getUNDEF(VT);
1887
1888 SmallVector<int, 16> ShuffleVec(NumElems, -1);
1889 for (unsigned i = 0, e = IntermedVals[0].second.size(); i != e; ++i)
1890 ShuffleVec[IntermedVals[0].second[i]] = i;
1891 for (unsigned i = 0, e = IntermedVals[1].second.size(); i != e; ++i)
1892 ShuffleVec[IntermedVals[1].second[i]] = NumElems + i;
1893
1894 if (Phase)
1895 Res = DAG.getVectorShuffle(VT, dl, Vec1, Vec2, ShuffleVec);
1896 else if (!TLI.isShuffleMaskLegal(ShuffleVec, VT))
1897 return false;
1898 }
1899
1900 return true;
1901 }
1902
1903 /// Expand a BUILD_VECTOR node on targets that don't
1904 /// support the operation, but do support the resultant vector type.
ExpandBUILD_VECTOR(SDNode * Node)1905 SDValue SelectionDAGLegalize::ExpandBUILD_VECTOR(SDNode *Node) {
1906 unsigned NumElems = Node->getNumOperands();
1907 SDValue Value1, Value2;
1908 SDLoc dl(Node);
1909 EVT VT = Node->getValueType(0);
1910 EVT OpVT = Node->getOperand(0).getValueType();
1911 EVT EltVT = VT.getVectorElementType();
1912
1913 // If the only non-undef value is the low element, turn this into a
1914 // SCALAR_TO_VECTOR node. If this is { X, X, X, X }, determine X.
1915 bool isOnlyLowElement = true;
1916 bool MoreThanTwoValues = false;
1917 bool isConstant = true;
1918 for (unsigned i = 0; i < NumElems; ++i) {
1919 SDValue V = Node->getOperand(i);
1920 if (V.isUndef())
1921 continue;
1922 if (i > 0)
1923 isOnlyLowElement = false;
1924 if (!isa<ConstantFPSDNode>(V) && !isa<ConstantSDNode>(V))
1925 isConstant = false;
1926
1927 if (!Value1.getNode()) {
1928 Value1 = V;
1929 } else if (!Value2.getNode()) {
1930 if (V != Value1)
1931 Value2 = V;
1932 } else if (V != Value1 && V != Value2) {
1933 MoreThanTwoValues = true;
1934 }
1935 }
1936
1937 if (!Value1.getNode())
1938 return DAG.getUNDEF(VT);
1939
1940 if (isOnlyLowElement)
1941 return DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Node->getOperand(0));
1942
1943 // If all elements are constants, create a load from the constant pool.
1944 if (isConstant) {
1945 SmallVector<Constant*, 16> CV;
1946 for (unsigned i = 0, e = NumElems; i != e; ++i) {
1947 if (ConstantFPSDNode *V =
1948 dyn_cast<ConstantFPSDNode>(Node->getOperand(i))) {
1949 CV.push_back(const_cast<ConstantFP *>(V->getConstantFPValue()));
1950 } else if (ConstantSDNode *V =
1951 dyn_cast<ConstantSDNode>(Node->getOperand(i))) {
1952 if (OpVT==EltVT)
1953 CV.push_back(const_cast<ConstantInt *>(V->getConstantIntValue()));
1954 else {
1955 // If OpVT and EltVT don't match, EltVT is not legal and the
1956 // element values have been promoted/truncated earlier. Undo this;
1957 // we don't want a v16i8 to become a v16i32 for example.
1958 const ConstantInt *CI = V->getConstantIntValue();
1959 CV.push_back(ConstantInt::get(EltVT.getTypeForEVT(*DAG.getContext()),
1960 CI->getZExtValue()));
1961 }
1962 } else {
1963 assert(Node->getOperand(i).isUndef());
1964 Type *OpNTy = EltVT.getTypeForEVT(*DAG.getContext());
1965 CV.push_back(UndefValue::get(OpNTy));
1966 }
1967 }
1968 Constant *CP = ConstantVector::get(CV);
1969 SDValue CPIdx =
1970 DAG.getConstantPool(CP, TLI.getPointerTy(DAG.getDataLayout()));
1971 unsigned Alignment = cast<ConstantPoolSDNode>(CPIdx)->getAlignment();
1972 return DAG.getLoad(
1973 VT, dl, DAG.getEntryNode(), CPIdx,
1974 MachinePointerInfo::getConstantPool(DAG.getMachineFunction()),
1975 Alignment);
1976 }
1977
1978 SmallSet<SDValue, 16> DefinedValues;
1979 for (unsigned i = 0; i < NumElems; ++i) {
1980 if (Node->getOperand(i).isUndef())
1981 continue;
1982 DefinedValues.insert(Node->getOperand(i));
1983 }
1984
1985 if (TLI.shouldExpandBuildVectorWithShuffles(VT, DefinedValues.size())) {
1986 if (!MoreThanTwoValues) {
1987 SmallVector<int, 8> ShuffleVec(NumElems, -1);
1988 for (unsigned i = 0; i < NumElems; ++i) {
1989 SDValue V = Node->getOperand(i);
1990 if (V.isUndef())
1991 continue;
1992 ShuffleVec[i] = V == Value1 ? 0 : NumElems;
1993 }
1994 if (TLI.isShuffleMaskLegal(ShuffleVec, Node->getValueType(0))) {
1995 // Get the splatted value into the low element of a vector register.
1996 SDValue Vec1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Value1);
1997 SDValue Vec2;
1998 if (Value2.getNode())
1999 Vec2 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Value2);
2000 else
2001 Vec2 = DAG.getUNDEF(VT);
2002
2003 // Return shuffle(LowValVec, undef, <0,0,0,0>)
2004 return DAG.getVectorShuffle(VT, dl, Vec1, Vec2, ShuffleVec);
2005 }
2006 } else {
2007 SDValue Res;
2008 if (ExpandBVWithShuffles(Node, DAG, TLI, Res))
2009 return Res;
2010 }
2011 }
2012
2013 // Otherwise, we can't handle this case efficiently.
2014 return ExpandVectorBuildThroughStack(Node);
2015 }
2016
ExpandSPLAT_VECTOR(SDNode * Node)2017 SDValue SelectionDAGLegalize::ExpandSPLAT_VECTOR(SDNode *Node) {
2018 SDLoc DL(Node);
2019 EVT VT = Node->getValueType(0);
2020 SDValue SplatVal = Node->getOperand(0);
2021
2022 return DAG.getSplatBuildVector(VT, DL, SplatVal);
2023 }
2024
2025 // Expand a node into a call to a libcall. If the result value
2026 // does not fit into a register, return the lo part and set the hi part to the
2027 // by-reg argument. If it does fit into a single register, return the result
2028 // and leave the Hi part unset.
ExpandLibCall(RTLIB::Libcall LC,SDNode * Node,bool isSigned)2029 SDValue SelectionDAGLegalize::ExpandLibCall(RTLIB::Libcall LC, SDNode *Node,
2030 bool isSigned) {
2031 TargetLowering::ArgListTy Args;
2032 TargetLowering::ArgListEntry Entry;
2033 for (const SDValue &Op : Node->op_values()) {
2034 EVT ArgVT = Op.getValueType();
2035 Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext());
2036 Entry.Node = Op;
2037 Entry.Ty = ArgTy;
2038 Entry.IsSExt = TLI.shouldSignExtendTypeInLibCall(ArgVT, isSigned);
2039 Entry.IsZExt = !TLI.shouldSignExtendTypeInLibCall(ArgVT, isSigned);
2040 Args.push_back(Entry);
2041 }
2042 SDValue Callee = DAG.getExternalSymbol(TLI.getLibcallName(LC),
2043 TLI.getPointerTy(DAG.getDataLayout()));
2044
2045 EVT RetVT = Node->getValueType(0);
2046 Type *RetTy = RetVT.getTypeForEVT(*DAG.getContext());
2047
2048 // By default, the input chain to this libcall is the entry node of the
2049 // function. If the libcall is going to be emitted as a tail call then
2050 // TLI.isUsedByReturnOnly will change it to the right chain if the return
2051 // node which is being folded has a non-entry input chain.
2052 SDValue InChain = DAG.getEntryNode();
2053
2054 // isTailCall may be true since the callee does not reference caller stack
2055 // frame. Check if it's in the right position and that the return types match.
2056 SDValue TCChain = InChain;
2057 const Function &F = DAG.getMachineFunction().getFunction();
2058 bool isTailCall =
2059 TLI.isInTailCallPosition(DAG, Node, TCChain) &&
2060 (RetTy == F.getReturnType() || F.getReturnType()->isVoidTy());
2061 if (isTailCall)
2062 InChain = TCChain;
2063
2064 TargetLowering::CallLoweringInfo CLI(DAG);
2065 bool signExtend = TLI.shouldSignExtendTypeInLibCall(RetVT, isSigned);
2066 CLI.setDebugLoc(SDLoc(Node))
2067 .setChain(InChain)
2068 .setLibCallee(TLI.getLibcallCallingConv(LC), RetTy, Callee,
2069 std::move(Args))
2070 .setTailCall(isTailCall)
2071 .setSExtResult(signExtend)
2072 .setZExtResult(!signExtend)
2073 .setIsPostTypeLegalization(true);
2074
2075 std::pair<SDValue, SDValue> CallInfo = TLI.LowerCallTo(CLI);
2076
2077 if (!CallInfo.second.getNode()) {
2078 LLVM_DEBUG(dbgs() << "Created tailcall: "; DAG.getRoot().dump(&DAG));
2079 // It's a tailcall, return the chain (which is the DAG root).
2080 return DAG.getRoot();
2081 }
2082
2083 LLVM_DEBUG(dbgs() << "Created libcall: "; CallInfo.first.dump(&DAG));
2084 return CallInfo.first;
2085 }
2086
ExpandFPLibCall(SDNode * Node,RTLIB::Libcall Call_F32,RTLIB::Libcall Call_F64,RTLIB::Libcall Call_F80,RTLIB::Libcall Call_F128,RTLIB::Libcall Call_PPCF128,SmallVectorImpl<SDValue> & Results)2087 void SelectionDAGLegalize::ExpandFPLibCall(SDNode* Node,
2088 RTLIB::Libcall Call_F32,
2089 RTLIB::Libcall Call_F64,
2090 RTLIB::Libcall Call_F80,
2091 RTLIB::Libcall Call_F128,
2092 RTLIB::Libcall Call_PPCF128,
2093 SmallVectorImpl<SDValue> &Results) {
2094 RTLIB::Libcall LC;
2095 switch (Node->getSimpleValueType(0).SimpleTy) {
2096 default: llvm_unreachable("Unexpected request for libcall!");
2097 case MVT::f32: LC = Call_F32; break;
2098 case MVT::f64: LC = Call_F64; break;
2099 case MVT::f80: LC = Call_F80; break;
2100 case MVT::f128: LC = Call_F128; break;
2101 case MVT::ppcf128: LC = Call_PPCF128; break;
2102 }
2103
2104 if (Node->isStrictFPOpcode()) {
2105 EVT RetVT = Node->getValueType(0);
2106 SmallVector<SDValue, 4> Ops(Node->op_begin() + 1, Node->op_end());
2107 TargetLowering::MakeLibCallOptions CallOptions;
2108 // FIXME: This doesn't support tail calls.
2109 std::pair<SDValue, SDValue> Tmp = TLI.makeLibCall(DAG, LC, RetVT,
2110 Ops, CallOptions,
2111 SDLoc(Node),
2112 Node->getOperand(0));
2113 Results.push_back(Tmp.first);
2114 Results.push_back(Tmp.second);
2115 } else {
2116 SDValue Tmp = ExpandLibCall(LC, Node, false);
2117 Results.push_back(Tmp);
2118 }
2119 }
2120
ExpandIntLibCall(SDNode * Node,bool isSigned,RTLIB::Libcall Call_I8,RTLIB::Libcall Call_I16,RTLIB::Libcall Call_I32,RTLIB::Libcall Call_I64,RTLIB::Libcall Call_I128)2121 SDValue SelectionDAGLegalize::ExpandIntLibCall(SDNode* Node, bool isSigned,
2122 RTLIB::Libcall Call_I8,
2123 RTLIB::Libcall Call_I16,
2124 RTLIB::Libcall Call_I32,
2125 RTLIB::Libcall Call_I64,
2126 RTLIB::Libcall Call_I128) {
2127 RTLIB::Libcall LC;
2128 switch (Node->getSimpleValueType(0).SimpleTy) {
2129 default: llvm_unreachable("Unexpected request for libcall!");
2130 case MVT::i8: LC = Call_I8; break;
2131 case MVT::i16: LC = Call_I16; break;
2132 case MVT::i32: LC = Call_I32; break;
2133 case MVT::i64: LC = Call_I64; break;
2134 case MVT::i128: LC = Call_I128; break;
2135 }
2136 return ExpandLibCall(LC, Node, isSigned);
2137 }
2138
2139 /// Expand the node to a libcall based on first argument type (for instance
2140 /// lround and its variant).
ExpandArgFPLibCall(SDNode * Node,RTLIB::Libcall Call_F32,RTLIB::Libcall Call_F64,RTLIB::Libcall Call_F80,RTLIB::Libcall Call_F128,RTLIB::Libcall Call_PPCF128,SmallVectorImpl<SDValue> & Results)2141 void SelectionDAGLegalize::ExpandArgFPLibCall(SDNode* Node,
2142 RTLIB::Libcall Call_F32,
2143 RTLIB::Libcall Call_F64,
2144 RTLIB::Libcall Call_F80,
2145 RTLIB::Libcall Call_F128,
2146 RTLIB::Libcall Call_PPCF128,
2147 SmallVectorImpl<SDValue> &Results) {
2148 EVT InVT = Node->getOperand(Node->isStrictFPOpcode() ? 1 : 0).getValueType();
2149
2150 RTLIB::Libcall LC;
2151 switch (InVT.getSimpleVT().SimpleTy) {
2152 default: llvm_unreachable("Unexpected request for libcall!");
2153 case MVT::f32: LC = Call_F32; break;
2154 case MVT::f64: LC = Call_F64; break;
2155 case MVT::f80: LC = Call_F80; break;
2156 case MVT::f128: LC = Call_F128; break;
2157 case MVT::ppcf128: LC = Call_PPCF128; break;
2158 }
2159
2160 if (Node->isStrictFPOpcode()) {
2161 EVT RetVT = Node->getValueType(0);
2162 SmallVector<SDValue, 4> Ops(Node->op_begin() + 1, Node->op_end());
2163 TargetLowering::MakeLibCallOptions CallOptions;
2164 // FIXME: This doesn't support tail calls.
2165 std::pair<SDValue, SDValue> Tmp = TLI.makeLibCall(DAG, LC, RetVT,
2166 Ops, CallOptions,
2167 SDLoc(Node),
2168 Node->getOperand(0));
2169 Results.push_back(Tmp.first);
2170 Results.push_back(Tmp.second);
2171 } else {
2172 SDValue Tmp = ExpandLibCall(LC, Node, false);
2173 Results.push_back(Tmp);
2174 }
2175 }
2176
2177 /// Issue libcalls to __{u}divmod to compute div / rem pairs.
2178 void
ExpandDivRemLibCall(SDNode * Node,SmallVectorImpl<SDValue> & Results)2179 SelectionDAGLegalize::ExpandDivRemLibCall(SDNode *Node,
2180 SmallVectorImpl<SDValue> &Results) {
2181 unsigned Opcode = Node->getOpcode();
2182 bool isSigned = Opcode == ISD::SDIVREM;
2183
2184 RTLIB::Libcall LC;
2185 switch (Node->getSimpleValueType(0).SimpleTy) {
2186 default: llvm_unreachable("Unexpected request for libcall!");
2187 case MVT::i8: LC= isSigned ? RTLIB::SDIVREM_I8 : RTLIB::UDIVREM_I8; break;
2188 case MVT::i16: LC= isSigned ? RTLIB::SDIVREM_I16 : RTLIB::UDIVREM_I16; break;
2189 case MVT::i32: LC= isSigned ? RTLIB::SDIVREM_I32 : RTLIB::UDIVREM_I32; break;
2190 case MVT::i64: LC= isSigned ? RTLIB::SDIVREM_I64 : RTLIB::UDIVREM_I64; break;
2191 case MVT::i128: LC= isSigned ? RTLIB::SDIVREM_I128:RTLIB::UDIVREM_I128; break;
2192 }
2193
2194 // The input chain to this libcall is the entry node of the function.
2195 // Legalizing the call will automatically add the previous call to the
2196 // dependence.
2197 SDValue InChain = DAG.getEntryNode();
2198
2199 EVT RetVT = Node->getValueType(0);
2200 Type *RetTy = RetVT.getTypeForEVT(*DAG.getContext());
2201
2202 TargetLowering::ArgListTy Args;
2203 TargetLowering::ArgListEntry Entry;
2204 for (const SDValue &Op : Node->op_values()) {
2205 EVT ArgVT = Op.getValueType();
2206 Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext());
2207 Entry.Node = Op;
2208 Entry.Ty = ArgTy;
2209 Entry.IsSExt = isSigned;
2210 Entry.IsZExt = !isSigned;
2211 Args.push_back(Entry);
2212 }
2213
2214 // Also pass the return address of the remainder.
2215 SDValue FIPtr = DAG.CreateStackTemporary(RetVT);
2216 Entry.Node = FIPtr;
2217 Entry.Ty = RetTy->getPointerTo();
2218 Entry.IsSExt = isSigned;
2219 Entry.IsZExt = !isSigned;
2220 Args.push_back(Entry);
2221
2222 SDValue Callee = DAG.getExternalSymbol(TLI.getLibcallName(LC),
2223 TLI.getPointerTy(DAG.getDataLayout()));
2224
2225 SDLoc dl(Node);
2226 TargetLowering::CallLoweringInfo CLI(DAG);
2227 CLI.setDebugLoc(dl)
2228 .setChain(InChain)
2229 .setLibCallee(TLI.getLibcallCallingConv(LC), RetTy, Callee,
2230 std::move(Args))
2231 .setSExtResult(isSigned)
2232 .setZExtResult(!isSigned);
2233
2234 std::pair<SDValue, SDValue> CallInfo = TLI.LowerCallTo(CLI);
2235
2236 // Remainder is loaded back from the stack frame.
2237 SDValue Rem =
2238 DAG.getLoad(RetVT, dl, CallInfo.second, FIPtr, MachinePointerInfo());
2239 Results.push_back(CallInfo.first);
2240 Results.push_back(Rem);
2241 }
2242
2243 /// Return true if sincos libcall is available.
isSinCosLibcallAvailable(SDNode * Node,const TargetLowering & TLI)2244 static bool isSinCosLibcallAvailable(SDNode *Node, const TargetLowering &TLI) {
2245 RTLIB::Libcall LC;
2246 switch (Node->getSimpleValueType(0).SimpleTy) {
2247 default: llvm_unreachable("Unexpected request for libcall!");
2248 case MVT::f32: LC = RTLIB::SINCOS_F32; break;
2249 case MVT::f64: LC = RTLIB::SINCOS_F64; break;
2250 case MVT::f80: LC = RTLIB::SINCOS_F80; break;
2251 case MVT::f128: LC = RTLIB::SINCOS_F128; break;
2252 case MVT::ppcf128: LC = RTLIB::SINCOS_PPCF128; break;
2253 }
2254 return TLI.getLibcallName(LC) != nullptr;
2255 }
2256
2257 /// Only issue sincos libcall if both sin and cos are needed.
useSinCos(SDNode * Node)2258 static bool useSinCos(SDNode *Node) {
2259 unsigned OtherOpcode = Node->getOpcode() == ISD::FSIN
2260 ? ISD::FCOS : ISD::FSIN;
2261
2262 SDValue Op0 = Node->getOperand(0);
2263 for (SDNode::use_iterator UI = Op0.getNode()->use_begin(),
2264 UE = Op0.getNode()->use_end(); UI != UE; ++UI) {
2265 SDNode *User = *UI;
2266 if (User == Node)
2267 continue;
2268 // The other user might have been turned into sincos already.
2269 if (User->getOpcode() == OtherOpcode || User->getOpcode() == ISD::FSINCOS)
2270 return true;
2271 }
2272 return false;
2273 }
2274
2275 /// Issue libcalls to sincos to compute sin / cos pairs.
2276 void
ExpandSinCosLibCall(SDNode * Node,SmallVectorImpl<SDValue> & Results)2277 SelectionDAGLegalize::ExpandSinCosLibCall(SDNode *Node,
2278 SmallVectorImpl<SDValue> &Results) {
2279 RTLIB::Libcall LC;
2280 switch (Node->getSimpleValueType(0).SimpleTy) {
2281 default: llvm_unreachable("Unexpected request for libcall!");
2282 case MVT::f32: LC = RTLIB::SINCOS_F32; break;
2283 case MVT::f64: LC = RTLIB::SINCOS_F64; break;
2284 case MVT::f80: LC = RTLIB::SINCOS_F80; break;
2285 case MVT::f128: LC = RTLIB::SINCOS_F128; break;
2286 case MVT::ppcf128: LC = RTLIB::SINCOS_PPCF128; break;
2287 }
2288
2289 // The input chain to this libcall is the entry node of the function.
2290 // Legalizing the call will automatically add the previous call to the
2291 // dependence.
2292 SDValue InChain = DAG.getEntryNode();
2293
2294 EVT RetVT = Node->getValueType(0);
2295 Type *RetTy = RetVT.getTypeForEVT(*DAG.getContext());
2296
2297 TargetLowering::ArgListTy Args;
2298 TargetLowering::ArgListEntry Entry;
2299
2300 // Pass the argument.
2301 Entry.Node = Node->getOperand(0);
2302 Entry.Ty = RetTy;
2303 Entry.IsSExt = false;
2304 Entry.IsZExt = false;
2305 Args.push_back(Entry);
2306
2307 // Pass the return address of sin.
2308 SDValue SinPtr = DAG.CreateStackTemporary(RetVT);
2309 Entry.Node = SinPtr;
2310 Entry.Ty = RetTy->getPointerTo();
2311 Entry.IsSExt = false;
2312 Entry.IsZExt = false;
2313 Args.push_back(Entry);
2314
2315 // Also pass the return address of the cos.
2316 SDValue CosPtr = DAG.CreateStackTemporary(RetVT);
2317 Entry.Node = CosPtr;
2318 Entry.Ty = RetTy->getPointerTo();
2319 Entry.IsSExt = false;
2320 Entry.IsZExt = false;
2321 Args.push_back(Entry);
2322
2323 SDValue Callee = DAG.getExternalSymbol(TLI.getLibcallName(LC),
2324 TLI.getPointerTy(DAG.getDataLayout()));
2325
2326 SDLoc dl(Node);
2327 TargetLowering::CallLoweringInfo CLI(DAG);
2328 CLI.setDebugLoc(dl).setChain(InChain).setLibCallee(
2329 TLI.getLibcallCallingConv(LC), Type::getVoidTy(*DAG.getContext()), Callee,
2330 std::move(Args));
2331
2332 std::pair<SDValue, SDValue> CallInfo = TLI.LowerCallTo(CLI);
2333
2334 Results.push_back(
2335 DAG.getLoad(RetVT, dl, CallInfo.second, SinPtr, MachinePointerInfo()));
2336 Results.push_back(
2337 DAG.getLoad(RetVT, dl, CallInfo.second, CosPtr, MachinePointerInfo()));
2338 }
2339
2340 /// This function is responsible for legalizing a
2341 /// INT_TO_FP operation of the specified operand when the target requests that
2342 /// we expand it. At this point, we know that the result and operand types are
2343 /// legal for the target.
ExpandLegalINT_TO_FP(SDNode * Node,SDValue & Chain)2344 SDValue SelectionDAGLegalize::ExpandLegalINT_TO_FP(SDNode *Node,
2345 SDValue &Chain) {
2346 bool isSigned = (Node->getOpcode() == ISD::STRICT_SINT_TO_FP ||
2347 Node->getOpcode() == ISD::SINT_TO_FP);
2348 EVT DestVT = Node->getValueType(0);
2349 SDLoc dl(Node);
2350 unsigned OpNo = Node->isStrictFPOpcode() ? 1 : 0;
2351 SDValue Op0 = Node->getOperand(OpNo);
2352 EVT SrcVT = Op0.getValueType();
2353
2354 // TODO: Should any fast-math-flags be set for the created nodes?
2355 LLVM_DEBUG(dbgs() << "Legalizing INT_TO_FP\n");
2356 if (SrcVT == MVT::i32 && TLI.isTypeLegal(MVT::f64)) {
2357 LLVM_DEBUG(dbgs() << "32-bit [signed|unsigned] integer to float/double "
2358 "expansion\n");
2359
2360 // Get the stack frame index of a 8 byte buffer.
2361 SDValue StackSlot = DAG.CreateStackTemporary(MVT::f64);
2362
2363 // word offset constant for Hi/Lo address computation
2364 SDValue WordOff = DAG.getConstant(sizeof(int), dl,
2365 StackSlot.getValueType());
2366 // set up Hi and Lo (into buffer) address based on endian
2367 SDValue Hi = StackSlot;
2368 SDValue Lo = DAG.getNode(ISD::ADD, dl, StackSlot.getValueType(),
2369 StackSlot, WordOff);
2370 if (DAG.getDataLayout().isLittleEndian())
2371 std::swap(Hi, Lo);
2372
2373 // if signed map to unsigned space
2374 SDValue Op0Mapped;
2375 if (isSigned) {
2376 // constant used to invert sign bit (signed to unsigned mapping)
2377 SDValue SignBit = DAG.getConstant(0x80000000u, dl, MVT::i32);
2378 Op0Mapped = DAG.getNode(ISD::XOR, dl, MVT::i32, Op0, SignBit);
2379 } else {
2380 Op0Mapped = Op0;
2381 }
2382 // store the lo of the constructed double - based on integer input
2383 SDValue Store1 = DAG.getStore(DAG.getEntryNode(), dl, Op0Mapped, Lo,
2384 MachinePointerInfo());
2385 // initial hi portion of constructed double
2386 SDValue InitialHi = DAG.getConstant(0x43300000u, dl, MVT::i32);
2387 // store the hi of the constructed double - biased exponent
2388 SDValue Store2 =
2389 DAG.getStore(Store1, dl, InitialHi, Hi, MachinePointerInfo());
2390 // load the constructed double
2391 SDValue Load =
2392 DAG.getLoad(MVT::f64, dl, Store2, StackSlot, MachinePointerInfo());
2393 // FP constant to bias correct the final result
2394 SDValue Bias = DAG.getConstantFP(isSigned ?
2395 BitsToDouble(0x4330000080000000ULL) :
2396 BitsToDouble(0x4330000000000000ULL),
2397 dl, MVT::f64);
2398 // Subtract the bias and get the final result.
2399 SDValue Sub;
2400 SDValue Result;
2401 if (Node->isStrictFPOpcode()) {
2402 Sub = DAG.getNode(ISD::STRICT_FSUB, dl, {MVT::f64, MVT::Other},
2403 {Node->getOperand(0), Load, Bias});
2404 Chain = Sub.getValue(1);
2405 if (DestVT != Sub.getValueType()) {
2406 std::pair<SDValue, SDValue> ResultPair;
2407 ResultPair =
2408 DAG.getStrictFPExtendOrRound(Sub, Chain, dl, DestVT);
2409 Result = ResultPair.first;
2410 Chain = ResultPair.second;
2411 }
2412 else
2413 Result = Sub;
2414 } else {
2415 Sub = DAG.getNode(ISD::FSUB, dl, MVT::f64, Load, Bias);
2416 Result = DAG.getFPExtendOrRound(Sub, dl, DestVT);
2417 }
2418 return Result;
2419 }
2420 assert(!isSigned && "Legalize cannot Expand SINT_TO_FP for i64 yet");
2421 // Code below here assumes !isSigned without checking again.
2422 // FIXME: This can produce slightly incorrect results. See details in
2423 // FIXME: https://reviews.llvm.org/D69275
2424
2425 SDValue Tmp1;
2426 if (Node->isStrictFPOpcode()) {
2427 Tmp1 = DAG.getNode(ISD::STRICT_SINT_TO_FP, dl, { DestVT, MVT::Other },
2428 { Node->getOperand(0), Op0 });
2429 } else
2430 Tmp1 = DAG.getNode(ISD::SINT_TO_FP, dl, DestVT, Op0);
2431
2432 SDValue SignSet = DAG.getSetCC(dl, getSetCCResultType(SrcVT), Op0,
2433 DAG.getConstant(0, dl, SrcVT), ISD::SETLT);
2434 SDValue Zero = DAG.getIntPtrConstant(0, dl),
2435 Four = DAG.getIntPtrConstant(4, dl);
2436 SDValue CstOffset = DAG.getSelect(dl, Zero.getValueType(),
2437 SignSet, Four, Zero);
2438
2439 // If the sign bit of the integer is set, the large number will be treated
2440 // as a negative number. To counteract this, the dynamic code adds an
2441 // offset depending on the data type.
2442 uint64_t FF;
2443 switch (SrcVT.getSimpleVT().SimpleTy) {
2444 default: llvm_unreachable("Unsupported integer type!");
2445 case MVT::i8 : FF = 0x43800000ULL; break; // 2^8 (as a float)
2446 case MVT::i16: FF = 0x47800000ULL; break; // 2^16 (as a float)
2447 case MVT::i32: FF = 0x4F800000ULL; break; // 2^32 (as a float)
2448 case MVT::i64: FF = 0x5F800000ULL; break; // 2^64 (as a float)
2449 }
2450 if (DAG.getDataLayout().isLittleEndian())
2451 FF <<= 32;
2452 Constant *FudgeFactor = ConstantInt::get(
2453 Type::getInt64Ty(*DAG.getContext()), FF);
2454
2455 SDValue CPIdx =
2456 DAG.getConstantPool(FudgeFactor, TLI.getPointerTy(DAG.getDataLayout()));
2457 unsigned Alignment = cast<ConstantPoolSDNode>(CPIdx)->getAlignment();
2458 CPIdx = DAG.getNode(ISD::ADD, dl, CPIdx.getValueType(), CPIdx, CstOffset);
2459 Alignment = std::min(Alignment, 4u);
2460 SDValue FudgeInReg;
2461 if (DestVT == MVT::f32)
2462 FudgeInReg = DAG.getLoad(
2463 MVT::f32, dl, DAG.getEntryNode(), CPIdx,
2464 MachinePointerInfo::getConstantPool(DAG.getMachineFunction()),
2465 Alignment);
2466 else {
2467 SDValue Load = DAG.getExtLoad(
2468 ISD::EXTLOAD, dl, DestVT, DAG.getEntryNode(), CPIdx,
2469 MachinePointerInfo::getConstantPool(DAG.getMachineFunction()), MVT::f32,
2470 Alignment);
2471 HandleSDNode Handle(Load);
2472 LegalizeOp(Load.getNode());
2473 FudgeInReg = Handle.getValue();
2474 }
2475
2476 if (Node->isStrictFPOpcode()) {
2477 SDValue Result = DAG.getNode(ISD::STRICT_FADD, dl, { DestVT, MVT::Other },
2478 { Tmp1.getValue(1), Tmp1, FudgeInReg });
2479 Chain = Result.getValue(1);
2480 return Result;
2481 }
2482
2483 return DAG.getNode(ISD::FADD, dl, DestVT, Tmp1, FudgeInReg);
2484 }
2485
2486 /// This function is responsible for legalizing a
2487 /// *INT_TO_FP operation of the specified operand when the target requests that
2488 /// we promote it. At this point, we know that the result and operand types are
2489 /// legal for the target, and that there is a legal UINT_TO_FP or SINT_TO_FP
2490 /// operation that takes a larger input.
PromoteLegalINT_TO_FP(SDNode * N,const SDLoc & dl,SmallVectorImpl<SDValue> & Results)2491 void SelectionDAGLegalize::PromoteLegalINT_TO_FP(
2492 SDNode *N, const SDLoc &dl, SmallVectorImpl<SDValue> &Results) {
2493 bool IsStrict = N->isStrictFPOpcode();
2494 bool IsSigned = N->getOpcode() == ISD::SINT_TO_FP ||
2495 N->getOpcode() == ISD::STRICT_SINT_TO_FP;
2496 EVT DestVT = N->getValueType(0);
2497 SDValue LegalOp = N->getOperand(IsStrict ? 1 : 0);
2498 unsigned UIntOp = IsStrict ? ISD::STRICT_UINT_TO_FP : ISD::UINT_TO_FP;
2499 unsigned SIntOp = IsStrict ? ISD::STRICT_SINT_TO_FP : ISD::SINT_TO_FP;
2500
2501 // First step, figure out the appropriate *INT_TO_FP operation to use.
2502 EVT NewInTy = LegalOp.getValueType();
2503
2504 unsigned OpToUse = 0;
2505
2506 // Scan for the appropriate larger type to use.
2507 while (true) {
2508 NewInTy = (MVT::SimpleValueType)(NewInTy.getSimpleVT().SimpleTy+1);
2509 assert(NewInTy.isInteger() && "Ran out of possibilities!");
2510
2511 // If the target supports SINT_TO_FP of this type, use it.
2512 if (TLI.isOperationLegalOrCustom(SIntOp, NewInTy)) {
2513 OpToUse = SIntOp;
2514 break;
2515 }
2516 if (IsSigned)
2517 continue;
2518
2519 // If the target supports UINT_TO_FP of this type, use it.
2520 if (TLI.isOperationLegalOrCustom(UIntOp, NewInTy)) {
2521 OpToUse = UIntOp;
2522 break;
2523 }
2524
2525 // Otherwise, try a larger type.
2526 }
2527
2528 // Okay, we found the operation and type to use. Zero extend our input to the
2529 // desired type then run the operation on it.
2530 if (IsStrict) {
2531 SDValue Res =
2532 DAG.getNode(OpToUse, dl, {DestVT, MVT::Other},
2533 {N->getOperand(0),
2534 DAG.getNode(IsSigned ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND,
2535 dl, NewInTy, LegalOp)});
2536 Results.push_back(Res);
2537 Results.push_back(Res.getValue(1));
2538 return;
2539 }
2540
2541 Results.push_back(
2542 DAG.getNode(OpToUse, dl, DestVT,
2543 DAG.getNode(IsSigned ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND,
2544 dl, NewInTy, LegalOp)));
2545 }
2546
2547 /// This function is responsible for legalizing a
2548 /// FP_TO_*INT operation of the specified operand when the target requests that
2549 /// we promote it. At this point, we know that the result and operand types are
2550 /// legal for the target, and that there is a legal FP_TO_UINT or FP_TO_SINT
2551 /// operation that returns a larger result.
PromoteLegalFP_TO_INT(SDNode * N,const SDLoc & dl,SmallVectorImpl<SDValue> & Results)2552 void SelectionDAGLegalize::PromoteLegalFP_TO_INT(SDNode *N, const SDLoc &dl,
2553 SmallVectorImpl<SDValue> &Results) {
2554 bool IsStrict = N->isStrictFPOpcode();
2555 bool IsSigned = N->getOpcode() == ISD::FP_TO_SINT ||
2556 N->getOpcode() == ISD::STRICT_FP_TO_SINT;
2557 EVT DestVT = N->getValueType(0);
2558 SDValue LegalOp = N->getOperand(IsStrict ? 1 : 0);
2559 // First step, figure out the appropriate FP_TO*INT operation to use.
2560 EVT NewOutTy = DestVT;
2561
2562 unsigned OpToUse = 0;
2563
2564 // Scan for the appropriate larger type to use.
2565 while (true) {
2566 NewOutTy = (MVT::SimpleValueType)(NewOutTy.getSimpleVT().SimpleTy+1);
2567 assert(NewOutTy.isInteger() && "Ran out of possibilities!");
2568
2569 // A larger signed type can hold all unsigned values of the requested type,
2570 // so using FP_TO_SINT is valid
2571 OpToUse = IsStrict ? ISD::STRICT_FP_TO_SINT : ISD::FP_TO_SINT;
2572 if (TLI.isOperationLegalOrCustom(OpToUse, NewOutTy))
2573 break;
2574
2575 // However, if the value may be < 0.0, we *must* use some FP_TO_SINT.
2576 OpToUse = IsStrict ? ISD::STRICT_FP_TO_UINT : ISD::FP_TO_UINT;
2577 if (!IsSigned && TLI.isOperationLegalOrCustom(OpToUse, NewOutTy))
2578 break;
2579
2580 // Otherwise, try a larger type.
2581 }
2582
2583 // Okay, we found the operation and type to use.
2584 SDValue Operation;
2585 if (IsStrict) {
2586 SDVTList VTs = DAG.getVTList(NewOutTy, MVT::Other);
2587 Operation = DAG.getNode(OpToUse, dl, VTs, N->getOperand(0), LegalOp);
2588 } else
2589 Operation = DAG.getNode(OpToUse, dl, NewOutTy, LegalOp);
2590
2591 // Truncate the result of the extended FP_TO_*INT operation to the desired
2592 // size.
2593 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, dl, DestVT, Operation);
2594 Results.push_back(Trunc);
2595 if (IsStrict)
2596 Results.push_back(Operation.getValue(1));
2597 }
2598
2599 /// Legalize a BITREVERSE scalar/vector operation as a series of mask + shifts.
ExpandBITREVERSE(SDValue Op,const SDLoc & dl)2600 SDValue SelectionDAGLegalize::ExpandBITREVERSE(SDValue Op, const SDLoc &dl) {
2601 EVT VT = Op.getValueType();
2602 EVT SHVT = TLI.getShiftAmountTy(VT, DAG.getDataLayout());
2603 unsigned Sz = VT.getScalarSizeInBits();
2604
2605 SDValue Tmp, Tmp2, Tmp3;
2606
2607 // If we can, perform BSWAP first and then the mask+swap the i4, then i2
2608 // and finally the i1 pairs.
2609 // TODO: We can easily support i4/i2 legal types if any target ever does.
2610 if (Sz >= 8 && isPowerOf2_32(Sz)) {
2611 // Create the masks - repeating the pattern every byte.
2612 APInt MaskHi4 = APInt::getSplat(Sz, APInt(8, 0xF0));
2613 APInt MaskHi2 = APInt::getSplat(Sz, APInt(8, 0xCC));
2614 APInt MaskHi1 = APInt::getSplat(Sz, APInt(8, 0xAA));
2615 APInt MaskLo4 = APInt::getSplat(Sz, APInt(8, 0x0F));
2616 APInt MaskLo2 = APInt::getSplat(Sz, APInt(8, 0x33));
2617 APInt MaskLo1 = APInt::getSplat(Sz, APInt(8, 0x55));
2618
2619 // BSWAP if the type is wider than a single byte.
2620 Tmp = (Sz > 8 ? DAG.getNode(ISD::BSWAP, dl, VT, Op) : Op);
2621
2622 // swap i4: ((V & 0xF0) >> 4) | ((V & 0x0F) << 4)
2623 Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp, DAG.getConstant(MaskHi4, dl, VT));
2624 Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp, DAG.getConstant(MaskLo4, dl, VT));
2625 Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Tmp2, DAG.getConstant(4, dl, SHVT));
2626 Tmp3 = DAG.getNode(ISD::SHL, dl, VT, Tmp3, DAG.getConstant(4, dl, SHVT));
2627 Tmp = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3);
2628
2629 // swap i2: ((V & 0xCC) >> 2) | ((V & 0x33) << 2)
2630 Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp, DAG.getConstant(MaskHi2, dl, VT));
2631 Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp, DAG.getConstant(MaskLo2, dl, VT));
2632 Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Tmp2, DAG.getConstant(2, dl, SHVT));
2633 Tmp3 = DAG.getNode(ISD::SHL, dl, VT, Tmp3, DAG.getConstant(2, dl, SHVT));
2634 Tmp = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3);
2635
2636 // swap i1: ((V & 0xAA) >> 1) | ((V & 0x55) << 1)
2637 Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp, DAG.getConstant(MaskHi1, dl, VT));
2638 Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp, DAG.getConstant(MaskLo1, dl, VT));
2639 Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Tmp2, DAG.getConstant(1, dl, SHVT));
2640 Tmp3 = DAG.getNode(ISD::SHL, dl, VT, Tmp3, DAG.getConstant(1, dl, SHVT));
2641 Tmp = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3);
2642 return Tmp;
2643 }
2644
2645 Tmp = DAG.getConstant(0, dl, VT);
2646 for (unsigned I = 0, J = Sz-1; I < Sz; ++I, --J) {
2647 if (I < J)
2648 Tmp2 =
2649 DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(J - I, dl, SHVT));
2650 else
2651 Tmp2 =
2652 DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(I - J, dl, SHVT));
2653
2654 APInt Shift(Sz, 1);
2655 Shift <<= J;
2656 Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(Shift, dl, VT));
2657 Tmp = DAG.getNode(ISD::OR, dl, VT, Tmp, Tmp2);
2658 }
2659
2660 return Tmp;
2661 }
2662
2663 /// Open code the operations for BSWAP of the specified operation.
ExpandBSWAP(SDValue Op,const SDLoc & dl)2664 SDValue SelectionDAGLegalize::ExpandBSWAP(SDValue Op, const SDLoc &dl) {
2665 EVT VT = Op.getValueType();
2666 EVT SHVT = TLI.getShiftAmountTy(VT, DAG.getDataLayout());
2667 SDValue Tmp1, Tmp2, Tmp3, Tmp4, Tmp5, Tmp6, Tmp7, Tmp8;
2668 switch (VT.getSimpleVT().getScalarType().SimpleTy) {
2669 default: llvm_unreachable("Unhandled Expand type in BSWAP!");
2670 case MVT::i16:
2671 // Use a rotate by 8. This can be further expanded if necessary.
2672 return DAG.getNode(ISD::ROTL, dl, VT, Op, DAG.getConstant(8, dl, SHVT));
2673 case MVT::i32:
2674 Tmp4 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(24, dl, SHVT));
2675 Tmp3 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(8, dl, SHVT));
2676 Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(8, dl, SHVT));
2677 Tmp1 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(24, dl, SHVT));
2678 Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp3,
2679 DAG.getConstant(0xFF0000, dl, VT));
2680 Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(0xFF00, dl, VT));
2681 Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp3);
2682 Tmp2 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp1);
2683 return DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp2);
2684 case MVT::i64:
2685 Tmp8 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(56, dl, SHVT));
2686 Tmp7 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(40, dl, SHVT));
2687 Tmp6 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(24, dl, SHVT));
2688 Tmp5 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(8, dl, SHVT));
2689 Tmp4 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(8, dl, SHVT));
2690 Tmp3 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(24, dl, SHVT));
2691 Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(40, dl, SHVT));
2692 Tmp1 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(56, dl, SHVT));
2693 Tmp7 = DAG.getNode(ISD::AND, dl, VT, Tmp7,
2694 DAG.getConstant(255ULL<<48, dl, VT));
2695 Tmp6 = DAG.getNode(ISD::AND, dl, VT, Tmp6,
2696 DAG.getConstant(255ULL<<40, dl, VT));
2697 Tmp5 = DAG.getNode(ISD::AND, dl, VT, Tmp5,
2698 DAG.getConstant(255ULL<<32, dl, VT));
2699 Tmp4 = DAG.getNode(ISD::AND, dl, VT, Tmp4,
2700 DAG.getConstant(255ULL<<24, dl, VT));
2701 Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp3,
2702 DAG.getConstant(255ULL<<16, dl, VT));
2703 Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2,
2704 DAG.getConstant(255ULL<<8 , dl, VT));
2705 Tmp8 = DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp7);
2706 Tmp6 = DAG.getNode(ISD::OR, dl, VT, Tmp6, Tmp5);
2707 Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp3);
2708 Tmp2 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp1);
2709 Tmp8 = DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp6);
2710 Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp2);
2711 return DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp4);
2712 }
2713 }
2714
ExpandNode(SDNode * Node)2715 bool SelectionDAGLegalize::ExpandNode(SDNode *Node) {
2716 LLVM_DEBUG(dbgs() << "Trying to expand node\n");
2717 SmallVector<SDValue, 8> Results;
2718 SDLoc dl(Node);
2719 SDValue Tmp1, Tmp2, Tmp3, Tmp4;
2720 bool NeedInvert;
2721 switch (Node->getOpcode()) {
2722 case ISD::ABS:
2723 if (TLI.expandABS(Node, Tmp1, DAG))
2724 Results.push_back(Tmp1);
2725 break;
2726 case ISD::CTPOP:
2727 if (TLI.expandCTPOP(Node, Tmp1, DAG))
2728 Results.push_back(Tmp1);
2729 break;
2730 case ISD::CTLZ:
2731 case ISD::CTLZ_ZERO_UNDEF:
2732 if (TLI.expandCTLZ(Node, Tmp1, DAG))
2733 Results.push_back(Tmp1);
2734 break;
2735 case ISD::CTTZ:
2736 case ISD::CTTZ_ZERO_UNDEF:
2737 if (TLI.expandCTTZ(Node, Tmp1, DAG))
2738 Results.push_back(Tmp1);
2739 break;
2740 case ISD::BITREVERSE:
2741 Results.push_back(ExpandBITREVERSE(Node->getOperand(0), dl));
2742 break;
2743 case ISD::BSWAP:
2744 Results.push_back(ExpandBSWAP(Node->getOperand(0), dl));
2745 break;
2746 case ISD::FRAMEADDR:
2747 case ISD::RETURNADDR:
2748 case ISD::FRAME_TO_ARGS_OFFSET:
2749 Results.push_back(DAG.getConstant(0, dl, Node->getValueType(0)));
2750 break;
2751 case ISD::EH_DWARF_CFA: {
2752 SDValue CfaArg = DAG.getSExtOrTrunc(Node->getOperand(0), dl,
2753 TLI.getPointerTy(DAG.getDataLayout()));
2754 SDValue Offset = DAG.getNode(ISD::ADD, dl,
2755 CfaArg.getValueType(),
2756 DAG.getNode(ISD::FRAME_TO_ARGS_OFFSET, dl,
2757 CfaArg.getValueType()),
2758 CfaArg);
2759 SDValue FA = DAG.getNode(
2760 ISD::FRAMEADDR, dl, TLI.getPointerTy(DAG.getDataLayout()),
2761 DAG.getConstant(0, dl, TLI.getPointerTy(DAG.getDataLayout())));
2762 Results.push_back(DAG.getNode(ISD::ADD, dl, FA.getValueType(),
2763 FA, Offset));
2764 break;
2765 }
2766 case ISD::FLT_ROUNDS_:
2767 Results.push_back(DAG.getConstant(1, dl, Node->getValueType(0)));
2768 break;
2769 case ISD::EH_RETURN:
2770 case ISD::EH_LABEL:
2771 case ISD::PREFETCH:
2772 case ISD::VAEND:
2773 case ISD::EH_SJLJ_LONGJMP:
2774 // If the target didn't expand these, there's nothing to do, so just
2775 // preserve the chain and be done.
2776 Results.push_back(Node->getOperand(0));
2777 break;
2778 case ISD::READCYCLECOUNTER:
2779 // If the target didn't expand this, just return 'zero' and preserve the
2780 // chain.
2781 Results.append(Node->getNumValues() - 1,
2782 DAG.getConstant(0, dl, Node->getValueType(0)));
2783 Results.push_back(Node->getOperand(0));
2784 break;
2785 case ISD::EH_SJLJ_SETJMP:
2786 // If the target didn't expand this, just return 'zero' and preserve the
2787 // chain.
2788 Results.push_back(DAG.getConstant(0, dl, MVT::i32));
2789 Results.push_back(Node->getOperand(0));
2790 break;
2791 case ISD::ATOMIC_LOAD: {
2792 // There is no libcall for atomic load; fake it with ATOMIC_CMP_SWAP.
2793 SDValue Zero = DAG.getConstant(0, dl, Node->getValueType(0));
2794 SDVTList VTs = DAG.getVTList(Node->getValueType(0), MVT::Other);
2795 SDValue Swap = DAG.getAtomicCmpSwap(
2796 ISD::ATOMIC_CMP_SWAP, dl, cast<AtomicSDNode>(Node)->getMemoryVT(), VTs,
2797 Node->getOperand(0), Node->getOperand(1), Zero, Zero,
2798 cast<AtomicSDNode>(Node)->getMemOperand());
2799 Results.push_back(Swap.getValue(0));
2800 Results.push_back(Swap.getValue(1));
2801 break;
2802 }
2803 case ISD::ATOMIC_STORE: {
2804 // There is no libcall for atomic store; fake it with ATOMIC_SWAP.
2805 SDValue Swap = DAG.getAtomic(ISD::ATOMIC_SWAP, dl,
2806 cast<AtomicSDNode>(Node)->getMemoryVT(),
2807 Node->getOperand(0),
2808 Node->getOperand(1), Node->getOperand(2),
2809 cast<AtomicSDNode>(Node)->getMemOperand());
2810 Results.push_back(Swap.getValue(1));
2811 break;
2812 }
2813 case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS: {
2814 // Expanding an ATOMIC_CMP_SWAP_WITH_SUCCESS produces an ATOMIC_CMP_SWAP and
2815 // splits out the success value as a comparison. Expanding the resulting
2816 // ATOMIC_CMP_SWAP will produce a libcall.
2817 SDVTList VTs = DAG.getVTList(Node->getValueType(0), MVT::Other);
2818 SDValue Res = DAG.getAtomicCmpSwap(
2819 ISD::ATOMIC_CMP_SWAP, dl, cast<AtomicSDNode>(Node)->getMemoryVT(), VTs,
2820 Node->getOperand(0), Node->getOperand(1), Node->getOperand(2),
2821 Node->getOperand(3), cast<MemSDNode>(Node)->getMemOperand());
2822
2823 SDValue ExtRes = Res;
2824 SDValue LHS = Res;
2825 SDValue RHS = Node->getOperand(1);
2826
2827 EVT AtomicType = cast<AtomicSDNode>(Node)->getMemoryVT();
2828 EVT OuterType = Node->getValueType(0);
2829 switch (TLI.getExtendForAtomicOps()) {
2830 case ISD::SIGN_EXTEND:
2831 LHS = DAG.getNode(ISD::AssertSext, dl, OuterType, Res,
2832 DAG.getValueType(AtomicType));
2833 RHS = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, OuterType,
2834 Node->getOperand(2), DAG.getValueType(AtomicType));
2835 ExtRes = LHS;
2836 break;
2837 case ISD::ZERO_EXTEND:
2838 LHS = DAG.getNode(ISD::AssertZext, dl, OuterType, Res,
2839 DAG.getValueType(AtomicType));
2840 RHS = DAG.getZeroExtendInReg(Node->getOperand(2), dl, AtomicType);
2841 ExtRes = LHS;
2842 break;
2843 case ISD::ANY_EXTEND:
2844 LHS = DAG.getZeroExtendInReg(Res, dl, AtomicType);
2845 RHS = DAG.getZeroExtendInReg(Node->getOperand(2), dl, AtomicType);
2846 break;
2847 default:
2848 llvm_unreachable("Invalid atomic op extension");
2849 }
2850
2851 SDValue Success =
2852 DAG.getSetCC(dl, Node->getValueType(1), LHS, RHS, ISD::SETEQ);
2853
2854 Results.push_back(ExtRes.getValue(0));
2855 Results.push_back(Success);
2856 Results.push_back(Res.getValue(1));
2857 break;
2858 }
2859 case ISD::DYNAMIC_STACKALLOC:
2860 ExpandDYNAMIC_STACKALLOC(Node, Results);
2861 break;
2862 case ISD::MERGE_VALUES:
2863 for (unsigned i = 0; i < Node->getNumValues(); i++)
2864 Results.push_back(Node->getOperand(i));
2865 break;
2866 case ISD::UNDEF: {
2867 EVT VT = Node->getValueType(0);
2868 if (VT.isInteger())
2869 Results.push_back(DAG.getConstant(0, dl, VT));
2870 else {
2871 assert(VT.isFloatingPoint() && "Unknown value type!");
2872 Results.push_back(DAG.getConstantFP(0, dl, VT));
2873 }
2874 break;
2875 }
2876 case ISD::STRICT_FP_ROUND:
2877 // When strict mode is enforced we can't do expansion because it
2878 // does not honor the "strict" properties. Only libcall is allowed.
2879 if (TLI.isStrictFPEnabled())
2880 break;
2881 // We might as well mutate to FP_ROUND when FP_ROUND operation is legal
2882 // since this operation is more efficient than stack operation.
2883 if (TLI.getStrictFPOperationAction(Node->getOpcode(),
2884 Node->getValueType(0))
2885 == TargetLowering::Legal)
2886 break;
2887 // We fall back to use stack operation when the FP_ROUND operation
2888 // isn't available.
2889 Tmp1 = EmitStackConvert(Node->getOperand(1),
2890 Node->getValueType(0),
2891 Node->getValueType(0), dl, Node->getOperand(0));
2892 ReplaceNode(Node, Tmp1.getNode());
2893 LLVM_DEBUG(dbgs() << "Successfully expanded STRICT_FP_ROUND node\n");
2894 return true;
2895 case ISD::FP_ROUND:
2896 case ISD::BITCAST:
2897 Tmp1 = EmitStackConvert(Node->getOperand(0),
2898 Node->getValueType(0),
2899 Node->getValueType(0), dl);
2900 Results.push_back(Tmp1);
2901 break;
2902 case ISD::STRICT_FP_EXTEND:
2903 // When strict mode is enforced we can't do expansion because it
2904 // does not honor the "strict" properties. Only libcall is allowed.
2905 if (TLI.isStrictFPEnabled())
2906 break;
2907 // We might as well mutate to FP_EXTEND when FP_EXTEND operation is legal
2908 // since this operation is more efficient than stack operation.
2909 if (TLI.getStrictFPOperationAction(Node->getOpcode(),
2910 Node->getValueType(0))
2911 == TargetLowering::Legal)
2912 break;
2913 // We fall back to use stack operation when the FP_EXTEND operation
2914 // isn't available.
2915 Tmp1 = EmitStackConvert(Node->getOperand(1),
2916 Node->getOperand(1).getValueType(),
2917 Node->getValueType(0), dl, Node->getOperand(0));
2918 ReplaceNode(Node, Tmp1.getNode());
2919 LLVM_DEBUG(dbgs() << "Successfully expanded STRICT_FP_EXTEND node\n");
2920 return true;
2921 case ISD::FP_EXTEND:
2922 Tmp1 = EmitStackConvert(Node->getOperand(0),
2923 Node->getOperand(0).getValueType(),
2924 Node->getValueType(0), dl);
2925 Results.push_back(Tmp1);
2926 break;
2927 case ISD::SIGN_EXTEND_INREG: {
2928 EVT ExtraVT = cast<VTSDNode>(Node->getOperand(1))->getVT();
2929 EVT VT = Node->getValueType(0);
2930
2931 // An in-register sign-extend of a boolean is a negation:
2932 // 'true' (1) sign-extended is -1.
2933 // 'false' (0) sign-extended is 0.
2934 // However, we must mask the high bits of the source operand because the
2935 // SIGN_EXTEND_INREG does not guarantee that the high bits are already zero.
2936
2937 // TODO: Do this for vectors too?
2938 if (ExtraVT.getSizeInBits() == 1) {
2939 SDValue One = DAG.getConstant(1, dl, VT);
2940 SDValue And = DAG.getNode(ISD::AND, dl, VT, Node->getOperand(0), One);
2941 SDValue Zero = DAG.getConstant(0, dl, VT);
2942 SDValue Neg = DAG.getNode(ISD::SUB, dl, VT, Zero, And);
2943 Results.push_back(Neg);
2944 break;
2945 }
2946
2947 // NOTE: we could fall back on load/store here too for targets without
2948 // SRA. However, it is doubtful that any exist.
2949 EVT ShiftAmountTy = TLI.getShiftAmountTy(VT, DAG.getDataLayout());
2950 unsigned BitsDiff = VT.getScalarSizeInBits() -
2951 ExtraVT.getScalarSizeInBits();
2952 SDValue ShiftCst = DAG.getConstant(BitsDiff, dl, ShiftAmountTy);
2953 Tmp1 = DAG.getNode(ISD::SHL, dl, Node->getValueType(0),
2954 Node->getOperand(0), ShiftCst);
2955 Tmp1 = DAG.getNode(ISD::SRA, dl, Node->getValueType(0), Tmp1, ShiftCst);
2956 Results.push_back(Tmp1);
2957 break;
2958 }
2959 case ISD::UINT_TO_FP:
2960 case ISD::STRICT_UINT_TO_FP:
2961 if (TLI.expandUINT_TO_FP(Node, Tmp1, Tmp2, DAG)) {
2962 Results.push_back(Tmp1);
2963 if (Node->isStrictFPOpcode())
2964 Results.push_back(Tmp2);
2965 break;
2966 }
2967 LLVM_FALLTHROUGH;
2968 case ISD::SINT_TO_FP:
2969 case ISD::STRICT_SINT_TO_FP:
2970 Tmp1 = ExpandLegalINT_TO_FP(Node, Tmp2);
2971 Results.push_back(Tmp1);
2972 if (Node->isStrictFPOpcode())
2973 Results.push_back(Tmp2);
2974 break;
2975 case ISD::FP_TO_SINT:
2976 if (TLI.expandFP_TO_SINT(Node, Tmp1, DAG))
2977 Results.push_back(Tmp1);
2978 break;
2979 case ISD::STRICT_FP_TO_SINT:
2980 if (TLI.expandFP_TO_SINT(Node, Tmp1, DAG)) {
2981 ReplaceNode(Node, Tmp1.getNode());
2982 LLVM_DEBUG(dbgs() << "Successfully expanded STRICT_FP_TO_SINT node\n");
2983 return true;
2984 }
2985 break;
2986 case ISD::FP_TO_UINT:
2987 if (TLI.expandFP_TO_UINT(Node, Tmp1, Tmp2, DAG))
2988 Results.push_back(Tmp1);
2989 break;
2990 case ISD::STRICT_FP_TO_UINT:
2991 if (TLI.expandFP_TO_UINT(Node, Tmp1, Tmp2, DAG)) {
2992 // Relink the chain.
2993 DAG.ReplaceAllUsesOfValueWith(SDValue(Node,1), Tmp2);
2994 // Replace the new UINT result.
2995 ReplaceNodeWithValue(SDValue(Node, 0), Tmp1);
2996 LLVM_DEBUG(dbgs() << "Successfully expanded STRICT_FP_TO_UINT node\n");
2997 return true;
2998 }
2999 break;
3000 case ISD::VAARG:
3001 Results.push_back(DAG.expandVAArg(Node));
3002 Results.push_back(Results[0].getValue(1));
3003 break;
3004 case ISD::VACOPY:
3005 Results.push_back(DAG.expandVACopy(Node));
3006 break;
3007 case ISD::EXTRACT_VECTOR_ELT:
3008 if (Node->getOperand(0).getValueType().getVectorNumElements() == 1)
3009 // This must be an access of the only element. Return it.
3010 Tmp1 = DAG.getNode(ISD::BITCAST, dl, Node->getValueType(0),
3011 Node->getOperand(0));
3012 else
3013 Tmp1 = ExpandExtractFromVectorThroughStack(SDValue(Node, 0));
3014 Results.push_back(Tmp1);
3015 break;
3016 case ISD::EXTRACT_SUBVECTOR:
3017 Results.push_back(ExpandExtractFromVectorThroughStack(SDValue(Node, 0)));
3018 break;
3019 case ISD::INSERT_SUBVECTOR:
3020 Results.push_back(ExpandInsertToVectorThroughStack(SDValue(Node, 0)));
3021 break;
3022 case ISD::CONCAT_VECTORS:
3023 Results.push_back(ExpandVectorBuildThroughStack(Node));
3024 break;
3025 case ISD::SCALAR_TO_VECTOR:
3026 Results.push_back(ExpandSCALAR_TO_VECTOR(Node));
3027 break;
3028 case ISD::INSERT_VECTOR_ELT:
3029 Results.push_back(ExpandINSERT_VECTOR_ELT(Node->getOperand(0),
3030 Node->getOperand(1),
3031 Node->getOperand(2), dl));
3032 break;
3033 case ISD::VECTOR_SHUFFLE: {
3034 SmallVector<int, 32> NewMask;
3035 ArrayRef<int> Mask = cast<ShuffleVectorSDNode>(Node)->getMask();
3036
3037 EVT VT = Node->getValueType(0);
3038 EVT EltVT = VT.getVectorElementType();
3039 SDValue Op0 = Node->getOperand(0);
3040 SDValue Op1 = Node->getOperand(1);
3041 if (!TLI.isTypeLegal(EltVT)) {
3042 EVT NewEltVT = TLI.getTypeToTransformTo(*DAG.getContext(), EltVT);
3043
3044 // BUILD_VECTOR operands are allowed to be wider than the element type.
3045 // But if NewEltVT is smaller that EltVT the BUILD_VECTOR does not accept
3046 // it.
3047 if (NewEltVT.bitsLT(EltVT)) {
3048 // Convert shuffle node.
3049 // If original node was v4i64 and the new EltVT is i32,
3050 // cast operands to v8i32 and re-build the mask.
3051
3052 // Calculate new VT, the size of the new VT should be equal to original.
3053 EVT NewVT =
3054 EVT::getVectorVT(*DAG.getContext(), NewEltVT,
3055 VT.getSizeInBits() / NewEltVT.getSizeInBits());
3056 assert(NewVT.bitsEq(VT));
3057
3058 // cast operands to new VT
3059 Op0 = DAG.getNode(ISD::BITCAST, dl, NewVT, Op0);
3060 Op1 = DAG.getNode(ISD::BITCAST, dl, NewVT, Op1);
3061
3062 // Convert the shuffle mask
3063 unsigned int factor =
3064 NewVT.getVectorNumElements()/VT.getVectorNumElements();
3065
3066 // EltVT gets smaller
3067 assert(factor > 0);
3068
3069 for (unsigned i = 0; i < VT.getVectorNumElements(); ++i) {
3070 if (Mask[i] < 0) {
3071 for (unsigned fi = 0; fi < factor; ++fi)
3072 NewMask.push_back(Mask[i]);
3073 }
3074 else {
3075 for (unsigned fi = 0; fi < factor; ++fi)
3076 NewMask.push_back(Mask[i]*factor+fi);
3077 }
3078 }
3079 Mask = NewMask;
3080 VT = NewVT;
3081 }
3082 EltVT = NewEltVT;
3083 }
3084 unsigned NumElems = VT.getVectorNumElements();
3085 SmallVector<SDValue, 16> Ops;
3086 for (unsigned i = 0; i != NumElems; ++i) {
3087 if (Mask[i] < 0) {
3088 Ops.push_back(DAG.getUNDEF(EltVT));
3089 continue;
3090 }
3091 unsigned Idx = Mask[i];
3092 if (Idx < NumElems)
3093 Ops.push_back(DAG.getNode(
3094 ISD::EXTRACT_VECTOR_ELT, dl, EltVT, Op0,
3095 DAG.getConstant(Idx, dl, TLI.getVectorIdxTy(DAG.getDataLayout()))));
3096 else
3097 Ops.push_back(DAG.getNode(
3098 ISD::EXTRACT_VECTOR_ELT, dl, EltVT, Op1,
3099 DAG.getConstant(Idx - NumElems, dl,
3100 TLI.getVectorIdxTy(DAG.getDataLayout()))));
3101 }
3102
3103 Tmp1 = DAG.getBuildVector(VT, dl, Ops);
3104 // We may have changed the BUILD_VECTOR type. Cast it back to the Node type.
3105 Tmp1 = DAG.getNode(ISD::BITCAST, dl, Node->getValueType(0), Tmp1);
3106 Results.push_back(Tmp1);
3107 break;
3108 }
3109 case ISD::EXTRACT_ELEMENT: {
3110 EVT OpTy = Node->getOperand(0).getValueType();
3111 if (cast<ConstantSDNode>(Node->getOperand(1))->getZExtValue()) {
3112 // 1 -> Hi
3113 Tmp1 = DAG.getNode(ISD::SRL, dl, OpTy, Node->getOperand(0),
3114 DAG.getConstant(OpTy.getSizeInBits() / 2, dl,
3115 TLI.getShiftAmountTy(
3116 Node->getOperand(0).getValueType(),
3117 DAG.getDataLayout())));
3118 Tmp1 = DAG.getNode(ISD::TRUNCATE, dl, Node->getValueType(0), Tmp1);
3119 } else {
3120 // 0 -> Lo
3121 Tmp1 = DAG.getNode(ISD::TRUNCATE, dl, Node->getValueType(0),
3122 Node->getOperand(0));
3123 }
3124 Results.push_back(Tmp1);
3125 break;
3126 }
3127 case ISD::STACKSAVE:
3128 // Expand to CopyFromReg if the target set
3129 // StackPointerRegisterToSaveRestore.
3130 if (unsigned SP = TLI.getStackPointerRegisterToSaveRestore()) {
3131 Results.push_back(DAG.getCopyFromReg(Node->getOperand(0), dl, SP,
3132 Node->getValueType(0)));
3133 Results.push_back(Results[0].getValue(1));
3134 } else {
3135 Results.push_back(DAG.getUNDEF(Node->getValueType(0)));
3136 Results.push_back(Node->getOperand(0));
3137 }
3138 break;
3139 case ISD::STACKRESTORE:
3140 // Expand to CopyToReg if the target set
3141 // StackPointerRegisterToSaveRestore.
3142 if (unsigned SP = TLI.getStackPointerRegisterToSaveRestore()) {
3143 Results.push_back(DAG.getCopyToReg(Node->getOperand(0), dl, SP,
3144 Node->getOperand(1)));
3145 } else {
3146 Results.push_back(Node->getOperand(0));
3147 }
3148 break;
3149 case ISD::GET_DYNAMIC_AREA_OFFSET:
3150 Results.push_back(DAG.getConstant(0, dl, Node->getValueType(0)));
3151 Results.push_back(Results[0].getValue(0));
3152 break;
3153 case ISD::FCOPYSIGN:
3154 Results.push_back(ExpandFCOPYSIGN(Node));
3155 break;
3156 case ISD::FNEG:
3157 // Expand Y = FNEG(X) -> Y = SUB -0.0, X
3158 Tmp1 = DAG.getConstantFP(-0.0, dl, Node->getValueType(0));
3159 // TODO: If FNEG has fast-math-flags, propagate them to the FSUB.
3160 Tmp1 = DAG.getNode(ISD::FSUB, dl, Node->getValueType(0), Tmp1,
3161 Node->getOperand(0));
3162 Results.push_back(Tmp1);
3163 break;
3164 case ISD::FABS:
3165 Results.push_back(ExpandFABS(Node));
3166 break;
3167 case ISD::SMIN:
3168 case ISD::SMAX:
3169 case ISD::UMIN:
3170 case ISD::UMAX: {
3171 // Expand Y = MAX(A, B) -> Y = (A > B) ? A : B
3172 ISD::CondCode Pred;
3173 switch (Node->getOpcode()) {
3174 default: llvm_unreachable("How did we get here?");
3175 case ISD::SMAX: Pred = ISD::SETGT; break;
3176 case ISD::SMIN: Pred = ISD::SETLT; break;
3177 case ISD::UMAX: Pred = ISD::SETUGT; break;
3178 case ISD::UMIN: Pred = ISD::SETULT; break;
3179 }
3180 Tmp1 = Node->getOperand(0);
3181 Tmp2 = Node->getOperand(1);
3182 Tmp1 = DAG.getSelectCC(dl, Tmp1, Tmp2, Tmp1, Tmp2, Pred);
3183 Results.push_back(Tmp1);
3184 break;
3185 }
3186 case ISD::FMINNUM:
3187 case ISD::FMAXNUM: {
3188 if (SDValue Expanded = TLI.expandFMINNUM_FMAXNUM(Node, DAG))
3189 Results.push_back(Expanded);
3190 break;
3191 }
3192 case ISD::FSIN:
3193 case ISD::FCOS: {
3194 EVT VT = Node->getValueType(0);
3195 // Turn fsin / fcos into ISD::FSINCOS node if there are a pair of fsin /
3196 // fcos which share the same operand and both are used.
3197 if ((TLI.isOperationLegalOrCustom(ISD::FSINCOS, VT) ||
3198 isSinCosLibcallAvailable(Node, TLI))
3199 && useSinCos(Node)) {
3200 SDVTList VTs = DAG.getVTList(VT, VT);
3201 Tmp1 = DAG.getNode(ISD::FSINCOS, dl, VTs, Node->getOperand(0));
3202 if (Node->getOpcode() == ISD::FCOS)
3203 Tmp1 = Tmp1.getValue(1);
3204 Results.push_back(Tmp1);
3205 }
3206 break;
3207 }
3208 case ISD::FMAD:
3209 llvm_unreachable("Illegal fmad should never be formed");
3210
3211 case ISD::FP16_TO_FP:
3212 if (Node->getValueType(0) != MVT::f32) {
3213 // We can extend to types bigger than f32 in two steps without changing
3214 // the result. Since "f16 -> f32" is much more commonly available, give
3215 // CodeGen the option of emitting that before resorting to a libcall.
3216 SDValue Res =
3217 DAG.getNode(ISD::FP16_TO_FP, dl, MVT::f32, Node->getOperand(0));
3218 Results.push_back(
3219 DAG.getNode(ISD::FP_EXTEND, dl, Node->getValueType(0), Res));
3220 }
3221 break;
3222 case ISD::FP_TO_FP16:
3223 LLVM_DEBUG(dbgs() << "Legalizing FP_TO_FP16\n");
3224 if (!TLI.useSoftFloat() && TM.Options.UnsafeFPMath) {
3225 SDValue Op = Node->getOperand(0);
3226 MVT SVT = Op.getSimpleValueType();
3227 if ((SVT == MVT::f64 || SVT == MVT::f80) &&
3228 TLI.isOperationLegalOrCustom(ISD::FP_TO_FP16, MVT::f32)) {
3229 // Under fastmath, we can expand this node into a fround followed by
3230 // a float-half conversion.
3231 SDValue FloatVal = DAG.getNode(ISD::FP_ROUND, dl, MVT::f32, Op,
3232 DAG.getIntPtrConstant(0, dl));
3233 Results.push_back(
3234 DAG.getNode(ISD::FP_TO_FP16, dl, Node->getValueType(0), FloatVal));
3235 }
3236 }
3237 break;
3238 case ISD::ConstantFP: {
3239 ConstantFPSDNode *CFP = cast<ConstantFPSDNode>(Node);
3240 // Check to see if this FP immediate is already legal.
3241 // If this is a legal constant, turn it into a TargetConstantFP node.
3242 if (!TLI.isFPImmLegal(CFP->getValueAPF(), Node->getValueType(0),
3243 DAG.getMachineFunction().getFunction().hasOptSize()))
3244 Results.push_back(ExpandConstantFP(CFP, true));
3245 break;
3246 }
3247 case ISD::Constant: {
3248 ConstantSDNode *CP = cast<ConstantSDNode>(Node);
3249 Results.push_back(ExpandConstant(CP));
3250 break;
3251 }
3252 case ISD::FSUB: {
3253 EVT VT = Node->getValueType(0);
3254 if (TLI.isOperationLegalOrCustom(ISD::FADD, VT) &&
3255 TLI.isOperationLegalOrCustom(ISD::FNEG, VT)) {
3256 const SDNodeFlags Flags = Node->getFlags();
3257 Tmp1 = DAG.getNode(ISD::FNEG, dl, VT, Node->getOperand(1));
3258 Tmp1 = DAG.getNode(ISD::FADD, dl, VT, Node->getOperand(0), Tmp1, Flags);
3259 Results.push_back(Tmp1);
3260 }
3261 break;
3262 }
3263 case ISD::SUB: {
3264 EVT VT = Node->getValueType(0);
3265 assert(TLI.isOperationLegalOrCustom(ISD::ADD, VT) &&
3266 TLI.isOperationLegalOrCustom(ISD::XOR, VT) &&
3267 "Don't know how to expand this subtraction!");
3268 Tmp1 = DAG.getNode(ISD::XOR, dl, VT, Node->getOperand(1),
3269 DAG.getConstant(APInt::getAllOnesValue(VT.getSizeInBits()), dl,
3270 VT));
3271 Tmp1 = DAG.getNode(ISD::ADD, dl, VT, Tmp1, DAG.getConstant(1, dl, VT));
3272 Results.push_back(DAG.getNode(ISD::ADD, dl, VT, Node->getOperand(0), Tmp1));
3273 break;
3274 }
3275 case ISD::UREM:
3276 case ISD::SREM: {
3277 EVT VT = Node->getValueType(0);
3278 bool isSigned = Node->getOpcode() == ISD::SREM;
3279 unsigned DivOpc = isSigned ? ISD::SDIV : ISD::UDIV;
3280 unsigned DivRemOpc = isSigned ? ISD::SDIVREM : ISD::UDIVREM;
3281 Tmp2 = Node->getOperand(0);
3282 Tmp3 = Node->getOperand(1);
3283 if (TLI.isOperationLegalOrCustom(DivRemOpc, VT)) {
3284 SDVTList VTs = DAG.getVTList(VT, VT);
3285 Tmp1 = DAG.getNode(DivRemOpc, dl, VTs, Tmp2, Tmp3).getValue(1);
3286 Results.push_back(Tmp1);
3287 } else if (TLI.isOperationLegalOrCustom(DivOpc, VT)) {
3288 // X % Y -> X-X/Y*Y
3289 Tmp1 = DAG.getNode(DivOpc, dl, VT, Tmp2, Tmp3);
3290 Tmp1 = DAG.getNode(ISD::MUL, dl, VT, Tmp1, Tmp3);
3291 Tmp1 = DAG.getNode(ISD::SUB, dl, VT, Tmp2, Tmp1);
3292 Results.push_back(Tmp1);
3293 }
3294 break;
3295 }
3296 case ISD::UDIV:
3297 case ISD::SDIV: {
3298 bool isSigned = Node->getOpcode() == ISD::SDIV;
3299 unsigned DivRemOpc = isSigned ? ISD::SDIVREM : ISD::UDIVREM;
3300 EVT VT = Node->getValueType(0);
3301 if (TLI.isOperationLegalOrCustom(DivRemOpc, VT)) {
3302 SDVTList VTs = DAG.getVTList(VT, VT);
3303 Tmp1 = DAG.getNode(DivRemOpc, dl, VTs, Node->getOperand(0),
3304 Node->getOperand(1));
3305 Results.push_back(Tmp1);
3306 }
3307 break;
3308 }
3309 case ISD::MULHU:
3310 case ISD::MULHS: {
3311 unsigned ExpandOpcode =
3312 Node->getOpcode() == ISD::MULHU ? ISD::UMUL_LOHI : ISD::SMUL_LOHI;
3313 EVT VT = Node->getValueType(0);
3314 SDVTList VTs = DAG.getVTList(VT, VT);
3315
3316 Tmp1 = DAG.getNode(ExpandOpcode, dl, VTs, Node->getOperand(0),
3317 Node->getOperand(1));
3318 Results.push_back(Tmp1.getValue(1));
3319 break;
3320 }
3321 case ISD::UMUL_LOHI:
3322 case ISD::SMUL_LOHI: {
3323 SDValue LHS = Node->getOperand(0);
3324 SDValue RHS = Node->getOperand(1);
3325 MVT VT = LHS.getSimpleValueType();
3326 unsigned MULHOpcode =
3327 Node->getOpcode() == ISD::UMUL_LOHI ? ISD::MULHU : ISD::MULHS;
3328
3329 if (TLI.isOperationLegalOrCustom(MULHOpcode, VT)) {
3330 Results.push_back(DAG.getNode(ISD::MUL, dl, VT, LHS, RHS));
3331 Results.push_back(DAG.getNode(MULHOpcode, dl, VT, LHS, RHS));
3332 break;
3333 }
3334
3335 SmallVector<SDValue, 4> Halves;
3336 EVT HalfType = EVT(VT).getHalfSizedIntegerVT(*DAG.getContext());
3337 assert(TLI.isTypeLegal(HalfType));
3338 if (TLI.expandMUL_LOHI(Node->getOpcode(), VT, Node, LHS, RHS, Halves,
3339 HalfType, DAG,
3340 TargetLowering::MulExpansionKind::Always)) {
3341 for (unsigned i = 0; i < 2; ++i) {
3342 SDValue Lo = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Halves[2 * i]);
3343 SDValue Hi = DAG.getNode(ISD::ANY_EXTEND, dl, VT, Halves[2 * i + 1]);
3344 SDValue Shift = DAG.getConstant(
3345 HalfType.getScalarSizeInBits(), dl,
3346 TLI.getShiftAmountTy(HalfType, DAG.getDataLayout()));
3347 Hi = DAG.getNode(ISD::SHL, dl, VT, Hi, Shift);
3348 Results.push_back(DAG.getNode(ISD::OR, dl, VT, Lo, Hi));
3349 }
3350 break;
3351 }
3352 break;
3353 }
3354 case ISD::MUL: {
3355 EVT VT = Node->getValueType(0);
3356 SDVTList VTs = DAG.getVTList(VT, VT);
3357 // See if multiply or divide can be lowered using two-result operations.
3358 // We just need the low half of the multiply; try both the signed
3359 // and unsigned forms. If the target supports both SMUL_LOHI and
3360 // UMUL_LOHI, form a preference by checking which forms of plain
3361 // MULH it supports.
3362 bool HasSMUL_LOHI = TLI.isOperationLegalOrCustom(ISD::SMUL_LOHI, VT);
3363 bool HasUMUL_LOHI = TLI.isOperationLegalOrCustom(ISD::UMUL_LOHI, VT);
3364 bool HasMULHS = TLI.isOperationLegalOrCustom(ISD::MULHS, VT);
3365 bool HasMULHU = TLI.isOperationLegalOrCustom(ISD::MULHU, VT);
3366 unsigned OpToUse = 0;
3367 if (HasSMUL_LOHI && !HasMULHS) {
3368 OpToUse = ISD::SMUL_LOHI;
3369 } else if (HasUMUL_LOHI && !HasMULHU) {
3370 OpToUse = ISD::UMUL_LOHI;
3371 } else if (HasSMUL_LOHI) {
3372 OpToUse = ISD::SMUL_LOHI;
3373 } else if (HasUMUL_LOHI) {
3374 OpToUse = ISD::UMUL_LOHI;
3375 }
3376 if (OpToUse) {
3377 Results.push_back(DAG.getNode(OpToUse, dl, VTs, Node->getOperand(0),
3378 Node->getOperand(1)));
3379 break;
3380 }
3381
3382 SDValue Lo, Hi;
3383 EVT HalfType = VT.getHalfSizedIntegerVT(*DAG.getContext());
3384 if (TLI.isOperationLegalOrCustom(ISD::ZERO_EXTEND, VT) &&
3385 TLI.isOperationLegalOrCustom(ISD::ANY_EXTEND, VT) &&
3386 TLI.isOperationLegalOrCustom(ISD::SHL, VT) &&
3387 TLI.isOperationLegalOrCustom(ISD::OR, VT) &&
3388 TLI.expandMUL(Node, Lo, Hi, HalfType, DAG,
3389 TargetLowering::MulExpansionKind::OnlyLegalOrCustom)) {
3390 Lo = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Lo);
3391 Hi = DAG.getNode(ISD::ANY_EXTEND, dl, VT, Hi);
3392 SDValue Shift =
3393 DAG.getConstant(HalfType.getSizeInBits(), dl,
3394 TLI.getShiftAmountTy(HalfType, DAG.getDataLayout()));
3395 Hi = DAG.getNode(ISD::SHL, dl, VT, Hi, Shift);
3396 Results.push_back(DAG.getNode(ISD::OR, dl, VT, Lo, Hi));
3397 }
3398 break;
3399 }
3400 case ISD::FSHL:
3401 case ISD::FSHR:
3402 if (TLI.expandFunnelShift(Node, Tmp1, DAG))
3403 Results.push_back(Tmp1);
3404 break;
3405 case ISD::ROTL:
3406 case ISD::ROTR:
3407 if (TLI.expandROT(Node, Tmp1, DAG))
3408 Results.push_back(Tmp1);
3409 break;
3410 case ISD::SADDSAT:
3411 case ISD::UADDSAT:
3412 case ISD::SSUBSAT:
3413 case ISD::USUBSAT:
3414 Results.push_back(TLI.expandAddSubSat(Node, DAG));
3415 break;
3416 case ISD::SMULFIX:
3417 case ISD::SMULFIXSAT:
3418 case ISD::UMULFIX:
3419 case ISD::UMULFIXSAT:
3420 Results.push_back(TLI.expandFixedPointMul(Node, DAG));
3421 break;
3422 case ISD::SDIVFIX:
3423 case ISD::UDIVFIX:
3424 if (SDValue V = TLI.expandFixedPointDiv(Node->getOpcode(), SDLoc(Node),
3425 Node->getOperand(0),
3426 Node->getOperand(1),
3427 Node->getConstantOperandVal(2),
3428 DAG)) {
3429 Results.push_back(V);
3430 break;
3431 }
3432 // FIXME: We might want to retry here with a wider type if we fail, if that
3433 // type is legal.
3434 // FIXME: Technically, so long as we only have sdivfixes where BW+Scale is
3435 // <= 128 (which is the case for all of the default Embedded-C types),
3436 // we will only get here with types and scales that we could always expand
3437 // if we were allowed to generate libcalls to division functions of illegal
3438 // type. But we cannot do that.
3439 llvm_unreachable("Cannot expand DIVFIX!");
3440 case ISD::ADDCARRY:
3441 case ISD::SUBCARRY: {
3442 SDValue LHS = Node->getOperand(0);
3443 SDValue RHS = Node->getOperand(1);
3444 SDValue Carry = Node->getOperand(2);
3445
3446 bool IsAdd = Node->getOpcode() == ISD::ADDCARRY;
3447
3448 // Initial add of the 2 operands.
3449 unsigned Op = IsAdd ? ISD::ADD : ISD::SUB;
3450 EVT VT = LHS.getValueType();
3451 SDValue Sum = DAG.getNode(Op, dl, VT, LHS, RHS);
3452
3453 // Initial check for overflow.
3454 EVT CarryType = Node->getValueType(1);
3455 EVT SetCCType = getSetCCResultType(Node->getValueType(0));
3456 ISD::CondCode CC = IsAdd ? ISD::SETULT : ISD::SETUGT;
3457 SDValue Overflow = DAG.getSetCC(dl, SetCCType, Sum, LHS, CC);
3458
3459 // Add of the sum and the carry.
3460 SDValue CarryExt =
3461 DAG.getZeroExtendInReg(DAG.getZExtOrTrunc(Carry, dl, VT), dl, MVT::i1);
3462 SDValue Sum2 = DAG.getNode(Op, dl, VT, Sum, CarryExt);
3463
3464 // Second check for overflow. If we are adding, we can only overflow if the
3465 // initial sum is all 1s ang the carry is set, resulting in a new sum of 0.
3466 // If we are subtracting, we can only overflow if the initial sum is 0 and
3467 // the carry is set, resulting in a new sum of all 1s.
3468 SDValue Zero = DAG.getConstant(0, dl, VT);
3469 SDValue Overflow2 =
3470 IsAdd ? DAG.getSetCC(dl, SetCCType, Sum2, Zero, ISD::SETEQ)
3471 : DAG.getSetCC(dl, SetCCType, Sum, Zero, ISD::SETEQ);
3472 Overflow2 = DAG.getNode(ISD::AND, dl, SetCCType, Overflow2,
3473 DAG.getZExtOrTrunc(Carry, dl, SetCCType));
3474
3475 SDValue ResultCarry =
3476 DAG.getNode(ISD::OR, dl, SetCCType, Overflow, Overflow2);
3477
3478 Results.push_back(Sum2);
3479 Results.push_back(DAG.getBoolExtOrTrunc(ResultCarry, dl, CarryType, VT));
3480 break;
3481 }
3482 case ISD::SADDO:
3483 case ISD::SSUBO: {
3484 SDValue Result, Overflow;
3485 TLI.expandSADDSUBO(Node, Result, Overflow, DAG);
3486 Results.push_back(Result);
3487 Results.push_back(Overflow);
3488 break;
3489 }
3490 case ISD::UADDO:
3491 case ISD::USUBO: {
3492 SDValue Result, Overflow;
3493 TLI.expandUADDSUBO(Node, Result, Overflow, DAG);
3494 Results.push_back(Result);
3495 Results.push_back(Overflow);
3496 break;
3497 }
3498 case ISD::UMULO:
3499 case ISD::SMULO: {
3500 SDValue Result, Overflow;
3501 if (TLI.expandMULO(Node, Result, Overflow, DAG)) {
3502 Results.push_back(Result);
3503 Results.push_back(Overflow);
3504 }
3505 break;
3506 }
3507 case ISD::BUILD_PAIR: {
3508 EVT PairTy = Node->getValueType(0);
3509 Tmp1 = DAG.getNode(ISD::ZERO_EXTEND, dl, PairTy, Node->getOperand(0));
3510 Tmp2 = DAG.getNode(ISD::ANY_EXTEND, dl, PairTy, Node->getOperand(1));
3511 Tmp2 = DAG.getNode(
3512 ISD::SHL, dl, PairTy, Tmp2,
3513 DAG.getConstant(PairTy.getSizeInBits() / 2, dl,
3514 TLI.getShiftAmountTy(PairTy, DAG.getDataLayout())));
3515 Results.push_back(DAG.getNode(ISD::OR, dl, PairTy, Tmp1, Tmp2));
3516 break;
3517 }
3518 case ISD::SELECT:
3519 Tmp1 = Node->getOperand(0);
3520 Tmp2 = Node->getOperand(1);
3521 Tmp3 = Node->getOperand(2);
3522 if (Tmp1.getOpcode() == ISD::SETCC) {
3523 Tmp1 = DAG.getSelectCC(dl, Tmp1.getOperand(0), Tmp1.getOperand(1),
3524 Tmp2, Tmp3,
3525 cast<CondCodeSDNode>(Tmp1.getOperand(2))->get());
3526 } else {
3527 Tmp1 = DAG.getSelectCC(dl, Tmp1,
3528 DAG.getConstant(0, dl, Tmp1.getValueType()),
3529 Tmp2, Tmp3, ISD::SETNE);
3530 }
3531 Tmp1->setFlags(Node->getFlags());
3532 Results.push_back(Tmp1);
3533 break;
3534 case ISD::BR_JT: {
3535 SDValue Chain = Node->getOperand(0);
3536 SDValue Table = Node->getOperand(1);
3537 SDValue Index = Node->getOperand(2);
3538
3539 const DataLayout &TD = DAG.getDataLayout();
3540 EVT PTy = TLI.getPointerTy(TD);
3541
3542 unsigned EntrySize =
3543 DAG.getMachineFunction().getJumpTableInfo()->getEntrySize(TD);
3544
3545 // For power-of-two jumptable entry sizes convert multiplication to a shift.
3546 // This transformation needs to be done here since otherwise the MIPS
3547 // backend will end up emitting a three instruction multiply sequence
3548 // instead of a single shift and MSP430 will call a runtime function.
3549 if (llvm::isPowerOf2_32(EntrySize))
3550 Index = DAG.getNode(
3551 ISD::SHL, dl, Index.getValueType(), Index,
3552 DAG.getConstant(llvm::Log2_32(EntrySize), dl, Index.getValueType()));
3553 else
3554 Index = DAG.getNode(ISD::MUL, dl, Index.getValueType(), Index,
3555 DAG.getConstant(EntrySize, dl, Index.getValueType()));
3556 SDValue Addr = DAG.getNode(ISD::ADD, dl, Index.getValueType(),
3557 Index, Table);
3558
3559 EVT MemVT = EVT::getIntegerVT(*DAG.getContext(), EntrySize * 8);
3560 SDValue LD = DAG.getExtLoad(
3561 ISD::SEXTLOAD, dl, PTy, Chain, Addr,
3562 MachinePointerInfo::getJumpTable(DAG.getMachineFunction()), MemVT);
3563 Addr = LD;
3564 if (TLI.isJumpTableRelative()) {
3565 // For PIC, the sequence is:
3566 // BRIND(load(Jumptable + index) + RelocBase)
3567 // RelocBase can be JumpTable, GOT or some sort of global base.
3568 Addr = DAG.getNode(ISD::ADD, dl, PTy, Addr,
3569 TLI.getPICJumpTableRelocBase(Table, DAG));
3570 }
3571
3572 Tmp1 = TLI.expandIndirectJTBranch(dl, LD.getValue(1), Addr, DAG);
3573 Results.push_back(Tmp1);
3574 break;
3575 }
3576 case ISD::BRCOND:
3577 // Expand brcond's setcc into its constituent parts and create a BR_CC
3578 // Node.
3579 Tmp1 = Node->getOperand(0);
3580 Tmp2 = Node->getOperand(1);
3581 if (Tmp2.getOpcode() == ISD::SETCC) {
3582 Tmp1 = DAG.getNode(ISD::BR_CC, dl, MVT::Other,
3583 Tmp1, Tmp2.getOperand(2),
3584 Tmp2.getOperand(0), Tmp2.getOperand(1),
3585 Node->getOperand(2));
3586 } else {
3587 // We test only the i1 bit. Skip the AND if UNDEF or another AND.
3588 if (Tmp2.isUndef() ||
3589 (Tmp2.getOpcode() == ISD::AND &&
3590 isa<ConstantSDNode>(Tmp2.getOperand(1)) &&
3591 cast<ConstantSDNode>(Tmp2.getOperand(1))->getZExtValue() == 1))
3592 Tmp3 = Tmp2;
3593 else
3594 Tmp3 = DAG.getNode(ISD::AND, dl, Tmp2.getValueType(), Tmp2,
3595 DAG.getConstant(1, dl, Tmp2.getValueType()));
3596 Tmp1 = DAG.getNode(ISD::BR_CC, dl, MVT::Other, Tmp1,
3597 DAG.getCondCode(ISD::SETNE), Tmp3,
3598 DAG.getConstant(0, dl, Tmp3.getValueType()),
3599 Node->getOperand(2));
3600 }
3601 Results.push_back(Tmp1);
3602 break;
3603 case ISD::SETCC:
3604 case ISD::STRICT_FSETCC:
3605 case ISD::STRICT_FSETCCS: {
3606 bool IsStrict = Node->getOpcode() != ISD::SETCC;
3607 bool IsSignaling = Node->getOpcode() == ISD::STRICT_FSETCCS;
3608 SDValue Chain = IsStrict ? Node->getOperand(0) : SDValue();
3609 unsigned Offset = IsStrict ? 1 : 0;
3610 Tmp1 = Node->getOperand(0 + Offset);
3611 Tmp2 = Node->getOperand(1 + Offset);
3612 Tmp3 = Node->getOperand(2 + Offset);
3613 bool Legalized =
3614 LegalizeSetCCCondCode(Node->getValueType(0), Tmp1, Tmp2, Tmp3,
3615 NeedInvert, dl, Chain, IsSignaling);
3616
3617 if (Legalized) {
3618 // If we expanded the SETCC by swapping LHS and RHS, or by inverting the
3619 // condition code, create a new SETCC node.
3620 if (Tmp3.getNode())
3621 Tmp1 = DAG.getNode(ISD::SETCC, dl, Node->getValueType(0),
3622 Tmp1, Tmp2, Tmp3, Node->getFlags());
3623
3624 // If we expanded the SETCC by inverting the condition code, then wrap
3625 // the existing SETCC in a NOT to restore the intended condition.
3626 if (NeedInvert)
3627 Tmp1 = DAG.getLogicalNOT(dl, Tmp1, Tmp1->getValueType(0));
3628
3629 Results.push_back(Tmp1);
3630 if (IsStrict)
3631 Results.push_back(Chain);
3632
3633 break;
3634 }
3635
3636 // FIXME: It seems Legalized is false iff CCCode is Legal. I don't
3637 // understand if this code is useful for strict nodes.
3638 assert(!IsStrict && "Don't know how to expand for strict nodes.");
3639
3640 // Otherwise, SETCC for the given comparison type must be completely
3641 // illegal; expand it into a SELECT_CC.
3642 EVT VT = Node->getValueType(0);
3643 int TrueValue;
3644 switch (TLI.getBooleanContents(Tmp1.getValueType())) {
3645 case TargetLowering::ZeroOrOneBooleanContent:
3646 case TargetLowering::UndefinedBooleanContent:
3647 TrueValue = 1;
3648 break;
3649 case TargetLowering::ZeroOrNegativeOneBooleanContent:
3650 TrueValue = -1;
3651 break;
3652 }
3653 Tmp1 = DAG.getNode(ISD::SELECT_CC, dl, VT, Tmp1, Tmp2,
3654 DAG.getConstant(TrueValue, dl, VT),
3655 DAG.getConstant(0, dl, VT),
3656 Tmp3);
3657 Tmp1->setFlags(Node->getFlags());
3658 Results.push_back(Tmp1);
3659 break;
3660 }
3661 case ISD::SELECT_CC: {
3662 // TODO: need to add STRICT_SELECT_CC and STRICT_SELECT_CCS
3663 Tmp1 = Node->getOperand(0); // LHS
3664 Tmp2 = Node->getOperand(1); // RHS
3665 Tmp3 = Node->getOperand(2); // True
3666 Tmp4 = Node->getOperand(3); // False
3667 EVT VT = Node->getValueType(0);
3668 SDValue Chain;
3669 SDValue CC = Node->getOperand(4);
3670 ISD::CondCode CCOp = cast<CondCodeSDNode>(CC)->get();
3671
3672 if (TLI.isCondCodeLegalOrCustom(CCOp, Tmp1.getSimpleValueType())) {
3673 // If the condition code is legal, then we need to expand this
3674 // node using SETCC and SELECT.
3675 EVT CmpVT = Tmp1.getValueType();
3676 assert(!TLI.isOperationExpand(ISD::SELECT, VT) &&
3677 "Cannot expand ISD::SELECT_CC when ISD::SELECT also needs to be "
3678 "expanded.");
3679 EVT CCVT = getSetCCResultType(CmpVT);
3680 SDValue Cond = DAG.getNode(ISD::SETCC, dl, CCVT, Tmp1, Tmp2, CC, Node->getFlags());
3681 Results.push_back(DAG.getSelect(dl, VT, Cond, Tmp3, Tmp4));
3682 break;
3683 }
3684
3685 // SELECT_CC is legal, so the condition code must not be.
3686 bool Legalized = false;
3687 // Try to legalize by inverting the condition. This is for targets that
3688 // might support an ordered version of a condition, but not the unordered
3689 // version (or vice versa).
3690 ISD::CondCode InvCC = ISD::getSetCCInverse(CCOp, Tmp1.getValueType());
3691 if (TLI.isCondCodeLegalOrCustom(InvCC, Tmp1.getSimpleValueType())) {
3692 // Use the new condition code and swap true and false
3693 Legalized = true;
3694 Tmp1 = DAG.getSelectCC(dl, Tmp1, Tmp2, Tmp4, Tmp3, InvCC);
3695 Tmp1->setFlags(Node->getFlags());
3696 } else {
3697 // If The inverse is not legal, then try to swap the arguments using
3698 // the inverse condition code.
3699 ISD::CondCode SwapInvCC = ISD::getSetCCSwappedOperands(InvCC);
3700 if (TLI.isCondCodeLegalOrCustom(SwapInvCC, Tmp1.getSimpleValueType())) {
3701 // The swapped inverse condition is legal, so swap true and false,
3702 // lhs and rhs.
3703 Legalized = true;
3704 Tmp1 = DAG.getSelectCC(dl, Tmp2, Tmp1, Tmp4, Tmp3, SwapInvCC);
3705 Tmp1->setFlags(Node->getFlags());
3706 }
3707 }
3708
3709 if (!Legalized) {
3710 Legalized = LegalizeSetCCCondCode(getSetCCResultType(Tmp1.getValueType()),
3711 Tmp1, Tmp2, CC, NeedInvert, dl, Chain);
3712
3713 assert(Legalized && "Can't legalize SELECT_CC with legal condition!");
3714
3715 // If we expanded the SETCC by inverting the condition code, then swap
3716 // the True/False operands to match.
3717 if (NeedInvert)
3718 std::swap(Tmp3, Tmp4);
3719
3720 // If we expanded the SETCC by swapping LHS and RHS, or by inverting the
3721 // condition code, create a new SELECT_CC node.
3722 if (CC.getNode()) {
3723 Tmp1 = DAG.getNode(ISD::SELECT_CC, dl, Node->getValueType(0),
3724 Tmp1, Tmp2, Tmp3, Tmp4, CC);
3725 } else {
3726 Tmp2 = DAG.getConstant(0, dl, Tmp1.getValueType());
3727 CC = DAG.getCondCode(ISD::SETNE);
3728 Tmp1 = DAG.getNode(ISD::SELECT_CC, dl, Node->getValueType(0), Tmp1,
3729 Tmp2, Tmp3, Tmp4, CC);
3730 }
3731 Tmp1->setFlags(Node->getFlags());
3732 }
3733 Results.push_back(Tmp1);
3734 break;
3735 }
3736 case ISD::BR_CC: {
3737 // TODO: need to add STRICT_BR_CC and STRICT_BR_CCS
3738 SDValue Chain;
3739 Tmp1 = Node->getOperand(0); // Chain
3740 Tmp2 = Node->getOperand(2); // LHS
3741 Tmp3 = Node->getOperand(3); // RHS
3742 Tmp4 = Node->getOperand(1); // CC
3743
3744 bool Legalized =
3745 LegalizeSetCCCondCode(getSetCCResultType(Tmp2.getValueType()), Tmp2,
3746 Tmp3, Tmp4, NeedInvert, dl, Chain);
3747 (void)Legalized;
3748 assert(Legalized && "Can't legalize BR_CC with legal condition!");
3749
3750 assert(!NeedInvert && "Don't know how to invert BR_CC!");
3751
3752 // If we expanded the SETCC by swapping LHS and RHS, create a new BR_CC
3753 // node.
3754 if (Tmp4.getNode()) {
3755 Tmp1 = DAG.getNode(ISD::BR_CC, dl, Node->getValueType(0), Tmp1,
3756 Tmp4, Tmp2, Tmp3, Node->getOperand(4));
3757 } else {
3758 Tmp3 = DAG.getConstant(0, dl, Tmp2.getValueType());
3759 Tmp4 = DAG.getCondCode(ISD::SETNE);
3760 Tmp1 = DAG.getNode(ISD::BR_CC, dl, Node->getValueType(0), Tmp1, Tmp4,
3761 Tmp2, Tmp3, Node->getOperand(4));
3762 }
3763 Results.push_back(Tmp1);
3764 break;
3765 }
3766 case ISD::BUILD_VECTOR:
3767 Results.push_back(ExpandBUILD_VECTOR(Node));
3768 break;
3769 case ISD::SPLAT_VECTOR:
3770 Results.push_back(ExpandSPLAT_VECTOR(Node));
3771 break;
3772 case ISD::SRA:
3773 case ISD::SRL:
3774 case ISD::SHL: {
3775 // Scalarize vector SRA/SRL/SHL.
3776 EVT VT = Node->getValueType(0);
3777 assert(VT.isVector() && "Unable to legalize non-vector shift");
3778 assert(TLI.isTypeLegal(VT.getScalarType())&& "Element type must be legal");
3779 unsigned NumElem = VT.getVectorNumElements();
3780
3781 SmallVector<SDValue, 8> Scalars;
3782 for (unsigned Idx = 0; Idx < NumElem; Idx++) {
3783 SDValue Ex = DAG.getNode(
3784 ISD::EXTRACT_VECTOR_ELT, dl, VT.getScalarType(), Node->getOperand(0),
3785 DAG.getConstant(Idx, dl, TLI.getVectorIdxTy(DAG.getDataLayout())));
3786 SDValue Sh = DAG.getNode(
3787 ISD::EXTRACT_VECTOR_ELT, dl, VT.getScalarType(), Node->getOperand(1),
3788 DAG.getConstant(Idx, dl, TLI.getVectorIdxTy(DAG.getDataLayout())));
3789 Scalars.push_back(DAG.getNode(Node->getOpcode(), dl,
3790 VT.getScalarType(), Ex, Sh));
3791 }
3792
3793 SDValue Result = DAG.getBuildVector(Node->getValueType(0), dl, Scalars);
3794 Results.push_back(Result);
3795 break;
3796 }
3797 case ISD::VECREDUCE_FADD:
3798 case ISD::VECREDUCE_FMUL:
3799 case ISD::VECREDUCE_ADD:
3800 case ISD::VECREDUCE_MUL:
3801 case ISD::VECREDUCE_AND:
3802 case ISD::VECREDUCE_OR:
3803 case ISD::VECREDUCE_XOR:
3804 case ISD::VECREDUCE_SMAX:
3805 case ISD::VECREDUCE_SMIN:
3806 case ISD::VECREDUCE_UMAX:
3807 case ISD::VECREDUCE_UMIN:
3808 case ISD::VECREDUCE_FMAX:
3809 case ISD::VECREDUCE_FMIN:
3810 Results.push_back(TLI.expandVecReduce(Node, DAG));
3811 break;
3812 case ISD::GLOBAL_OFFSET_TABLE:
3813 case ISD::GlobalAddress:
3814 case ISD::GlobalTLSAddress:
3815 case ISD::ExternalSymbol:
3816 case ISD::ConstantPool:
3817 case ISD::JumpTable:
3818 case ISD::INTRINSIC_W_CHAIN:
3819 case ISD::INTRINSIC_WO_CHAIN:
3820 case ISD::INTRINSIC_VOID:
3821 // FIXME: Custom lowering for these operations shouldn't return null!
3822 // Return true so that we don't call ConvertNodeToLibcall which also won't
3823 // do anything.
3824 return true;
3825 }
3826
3827 if (!TLI.isStrictFPEnabled() && Results.empty() && Node->isStrictFPOpcode()) {
3828 // FIXME: We were asked to expand a strict floating-point operation,
3829 // but there is currently no expansion implemented that would preserve
3830 // the "strict" properties. For now, we just fall back to the non-strict
3831 // version if that is legal on the target. The actual mutation of the
3832 // operation will happen in SelectionDAGISel::DoInstructionSelection.
3833 switch (Node->getOpcode()) {
3834 default:
3835 if (TLI.getStrictFPOperationAction(Node->getOpcode(),
3836 Node->getValueType(0))
3837 == TargetLowering::Legal)
3838 return true;
3839 break;
3840 case ISD::STRICT_LRINT:
3841 case ISD::STRICT_LLRINT:
3842 case ISD::STRICT_LROUND:
3843 case ISD::STRICT_LLROUND:
3844 // These are registered by the operand type instead of the value
3845 // type. Reflect that here.
3846 if (TLI.getStrictFPOperationAction(Node->getOpcode(),
3847 Node->getOperand(1).getValueType())
3848 == TargetLowering::Legal)
3849 return true;
3850 break;
3851 }
3852 }
3853
3854 // Replace the original node with the legalized result.
3855 if (Results.empty()) {
3856 LLVM_DEBUG(dbgs() << "Cannot expand node\n");
3857 return false;
3858 }
3859
3860 LLVM_DEBUG(dbgs() << "Successfully expanded node\n");
3861 ReplaceNode(Node, Results.data());
3862 return true;
3863 }
3864
ConvertNodeToLibcall(SDNode * Node)3865 void SelectionDAGLegalize::ConvertNodeToLibcall(SDNode *Node) {
3866 LLVM_DEBUG(dbgs() << "Trying to convert node to libcall\n");
3867 SmallVector<SDValue, 8> Results;
3868 SDLoc dl(Node);
3869 // FIXME: Check flags on the node to see if we can use a finite call.
3870 unsigned Opc = Node->getOpcode();
3871 switch (Opc) {
3872 case ISD::ATOMIC_FENCE: {
3873 // If the target didn't lower this, lower it to '__sync_synchronize()' call
3874 // FIXME: handle "fence singlethread" more efficiently.
3875 TargetLowering::ArgListTy Args;
3876
3877 TargetLowering::CallLoweringInfo CLI(DAG);
3878 CLI.setDebugLoc(dl)
3879 .setChain(Node->getOperand(0))
3880 .setLibCallee(
3881 CallingConv::C, Type::getVoidTy(*DAG.getContext()),
3882 DAG.getExternalSymbol("__sync_synchronize",
3883 TLI.getPointerTy(DAG.getDataLayout())),
3884 std::move(Args));
3885
3886 std::pair<SDValue, SDValue> CallResult = TLI.LowerCallTo(CLI);
3887
3888 Results.push_back(CallResult.second);
3889 break;
3890 }
3891 // By default, atomic intrinsics are marked Legal and lowered. Targets
3892 // which don't support them directly, however, may want libcalls, in which
3893 // case they mark them Expand, and we get here.
3894 case ISD::ATOMIC_SWAP:
3895 case ISD::ATOMIC_LOAD_ADD:
3896 case ISD::ATOMIC_LOAD_SUB:
3897 case ISD::ATOMIC_LOAD_AND:
3898 case ISD::ATOMIC_LOAD_CLR:
3899 case ISD::ATOMIC_LOAD_OR:
3900 case ISD::ATOMIC_LOAD_XOR:
3901 case ISD::ATOMIC_LOAD_NAND:
3902 case ISD::ATOMIC_LOAD_MIN:
3903 case ISD::ATOMIC_LOAD_MAX:
3904 case ISD::ATOMIC_LOAD_UMIN:
3905 case ISD::ATOMIC_LOAD_UMAX:
3906 case ISD::ATOMIC_CMP_SWAP: {
3907 MVT VT = cast<AtomicSDNode>(Node)->getMemoryVT().getSimpleVT();
3908 RTLIB::Libcall LC = RTLIB::getSYNC(Opc, VT);
3909 assert(LC != RTLIB::UNKNOWN_LIBCALL && "Unexpected atomic op or value type!");
3910
3911 EVT RetVT = Node->getValueType(0);
3912 SmallVector<SDValue, 4> Ops(Node->op_begin() + 1, Node->op_end());
3913 TargetLowering::MakeLibCallOptions CallOptions;
3914 std::pair<SDValue, SDValue> Tmp = TLI.makeLibCall(DAG, LC, RetVT,
3915 Ops, CallOptions,
3916 SDLoc(Node),
3917 Node->getOperand(0));
3918 Results.push_back(Tmp.first);
3919 Results.push_back(Tmp.second);
3920 break;
3921 }
3922 case ISD::TRAP: {
3923 // If this operation is not supported, lower it to 'abort()' call
3924 TargetLowering::ArgListTy Args;
3925 TargetLowering::CallLoweringInfo CLI(DAG);
3926 CLI.setDebugLoc(dl)
3927 .setChain(Node->getOperand(0))
3928 .setLibCallee(CallingConv::C, Type::getVoidTy(*DAG.getContext()),
3929 DAG.getExternalSymbol(
3930 "abort", TLI.getPointerTy(DAG.getDataLayout())),
3931 std::move(Args));
3932 std::pair<SDValue, SDValue> CallResult = TLI.LowerCallTo(CLI);
3933
3934 Results.push_back(CallResult.second);
3935 break;
3936 }
3937 case ISD::FMINNUM:
3938 case ISD::STRICT_FMINNUM:
3939 ExpandFPLibCall(Node, RTLIB::FMIN_F32, RTLIB::FMIN_F64,
3940 RTLIB::FMIN_F80, RTLIB::FMIN_F128,
3941 RTLIB::FMIN_PPCF128, Results);
3942 break;
3943 case ISD::FMAXNUM:
3944 case ISD::STRICT_FMAXNUM:
3945 ExpandFPLibCall(Node, RTLIB::FMAX_F32, RTLIB::FMAX_F64,
3946 RTLIB::FMAX_F80, RTLIB::FMAX_F128,
3947 RTLIB::FMAX_PPCF128, Results);
3948 break;
3949 case ISD::FSQRT:
3950 case ISD::STRICT_FSQRT:
3951 ExpandFPLibCall(Node, RTLIB::SQRT_F32, RTLIB::SQRT_F64,
3952 RTLIB::SQRT_F80, RTLIB::SQRT_F128,
3953 RTLIB::SQRT_PPCF128, Results);
3954 break;
3955 case ISD::FCBRT:
3956 ExpandFPLibCall(Node, RTLIB::CBRT_F32, RTLIB::CBRT_F64,
3957 RTLIB::CBRT_F80, RTLIB::CBRT_F128,
3958 RTLIB::CBRT_PPCF128, Results);
3959 break;
3960 case ISD::FSIN:
3961 case ISD::STRICT_FSIN:
3962 ExpandFPLibCall(Node, RTLIB::SIN_F32, RTLIB::SIN_F64,
3963 RTLIB::SIN_F80, RTLIB::SIN_F128,
3964 RTLIB::SIN_PPCF128, Results);
3965 break;
3966 case ISD::FCOS:
3967 case ISD::STRICT_FCOS:
3968 ExpandFPLibCall(Node, RTLIB::COS_F32, RTLIB::COS_F64,
3969 RTLIB::COS_F80, RTLIB::COS_F128,
3970 RTLIB::COS_PPCF128, Results);
3971 break;
3972 case ISD::FSINCOS:
3973 // Expand into sincos libcall.
3974 ExpandSinCosLibCall(Node, Results);
3975 break;
3976 case ISD::FLOG:
3977 case ISD::STRICT_FLOG:
3978 ExpandFPLibCall(Node, RTLIB::LOG_F32, RTLIB::LOG_F64, RTLIB::LOG_F80,
3979 RTLIB::LOG_F128, RTLIB::LOG_PPCF128, Results);
3980 break;
3981 case ISD::FLOG2:
3982 case ISD::STRICT_FLOG2:
3983 ExpandFPLibCall(Node, RTLIB::LOG2_F32, RTLIB::LOG2_F64, RTLIB::LOG2_F80,
3984 RTLIB::LOG2_F128, RTLIB::LOG2_PPCF128, Results);
3985 break;
3986 case ISD::FLOG10:
3987 case ISD::STRICT_FLOG10:
3988 ExpandFPLibCall(Node, RTLIB::LOG10_F32, RTLIB::LOG10_F64, RTLIB::LOG10_F80,
3989 RTLIB::LOG10_F128, RTLIB::LOG10_PPCF128, Results);
3990 break;
3991 case ISD::FEXP:
3992 case ISD::STRICT_FEXP:
3993 ExpandFPLibCall(Node, RTLIB::EXP_F32, RTLIB::EXP_F64, RTLIB::EXP_F80,
3994 RTLIB::EXP_F128, RTLIB::EXP_PPCF128, Results);
3995 break;
3996 case ISD::FEXP2:
3997 case ISD::STRICT_FEXP2:
3998 ExpandFPLibCall(Node, RTLIB::EXP2_F32, RTLIB::EXP2_F64, RTLIB::EXP2_F80,
3999 RTLIB::EXP2_F128, RTLIB::EXP2_PPCF128, Results);
4000 break;
4001 case ISD::FTRUNC:
4002 case ISD::STRICT_FTRUNC:
4003 ExpandFPLibCall(Node, RTLIB::TRUNC_F32, RTLIB::TRUNC_F64,
4004 RTLIB::TRUNC_F80, RTLIB::TRUNC_F128,
4005 RTLIB::TRUNC_PPCF128, Results);
4006 break;
4007 case ISD::FFLOOR:
4008 case ISD::STRICT_FFLOOR:
4009 ExpandFPLibCall(Node, RTLIB::FLOOR_F32, RTLIB::FLOOR_F64,
4010 RTLIB::FLOOR_F80, RTLIB::FLOOR_F128,
4011 RTLIB::FLOOR_PPCF128, Results);
4012 break;
4013 case ISD::FCEIL:
4014 case ISD::STRICT_FCEIL:
4015 ExpandFPLibCall(Node, RTLIB::CEIL_F32, RTLIB::CEIL_F64,
4016 RTLIB::CEIL_F80, RTLIB::CEIL_F128,
4017 RTLIB::CEIL_PPCF128, Results);
4018 break;
4019 case ISD::FRINT:
4020 case ISD::STRICT_FRINT:
4021 ExpandFPLibCall(Node, RTLIB::RINT_F32, RTLIB::RINT_F64,
4022 RTLIB::RINT_F80, RTLIB::RINT_F128,
4023 RTLIB::RINT_PPCF128, Results);
4024 break;
4025 case ISD::FNEARBYINT:
4026 case ISD::STRICT_FNEARBYINT:
4027 ExpandFPLibCall(Node, RTLIB::NEARBYINT_F32,
4028 RTLIB::NEARBYINT_F64,
4029 RTLIB::NEARBYINT_F80,
4030 RTLIB::NEARBYINT_F128,
4031 RTLIB::NEARBYINT_PPCF128, Results);
4032 break;
4033 case ISD::FROUND:
4034 case ISD::STRICT_FROUND:
4035 ExpandFPLibCall(Node, RTLIB::ROUND_F32,
4036 RTLIB::ROUND_F64,
4037 RTLIB::ROUND_F80,
4038 RTLIB::ROUND_F128,
4039 RTLIB::ROUND_PPCF128, Results);
4040 break;
4041 case ISD::FPOWI:
4042 case ISD::STRICT_FPOWI: {
4043 RTLIB::Libcall LC;
4044 switch (Node->getSimpleValueType(0).SimpleTy) {
4045 default: llvm_unreachable("Unexpected request for libcall!");
4046 case MVT::f32: LC = RTLIB::POWI_F32; break;
4047 case MVT::f64: LC = RTLIB::POWI_F64; break;
4048 case MVT::f80: LC = RTLIB::POWI_F80; break;
4049 case MVT::f128: LC = RTLIB::POWI_F128; break;
4050 case MVT::ppcf128: LC = RTLIB::POWI_PPCF128; break;
4051 }
4052 if (!TLI.getLibcallName(LC)) {
4053 // Some targets don't have a powi libcall; use pow instead.
4054 SDValue Exponent = DAG.getNode(ISD::SINT_TO_FP, SDLoc(Node),
4055 Node->getValueType(0),
4056 Node->getOperand(1));
4057 Results.push_back(DAG.getNode(ISD::FPOW, SDLoc(Node),
4058 Node->getValueType(0), Node->getOperand(0),
4059 Exponent));
4060 break;
4061 }
4062 ExpandFPLibCall(Node, RTLIB::POWI_F32, RTLIB::POWI_F64,
4063 RTLIB::POWI_F80, RTLIB::POWI_F128,
4064 RTLIB::POWI_PPCF128, Results);
4065 break;
4066 }
4067 case ISD::FPOW:
4068 case ISD::STRICT_FPOW:
4069 ExpandFPLibCall(Node, RTLIB::POW_F32, RTLIB::POW_F64, RTLIB::POW_F80,
4070 RTLIB::POW_F128, RTLIB::POW_PPCF128, Results);
4071 break;
4072 case ISD::LROUND:
4073 case ISD::STRICT_LROUND:
4074 ExpandArgFPLibCall(Node, RTLIB::LROUND_F32,
4075 RTLIB::LROUND_F64, RTLIB::LROUND_F80,
4076 RTLIB::LROUND_F128,
4077 RTLIB::LROUND_PPCF128, Results);
4078 break;
4079 case ISD::LLROUND:
4080 case ISD::STRICT_LLROUND:
4081 ExpandArgFPLibCall(Node, RTLIB::LLROUND_F32,
4082 RTLIB::LLROUND_F64, RTLIB::LLROUND_F80,
4083 RTLIB::LLROUND_F128,
4084 RTLIB::LLROUND_PPCF128, Results);
4085 break;
4086 case ISD::LRINT:
4087 case ISD::STRICT_LRINT:
4088 ExpandArgFPLibCall(Node, RTLIB::LRINT_F32,
4089 RTLIB::LRINT_F64, RTLIB::LRINT_F80,
4090 RTLIB::LRINT_F128,
4091 RTLIB::LRINT_PPCF128, Results);
4092 break;
4093 case ISD::LLRINT:
4094 case ISD::STRICT_LLRINT:
4095 ExpandArgFPLibCall(Node, RTLIB::LLRINT_F32,
4096 RTLIB::LLRINT_F64, RTLIB::LLRINT_F80,
4097 RTLIB::LLRINT_F128,
4098 RTLIB::LLRINT_PPCF128, Results);
4099 break;
4100 case ISD::FDIV:
4101 case ISD::STRICT_FDIV:
4102 ExpandFPLibCall(Node, RTLIB::DIV_F32, RTLIB::DIV_F64,
4103 RTLIB::DIV_F80, RTLIB::DIV_F128,
4104 RTLIB::DIV_PPCF128, Results);
4105 break;
4106 case ISD::FREM:
4107 case ISD::STRICT_FREM:
4108 ExpandFPLibCall(Node, RTLIB::REM_F32, RTLIB::REM_F64,
4109 RTLIB::REM_F80, RTLIB::REM_F128,
4110 RTLIB::REM_PPCF128, Results);
4111 break;
4112 case ISD::FMA:
4113 case ISD::STRICT_FMA:
4114 ExpandFPLibCall(Node, RTLIB::FMA_F32, RTLIB::FMA_F64,
4115 RTLIB::FMA_F80, RTLIB::FMA_F128,
4116 RTLIB::FMA_PPCF128, Results);
4117 break;
4118 case ISD::FADD:
4119 case ISD::STRICT_FADD:
4120 ExpandFPLibCall(Node, RTLIB::ADD_F32, RTLIB::ADD_F64,
4121 RTLIB::ADD_F80, RTLIB::ADD_F128,
4122 RTLIB::ADD_PPCF128, Results);
4123 break;
4124 case ISD::FMUL:
4125 case ISD::STRICT_FMUL:
4126 ExpandFPLibCall(Node, RTLIB::MUL_F32, RTLIB::MUL_F64,
4127 RTLIB::MUL_F80, RTLIB::MUL_F128,
4128 RTLIB::MUL_PPCF128, Results);
4129 break;
4130 case ISD::FP16_TO_FP:
4131 if (Node->getValueType(0) == MVT::f32) {
4132 Results.push_back(ExpandLibCall(RTLIB::FPEXT_F16_F32, Node, false));
4133 }
4134 break;
4135 case ISD::FP_TO_FP16: {
4136 RTLIB::Libcall LC =
4137 RTLIB::getFPROUND(Node->getOperand(0).getValueType(), MVT::f16);
4138 assert(LC != RTLIB::UNKNOWN_LIBCALL && "Unable to expand fp_to_fp16");
4139 Results.push_back(ExpandLibCall(LC, Node, false));
4140 break;
4141 }
4142 case ISD::FSUB:
4143 case ISD::STRICT_FSUB:
4144 ExpandFPLibCall(Node, RTLIB::SUB_F32, RTLIB::SUB_F64,
4145 RTLIB::SUB_F80, RTLIB::SUB_F128,
4146 RTLIB::SUB_PPCF128, Results);
4147 break;
4148 case ISD::SREM:
4149 Results.push_back(ExpandIntLibCall(Node, true,
4150 RTLIB::SREM_I8,
4151 RTLIB::SREM_I16, RTLIB::SREM_I32,
4152 RTLIB::SREM_I64, RTLIB::SREM_I128));
4153 break;
4154 case ISD::UREM:
4155 Results.push_back(ExpandIntLibCall(Node, false,
4156 RTLIB::UREM_I8,
4157 RTLIB::UREM_I16, RTLIB::UREM_I32,
4158 RTLIB::UREM_I64, RTLIB::UREM_I128));
4159 break;
4160 case ISD::SDIV:
4161 Results.push_back(ExpandIntLibCall(Node, true,
4162 RTLIB::SDIV_I8,
4163 RTLIB::SDIV_I16, RTLIB::SDIV_I32,
4164 RTLIB::SDIV_I64, RTLIB::SDIV_I128));
4165 break;
4166 case ISD::UDIV:
4167 Results.push_back(ExpandIntLibCall(Node, false,
4168 RTLIB::UDIV_I8,
4169 RTLIB::UDIV_I16, RTLIB::UDIV_I32,
4170 RTLIB::UDIV_I64, RTLIB::UDIV_I128));
4171 break;
4172 case ISD::SDIVREM:
4173 case ISD::UDIVREM:
4174 // Expand into divrem libcall
4175 ExpandDivRemLibCall(Node, Results);
4176 break;
4177 case ISD::MUL:
4178 Results.push_back(ExpandIntLibCall(Node, false,
4179 RTLIB::MUL_I8,
4180 RTLIB::MUL_I16, RTLIB::MUL_I32,
4181 RTLIB::MUL_I64, RTLIB::MUL_I128));
4182 break;
4183 case ISD::CTLZ_ZERO_UNDEF:
4184 switch (Node->getSimpleValueType(0).SimpleTy) {
4185 default:
4186 llvm_unreachable("LibCall explicitly requested, but not available");
4187 case MVT::i32:
4188 Results.push_back(ExpandLibCall(RTLIB::CTLZ_I32, Node, false));
4189 break;
4190 case MVT::i64:
4191 Results.push_back(ExpandLibCall(RTLIB::CTLZ_I64, Node, false));
4192 break;
4193 case MVT::i128:
4194 Results.push_back(ExpandLibCall(RTLIB::CTLZ_I128, Node, false));
4195 break;
4196 }
4197 break;
4198 }
4199
4200 // Replace the original node with the legalized result.
4201 if (!Results.empty()) {
4202 LLVM_DEBUG(dbgs() << "Successfully converted node to libcall\n");
4203 ReplaceNode(Node, Results.data());
4204 } else
4205 LLVM_DEBUG(dbgs() << "Could not convert node to libcall\n");
4206 }
4207
4208 // Determine the vector type to use in place of an original scalar element when
4209 // promoting equally sized vectors.
getPromotedVectorElementType(const TargetLowering & TLI,MVT EltVT,MVT NewEltVT)4210 static MVT getPromotedVectorElementType(const TargetLowering &TLI,
4211 MVT EltVT, MVT NewEltVT) {
4212 unsigned OldEltsPerNewElt = EltVT.getSizeInBits() / NewEltVT.getSizeInBits();
4213 MVT MidVT = MVT::getVectorVT(NewEltVT, OldEltsPerNewElt);
4214 assert(TLI.isTypeLegal(MidVT) && "unexpected");
4215 return MidVT;
4216 }
4217
PromoteNode(SDNode * Node)4218 void SelectionDAGLegalize::PromoteNode(SDNode *Node) {
4219 LLVM_DEBUG(dbgs() << "Trying to promote node\n");
4220 SmallVector<SDValue, 8> Results;
4221 MVT OVT = Node->getSimpleValueType(0);
4222 if (Node->getOpcode() == ISD::UINT_TO_FP ||
4223 Node->getOpcode() == ISD::SINT_TO_FP ||
4224 Node->getOpcode() == ISD::SETCC ||
4225 Node->getOpcode() == ISD::EXTRACT_VECTOR_ELT ||
4226 Node->getOpcode() == ISD::INSERT_VECTOR_ELT) {
4227 OVT = Node->getOperand(0).getSimpleValueType();
4228 }
4229 if (Node->getOpcode() == ISD::STRICT_UINT_TO_FP ||
4230 Node->getOpcode() == ISD::STRICT_SINT_TO_FP)
4231 OVT = Node->getOperand(1).getSimpleValueType();
4232 if (Node->getOpcode() == ISD::BR_CC)
4233 OVT = Node->getOperand(2).getSimpleValueType();
4234 MVT NVT = TLI.getTypeToPromoteTo(Node->getOpcode(), OVT);
4235 SDLoc dl(Node);
4236 SDValue Tmp1, Tmp2, Tmp3;
4237 switch (Node->getOpcode()) {
4238 case ISD::CTTZ:
4239 case ISD::CTTZ_ZERO_UNDEF:
4240 case ISD::CTLZ:
4241 case ISD::CTLZ_ZERO_UNDEF:
4242 case ISD::CTPOP:
4243 // Zero extend the argument.
4244 Tmp1 = DAG.getNode(ISD::ZERO_EXTEND, dl, NVT, Node->getOperand(0));
4245 if (Node->getOpcode() == ISD::CTTZ) {
4246 // The count is the same in the promoted type except if the original
4247 // value was zero. This can be handled by setting the bit just off
4248 // the top of the original type.
4249 auto TopBit = APInt::getOneBitSet(NVT.getSizeInBits(),
4250 OVT.getSizeInBits());
4251 Tmp1 = DAG.getNode(ISD::OR, dl, NVT, Tmp1,
4252 DAG.getConstant(TopBit, dl, NVT));
4253 }
4254 // Perform the larger operation. For CTPOP and CTTZ_ZERO_UNDEF, this is
4255 // already the correct result.
4256 Tmp1 = DAG.getNode(Node->getOpcode(), dl, NVT, Tmp1);
4257 if (Node->getOpcode() == ISD::CTLZ ||
4258 Node->getOpcode() == ISD::CTLZ_ZERO_UNDEF) {
4259 // Tmp1 = Tmp1 - (sizeinbits(NVT) - sizeinbits(Old VT))
4260 Tmp1 = DAG.getNode(ISD::SUB, dl, NVT, Tmp1,
4261 DAG.getConstant(NVT.getSizeInBits() -
4262 OVT.getSizeInBits(), dl, NVT));
4263 }
4264 Results.push_back(DAG.getNode(ISD::TRUNCATE, dl, OVT, Tmp1));
4265 break;
4266 case ISD::BITREVERSE:
4267 case ISD::BSWAP: {
4268 unsigned DiffBits = NVT.getSizeInBits() - OVT.getSizeInBits();
4269 Tmp1 = DAG.getNode(ISD::ZERO_EXTEND, dl, NVT, Node->getOperand(0));
4270 Tmp1 = DAG.getNode(Node->getOpcode(), dl, NVT, Tmp1);
4271 Tmp1 = DAG.getNode(
4272 ISD::SRL, dl, NVT, Tmp1,
4273 DAG.getConstant(DiffBits, dl,
4274 TLI.getShiftAmountTy(NVT, DAG.getDataLayout())));
4275
4276 Results.push_back(DAG.getNode(ISD::TRUNCATE, dl, OVT, Tmp1));
4277 break;
4278 }
4279 case ISD::FP_TO_UINT:
4280 case ISD::STRICT_FP_TO_UINT:
4281 case ISD::FP_TO_SINT:
4282 case ISD::STRICT_FP_TO_SINT:
4283 PromoteLegalFP_TO_INT(Node, dl, Results);
4284 break;
4285 case ISD::UINT_TO_FP:
4286 case ISD::STRICT_UINT_TO_FP:
4287 case ISD::SINT_TO_FP:
4288 case ISD::STRICT_SINT_TO_FP:
4289 PromoteLegalINT_TO_FP(Node, dl, Results);
4290 break;
4291 case ISD::VAARG: {
4292 SDValue Chain = Node->getOperand(0); // Get the chain.
4293 SDValue Ptr = Node->getOperand(1); // Get the pointer.
4294
4295 unsigned TruncOp;
4296 if (OVT.isVector()) {
4297 TruncOp = ISD::BITCAST;
4298 } else {
4299 assert(OVT.isInteger()
4300 && "VAARG promotion is supported only for vectors or integer types");
4301 TruncOp = ISD::TRUNCATE;
4302 }
4303
4304 // Perform the larger operation, then convert back
4305 Tmp1 = DAG.getVAArg(NVT, dl, Chain, Ptr, Node->getOperand(2),
4306 Node->getConstantOperandVal(3));
4307 Chain = Tmp1.getValue(1);
4308
4309 Tmp2 = DAG.getNode(TruncOp, dl, OVT, Tmp1);
4310
4311 // Modified the chain result - switch anything that used the old chain to
4312 // use the new one.
4313 DAG.ReplaceAllUsesOfValueWith(SDValue(Node, 0), Tmp2);
4314 DAG.ReplaceAllUsesOfValueWith(SDValue(Node, 1), Chain);
4315 if (UpdatedNodes) {
4316 UpdatedNodes->insert(Tmp2.getNode());
4317 UpdatedNodes->insert(Chain.getNode());
4318 }
4319 ReplacedNode(Node);
4320 break;
4321 }
4322 case ISD::MUL:
4323 case ISD::SDIV:
4324 case ISD::SREM:
4325 case ISD::UDIV:
4326 case ISD::UREM:
4327 case ISD::AND:
4328 case ISD::OR:
4329 case ISD::XOR: {
4330 unsigned ExtOp, TruncOp;
4331 if (OVT.isVector()) {
4332 ExtOp = ISD::BITCAST;
4333 TruncOp = ISD::BITCAST;
4334 } else {
4335 assert(OVT.isInteger() && "Cannot promote logic operation");
4336
4337 switch (Node->getOpcode()) {
4338 default:
4339 ExtOp = ISD::ANY_EXTEND;
4340 break;
4341 case ISD::SDIV:
4342 case ISD::SREM:
4343 ExtOp = ISD::SIGN_EXTEND;
4344 break;
4345 case ISD::UDIV:
4346 case ISD::UREM:
4347 ExtOp = ISD::ZERO_EXTEND;
4348 break;
4349 }
4350 TruncOp = ISD::TRUNCATE;
4351 }
4352 // Promote each of the values to the new type.
4353 Tmp1 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(0));
4354 Tmp2 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(1));
4355 // Perform the larger operation, then convert back
4356 Tmp1 = DAG.getNode(Node->getOpcode(), dl, NVT, Tmp1, Tmp2);
4357 Results.push_back(DAG.getNode(TruncOp, dl, OVT, Tmp1));
4358 break;
4359 }
4360 case ISD::UMUL_LOHI:
4361 case ISD::SMUL_LOHI: {
4362 // Promote to a multiply in a wider integer type.
4363 unsigned ExtOp = Node->getOpcode() == ISD::UMUL_LOHI ? ISD::ZERO_EXTEND
4364 : ISD::SIGN_EXTEND;
4365 Tmp1 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(0));
4366 Tmp2 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(1));
4367 Tmp1 = DAG.getNode(ISD::MUL, dl, NVT, Tmp1, Tmp2);
4368
4369 auto &DL = DAG.getDataLayout();
4370 unsigned OriginalSize = OVT.getScalarSizeInBits();
4371 Tmp2 = DAG.getNode(
4372 ISD::SRL, dl, NVT, Tmp1,
4373 DAG.getConstant(OriginalSize, dl, TLI.getScalarShiftAmountTy(DL, NVT)));
4374 Results.push_back(DAG.getNode(ISD::TRUNCATE, dl, OVT, Tmp1));
4375 Results.push_back(DAG.getNode(ISD::TRUNCATE, dl, OVT, Tmp2));
4376 break;
4377 }
4378 case ISD::SELECT: {
4379 unsigned ExtOp, TruncOp;
4380 if (Node->getValueType(0).isVector() ||
4381 Node->getValueType(0).getSizeInBits() == NVT.getSizeInBits()) {
4382 ExtOp = ISD::BITCAST;
4383 TruncOp = ISD::BITCAST;
4384 } else if (Node->getValueType(0).isInteger()) {
4385 ExtOp = ISD::ANY_EXTEND;
4386 TruncOp = ISD::TRUNCATE;
4387 } else {
4388 ExtOp = ISD::FP_EXTEND;
4389 TruncOp = ISD::FP_ROUND;
4390 }
4391 Tmp1 = Node->getOperand(0);
4392 // Promote each of the values to the new type.
4393 Tmp2 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(1));
4394 Tmp3 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(2));
4395 // Perform the larger operation, then round down.
4396 Tmp1 = DAG.getSelect(dl, NVT, Tmp1, Tmp2, Tmp3);
4397 Tmp1->setFlags(Node->getFlags());
4398 if (TruncOp != ISD::FP_ROUND)
4399 Tmp1 = DAG.getNode(TruncOp, dl, Node->getValueType(0), Tmp1);
4400 else
4401 Tmp1 = DAG.getNode(TruncOp, dl, Node->getValueType(0), Tmp1,
4402 DAG.getIntPtrConstant(0, dl));
4403 Results.push_back(Tmp1);
4404 break;
4405 }
4406 case ISD::VECTOR_SHUFFLE: {
4407 ArrayRef<int> Mask = cast<ShuffleVectorSDNode>(Node)->getMask();
4408
4409 // Cast the two input vectors.
4410 Tmp1 = DAG.getNode(ISD::BITCAST, dl, NVT, Node->getOperand(0));
4411 Tmp2 = DAG.getNode(ISD::BITCAST, dl, NVT, Node->getOperand(1));
4412
4413 // Convert the shuffle mask to the right # elements.
4414 Tmp1 = ShuffleWithNarrowerEltType(NVT, OVT, dl, Tmp1, Tmp2, Mask);
4415 Tmp1 = DAG.getNode(ISD::BITCAST, dl, OVT, Tmp1);
4416 Results.push_back(Tmp1);
4417 break;
4418 }
4419 case ISD::SETCC: {
4420 unsigned ExtOp = ISD::FP_EXTEND;
4421 if (NVT.isInteger()) {
4422 ISD::CondCode CCCode =
4423 cast<CondCodeSDNode>(Node->getOperand(2))->get();
4424 ExtOp = isSignedIntSetCC(CCCode) ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
4425 }
4426 Tmp1 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(0));
4427 Tmp2 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(1));
4428 Results.push_back(DAG.getNode(ISD::SETCC, dl, Node->getValueType(0), Tmp1,
4429 Tmp2, Node->getOperand(2), Node->getFlags()));
4430 break;
4431 }
4432 case ISD::BR_CC: {
4433 unsigned ExtOp = ISD::FP_EXTEND;
4434 if (NVT.isInteger()) {
4435 ISD::CondCode CCCode =
4436 cast<CondCodeSDNode>(Node->getOperand(1))->get();
4437 ExtOp = isSignedIntSetCC(CCCode) ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
4438 }
4439 Tmp1 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(2));
4440 Tmp2 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(3));
4441 Results.push_back(DAG.getNode(ISD::BR_CC, dl, Node->getValueType(0),
4442 Node->getOperand(0), Node->getOperand(1),
4443 Tmp1, Tmp2, Node->getOperand(4)));
4444 break;
4445 }
4446 case ISD::FADD:
4447 case ISD::FSUB:
4448 case ISD::FMUL:
4449 case ISD::FDIV:
4450 case ISD::FREM:
4451 case ISD::FMINNUM:
4452 case ISD::FMAXNUM:
4453 case ISD::FPOW:
4454 Tmp1 = DAG.getNode(ISD::FP_EXTEND, dl, NVT, Node->getOperand(0));
4455 Tmp2 = DAG.getNode(ISD::FP_EXTEND, dl, NVT, Node->getOperand(1));
4456 Tmp3 = DAG.getNode(Node->getOpcode(), dl, NVT, Tmp1, Tmp2,
4457 Node->getFlags());
4458 Results.push_back(DAG.getNode(ISD::FP_ROUND, dl, OVT,
4459 Tmp3, DAG.getIntPtrConstant(0, dl)));
4460 break;
4461 case ISD::STRICT_FREM:
4462 case ISD::STRICT_FPOW:
4463 Tmp1 = DAG.getNode(ISD::STRICT_FP_EXTEND, dl, {NVT, MVT::Other},
4464 {Node->getOperand(0), Node->getOperand(1)});
4465 Tmp2 = DAG.getNode(ISD::STRICT_FP_EXTEND, dl, {NVT, MVT::Other},
4466 {Node->getOperand(0), Node->getOperand(2)});
4467 Tmp3 = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Tmp1.getValue(1),
4468 Tmp2.getValue(1));
4469 Tmp1 = DAG.getNode(Node->getOpcode(), dl, {NVT, MVT::Other},
4470 {Tmp3, Tmp1, Tmp2});
4471 Tmp1 = DAG.getNode(ISD::STRICT_FP_ROUND, dl, {OVT, MVT::Other},
4472 {Tmp1.getValue(1), Tmp1, DAG.getIntPtrConstant(0, dl)});
4473 Results.push_back(Tmp1);
4474 Results.push_back(Tmp1.getValue(1));
4475 break;
4476 case ISD::FMA:
4477 Tmp1 = DAG.getNode(ISD::FP_EXTEND, dl, NVT, Node->getOperand(0));
4478 Tmp2 = DAG.getNode(ISD::FP_EXTEND, dl, NVT, Node->getOperand(1));
4479 Tmp3 = DAG.getNode(ISD::FP_EXTEND, dl, NVT, Node->getOperand(2));
4480 Results.push_back(
4481 DAG.getNode(ISD::FP_ROUND, dl, OVT,
4482 DAG.getNode(Node->getOpcode(), dl, NVT, Tmp1, Tmp2, Tmp3),
4483 DAG.getIntPtrConstant(0, dl)));
4484 break;
4485 case ISD::FCOPYSIGN:
4486 case ISD::FPOWI: {
4487 Tmp1 = DAG.getNode(ISD::FP_EXTEND, dl, NVT, Node->getOperand(0));
4488 Tmp2 = Node->getOperand(1);
4489 Tmp3 = DAG.getNode(Node->getOpcode(), dl, NVT, Tmp1, Tmp2);
4490
4491 // fcopysign doesn't change anything but the sign bit, so
4492 // (fp_round (fcopysign (fpext a), b))
4493 // is as precise as
4494 // (fp_round (fpext a))
4495 // which is a no-op. Mark it as a TRUNCating FP_ROUND.
4496 const bool isTrunc = (Node->getOpcode() == ISD::FCOPYSIGN);
4497 Results.push_back(DAG.getNode(ISD::FP_ROUND, dl, OVT,
4498 Tmp3, DAG.getIntPtrConstant(isTrunc, dl)));
4499 break;
4500 }
4501 case ISD::FFLOOR:
4502 case ISD::FCEIL:
4503 case ISD::FRINT:
4504 case ISD::FNEARBYINT:
4505 case ISD::FROUND:
4506 case ISD::FTRUNC:
4507 case ISD::FNEG:
4508 case ISD::FSQRT:
4509 case ISD::FSIN:
4510 case ISD::FCOS:
4511 case ISD::FLOG:
4512 case ISD::FLOG2:
4513 case ISD::FLOG10:
4514 case ISD::FABS:
4515 case ISD::FEXP:
4516 case ISD::FEXP2:
4517 Tmp1 = DAG.getNode(ISD::FP_EXTEND, dl, NVT, Node->getOperand(0));
4518 Tmp2 = DAG.getNode(Node->getOpcode(), dl, NVT, Tmp1);
4519 Results.push_back(DAG.getNode(ISD::FP_ROUND, dl, OVT,
4520 Tmp2, DAG.getIntPtrConstant(0, dl)));
4521 break;
4522 case ISD::STRICT_FFLOOR:
4523 case ISD::STRICT_FCEIL:
4524 case ISD::STRICT_FSIN:
4525 case ISD::STRICT_FCOS:
4526 case ISD::STRICT_FLOG:
4527 case ISD::STRICT_FLOG10:
4528 case ISD::STRICT_FEXP:
4529 Tmp1 = DAG.getNode(ISD::STRICT_FP_EXTEND, dl, {NVT, MVT::Other},
4530 {Node->getOperand(0), Node->getOperand(1)});
4531 Tmp2 = DAG.getNode(Node->getOpcode(), dl, {NVT, MVT::Other},
4532 {Tmp1.getValue(1), Tmp1});
4533 Tmp3 = DAG.getNode(ISD::STRICT_FP_ROUND, dl, {OVT, MVT::Other},
4534 {Tmp2.getValue(1), Tmp2, DAG.getIntPtrConstant(0, dl)});
4535 Results.push_back(Tmp3);
4536 Results.push_back(Tmp3.getValue(1));
4537 break;
4538 case ISD::BUILD_VECTOR: {
4539 MVT EltVT = OVT.getVectorElementType();
4540 MVT NewEltVT = NVT.getVectorElementType();
4541
4542 // Handle bitcasts to a different vector type with the same total bit size
4543 //
4544 // e.g. v2i64 = build_vector i64:x, i64:y => v4i32
4545 // =>
4546 // v4i32 = concat_vectors (v2i32 (bitcast i64:x)), (v2i32 (bitcast i64:y))
4547
4548 assert(NVT.isVector() && OVT.getSizeInBits() == NVT.getSizeInBits() &&
4549 "Invalid promote type for build_vector");
4550 assert(NewEltVT.bitsLT(EltVT) && "not handled");
4551
4552 MVT MidVT = getPromotedVectorElementType(TLI, EltVT, NewEltVT);
4553
4554 SmallVector<SDValue, 8> NewOps;
4555 for (unsigned I = 0, E = Node->getNumOperands(); I != E; ++I) {
4556 SDValue Op = Node->getOperand(I);
4557 NewOps.push_back(DAG.getNode(ISD::BITCAST, SDLoc(Op), MidVT, Op));
4558 }
4559
4560 SDLoc SL(Node);
4561 SDValue Concat = DAG.getNode(ISD::CONCAT_VECTORS, SL, NVT, NewOps);
4562 SDValue CvtVec = DAG.getNode(ISD::BITCAST, SL, OVT, Concat);
4563 Results.push_back(CvtVec);
4564 break;
4565 }
4566 case ISD::EXTRACT_VECTOR_ELT: {
4567 MVT EltVT = OVT.getVectorElementType();
4568 MVT NewEltVT = NVT.getVectorElementType();
4569
4570 // Handle bitcasts to a different vector type with the same total bit size.
4571 //
4572 // e.g. v2i64 = extract_vector_elt x:v2i64, y:i32
4573 // =>
4574 // v4i32:castx = bitcast x:v2i64
4575 //
4576 // i64 = bitcast
4577 // (v2i32 build_vector (i32 (extract_vector_elt castx, (2 * y))),
4578 // (i32 (extract_vector_elt castx, (2 * y + 1)))
4579 //
4580
4581 assert(NVT.isVector() && OVT.getSizeInBits() == NVT.getSizeInBits() &&
4582 "Invalid promote type for extract_vector_elt");
4583 assert(NewEltVT.bitsLT(EltVT) && "not handled");
4584
4585 MVT MidVT = getPromotedVectorElementType(TLI, EltVT, NewEltVT);
4586 unsigned NewEltsPerOldElt = MidVT.getVectorNumElements();
4587
4588 SDValue Idx = Node->getOperand(1);
4589 EVT IdxVT = Idx.getValueType();
4590 SDLoc SL(Node);
4591 SDValue Factor = DAG.getConstant(NewEltsPerOldElt, SL, IdxVT);
4592 SDValue NewBaseIdx = DAG.getNode(ISD::MUL, SL, IdxVT, Idx, Factor);
4593
4594 SDValue CastVec = DAG.getNode(ISD::BITCAST, SL, NVT, Node->getOperand(0));
4595
4596 SmallVector<SDValue, 8> NewOps;
4597 for (unsigned I = 0; I < NewEltsPerOldElt; ++I) {
4598 SDValue IdxOffset = DAG.getConstant(I, SL, IdxVT);
4599 SDValue TmpIdx = DAG.getNode(ISD::ADD, SL, IdxVT, NewBaseIdx, IdxOffset);
4600
4601 SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, NewEltVT,
4602 CastVec, TmpIdx);
4603 NewOps.push_back(Elt);
4604 }
4605
4606 SDValue NewVec = DAG.getBuildVector(MidVT, SL, NewOps);
4607 Results.push_back(DAG.getNode(ISD::BITCAST, SL, EltVT, NewVec));
4608 break;
4609 }
4610 case ISD::INSERT_VECTOR_ELT: {
4611 MVT EltVT = OVT.getVectorElementType();
4612 MVT NewEltVT = NVT.getVectorElementType();
4613
4614 // Handle bitcasts to a different vector type with the same total bit size
4615 //
4616 // e.g. v2i64 = insert_vector_elt x:v2i64, y:i64, z:i32
4617 // =>
4618 // v4i32:castx = bitcast x:v2i64
4619 // v2i32:casty = bitcast y:i64
4620 //
4621 // v2i64 = bitcast
4622 // (v4i32 insert_vector_elt
4623 // (v4i32 insert_vector_elt v4i32:castx,
4624 // (extract_vector_elt casty, 0), 2 * z),
4625 // (extract_vector_elt casty, 1), (2 * z + 1))
4626
4627 assert(NVT.isVector() && OVT.getSizeInBits() == NVT.getSizeInBits() &&
4628 "Invalid promote type for insert_vector_elt");
4629 assert(NewEltVT.bitsLT(EltVT) && "not handled");
4630
4631 MVT MidVT = getPromotedVectorElementType(TLI, EltVT, NewEltVT);
4632 unsigned NewEltsPerOldElt = MidVT.getVectorNumElements();
4633
4634 SDValue Val = Node->getOperand(1);
4635 SDValue Idx = Node->getOperand(2);
4636 EVT IdxVT = Idx.getValueType();
4637 SDLoc SL(Node);
4638
4639 SDValue Factor = DAG.getConstant(NewEltsPerOldElt, SDLoc(), IdxVT);
4640 SDValue NewBaseIdx = DAG.getNode(ISD::MUL, SL, IdxVT, Idx, Factor);
4641
4642 SDValue CastVec = DAG.getNode(ISD::BITCAST, SL, NVT, Node->getOperand(0));
4643 SDValue CastVal = DAG.getNode(ISD::BITCAST, SL, MidVT, Val);
4644
4645 SDValue NewVec = CastVec;
4646 for (unsigned I = 0; I < NewEltsPerOldElt; ++I) {
4647 SDValue IdxOffset = DAG.getConstant(I, SL, IdxVT);
4648 SDValue InEltIdx = DAG.getNode(ISD::ADD, SL, IdxVT, NewBaseIdx, IdxOffset);
4649
4650 SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, NewEltVT,
4651 CastVal, IdxOffset);
4652
4653 NewVec = DAG.getNode(ISD::INSERT_VECTOR_ELT, SL, NVT,
4654 NewVec, Elt, InEltIdx);
4655 }
4656
4657 Results.push_back(DAG.getNode(ISD::BITCAST, SL, OVT, NewVec));
4658 break;
4659 }
4660 case ISD::SCALAR_TO_VECTOR: {
4661 MVT EltVT = OVT.getVectorElementType();
4662 MVT NewEltVT = NVT.getVectorElementType();
4663
4664 // Handle bitcasts to different vector type with the same total bit size.
4665 //
4666 // e.g. v2i64 = scalar_to_vector x:i64
4667 // =>
4668 // concat_vectors (v2i32 bitcast x:i64), (v2i32 undef)
4669 //
4670
4671 MVT MidVT = getPromotedVectorElementType(TLI, EltVT, NewEltVT);
4672 SDValue Val = Node->getOperand(0);
4673 SDLoc SL(Node);
4674
4675 SDValue CastVal = DAG.getNode(ISD::BITCAST, SL, MidVT, Val);
4676 SDValue Undef = DAG.getUNDEF(MidVT);
4677
4678 SmallVector<SDValue, 8> NewElts;
4679 NewElts.push_back(CastVal);
4680 for (unsigned I = 1, NElts = OVT.getVectorNumElements(); I != NElts; ++I)
4681 NewElts.push_back(Undef);
4682
4683 SDValue Concat = DAG.getNode(ISD::CONCAT_VECTORS, SL, NVT, NewElts);
4684 SDValue CvtVec = DAG.getNode(ISD::BITCAST, SL, OVT, Concat);
4685 Results.push_back(CvtVec);
4686 break;
4687 }
4688 case ISD::ATOMIC_SWAP: {
4689 AtomicSDNode *AM = cast<AtomicSDNode>(Node);
4690 SDLoc SL(Node);
4691 SDValue CastVal = DAG.getNode(ISD::BITCAST, SL, NVT, AM->getVal());
4692 assert(NVT.getSizeInBits() == OVT.getSizeInBits() &&
4693 "unexpected promotion type");
4694 assert(AM->getMemoryVT().getSizeInBits() == NVT.getSizeInBits() &&
4695 "unexpected atomic_swap with illegal type");
4696
4697 SDValue NewAtomic
4698 = DAG.getAtomic(ISD::ATOMIC_SWAP, SL, NVT,
4699 DAG.getVTList(NVT, MVT::Other),
4700 { AM->getChain(), AM->getBasePtr(), CastVal },
4701 AM->getMemOperand());
4702 Results.push_back(DAG.getNode(ISD::BITCAST, SL, OVT, NewAtomic));
4703 Results.push_back(NewAtomic.getValue(1));
4704 break;
4705 }
4706 }
4707
4708 // Replace the original node with the legalized result.
4709 if (!Results.empty()) {
4710 LLVM_DEBUG(dbgs() << "Successfully promoted node\n");
4711 ReplaceNode(Node, Results.data());
4712 } else
4713 LLVM_DEBUG(dbgs() << "Could not promote node\n");
4714 }
4715
4716 /// This is the entry point for the file.
Legalize()4717 void SelectionDAG::Legalize() {
4718 AssignTopologicalOrder();
4719
4720 SmallPtrSet<SDNode *, 16> LegalizedNodes;
4721 // Use a delete listener to remove nodes which were deleted during
4722 // legalization from LegalizeNodes. This is needed to handle the situation
4723 // where a new node is allocated by the object pool to the same address of a
4724 // previously deleted node.
4725 DAGNodeDeletedListener DeleteListener(
4726 *this,
4727 [&LegalizedNodes](SDNode *N, SDNode *E) { LegalizedNodes.erase(N); });
4728
4729 SelectionDAGLegalize Legalizer(*this, LegalizedNodes);
4730
4731 // Visit all the nodes. We start in topological order, so that we see
4732 // nodes with their original operands intact. Legalization can produce
4733 // new nodes which may themselves need to be legalized. Iterate until all
4734 // nodes have been legalized.
4735 while (true) {
4736 bool AnyLegalized = false;
4737 for (auto NI = allnodes_end(); NI != allnodes_begin();) {
4738 --NI;
4739
4740 SDNode *N = &*NI;
4741 if (N->use_empty() && N != getRoot().getNode()) {
4742 ++NI;
4743 DeleteNode(N);
4744 continue;
4745 }
4746
4747 if (LegalizedNodes.insert(N).second) {
4748 AnyLegalized = true;
4749 Legalizer.LegalizeOp(N);
4750
4751 if (N->use_empty() && N != getRoot().getNode()) {
4752 ++NI;
4753 DeleteNode(N);
4754 }
4755 }
4756 }
4757 if (!AnyLegalized)
4758 break;
4759
4760 }
4761
4762 // Remove dead nodes now.
4763 RemoveDeadNodes();
4764 }
4765
LegalizeOp(SDNode * N,SmallSetVector<SDNode *,16> & UpdatedNodes)4766 bool SelectionDAG::LegalizeOp(SDNode *N,
4767 SmallSetVector<SDNode *, 16> &UpdatedNodes) {
4768 SmallPtrSet<SDNode *, 16> LegalizedNodes;
4769 SelectionDAGLegalize Legalizer(*this, LegalizedNodes, &UpdatedNodes);
4770
4771 // Directly insert the node in question, and legalize it. This will recurse
4772 // as needed through operands.
4773 LegalizedNodes.insert(N);
4774 Legalizer.LegalizeOp(N);
4775
4776 return LegalizedNodes.count(N);
4777 }
4778