1 //===-- WinEHPrepare - Prepare exception handling for code generation ---===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This pass lowers LLVM IR exception handling into something closer to what the
10 // backend wants for functions using a personality function from a runtime
11 // provided by MSVC. Functions with other personality functions are left alone
12 // and may be prepared by other passes. In particular, all supported MSVC
13 // personality functions require cleanup code to be outlined, and the C++
14 // personality requires catch handler code to be outlined.
15 //
16 //===----------------------------------------------------------------------===//
17
18 #include "llvm/ADT/DenseMap.h"
19 #include "llvm/ADT/MapVector.h"
20 #include "llvm/ADT/STLExtras.h"
21 #include "llvm/Analysis/CFG.h"
22 #include "llvm/Analysis/EHPersonalities.h"
23 #include "llvm/CodeGen/MachineBasicBlock.h"
24 #include "llvm/CodeGen/Passes.h"
25 #include "llvm/CodeGen/WinEHFuncInfo.h"
26 #include "llvm/IR/Verifier.h"
27 #include "llvm/InitializePasses.h"
28 #include "llvm/MC/MCSymbol.h"
29 #include "llvm/Pass.h"
30 #include "llvm/Support/CommandLine.h"
31 #include "llvm/Support/Debug.h"
32 #include "llvm/Support/raw_ostream.h"
33 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
34 #include "llvm/Transforms/Utils/Cloning.h"
35 #include "llvm/Transforms/Utils/Local.h"
36 #include "llvm/Transforms/Utils/SSAUpdater.h"
37
38 using namespace llvm;
39
40 #define DEBUG_TYPE "winehprepare"
41
42 static cl::opt<bool> DisableDemotion(
43 "disable-demotion", cl::Hidden,
44 cl::desc(
45 "Clone multicolor basic blocks but do not demote cross scopes"),
46 cl::init(false));
47
48 static cl::opt<bool> DisableCleanups(
49 "disable-cleanups", cl::Hidden,
50 cl::desc("Do not remove implausible terminators or other similar cleanups"),
51 cl::init(false));
52
53 static cl::opt<bool> DemoteCatchSwitchPHIOnlyOpt(
54 "demote-catchswitch-only", cl::Hidden,
55 cl::desc("Demote catchswitch BBs only (for wasm EH)"), cl::init(false));
56
57 namespace {
58
59 class WinEHPrepare : public FunctionPass {
60 public:
61 static char ID; // Pass identification, replacement for typeid.
WinEHPrepare(bool DemoteCatchSwitchPHIOnly=false)62 WinEHPrepare(bool DemoteCatchSwitchPHIOnly = false)
63 : FunctionPass(ID), DemoteCatchSwitchPHIOnly(DemoteCatchSwitchPHIOnly) {}
64
65 bool runOnFunction(Function &Fn) override;
66
67 bool doFinalization(Module &M) override;
68
69 void getAnalysisUsage(AnalysisUsage &AU) const override;
70
getPassName() const71 StringRef getPassName() const override {
72 return "Windows exception handling preparation";
73 }
74
75 private:
76 void insertPHIStores(PHINode *OriginalPHI, AllocaInst *SpillSlot);
77 void
78 insertPHIStore(BasicBlock *PredBlock, Value *PredVal, AllocaInst *SpillSlot,
79 SmallVectorImpl<std::pair<BasicBlock *, Value *>> &Worklist);
80 AllocaInst *insertPHILoads(PHINode *PN, Function &F);
81 void replaceUseWithLoad(Value *V, Use &U, AllocaInst *&SpillSlot,
82 DenseMap<BasicBlock *, Value *> &Loads, Function &F);
83 bool prepareExplicitEH(Function &F);
84 void colorFunclets(Function &F);
85
86 void demotePHIsOnFunclets(Function &F, bool DemoteCatchSwitchPHIOnly);
87 void cloneCommonBlocks(Function &F);
88 void removeImplausibleInstructions(Function &F);
89 void cleanupPreparedFunclets(Function &F);
90 void verifyPreparedFunclets(Function &F);
91
92 bool DemoteCatchSwitchPHIOnly;
93
94 // All fields are reset by runOnFunction.
95 EHPersonality Personality = EHPersonality::Unknown;
96
97 const DataLayout *DL = nullptr;
98 DenseMap<BasicBlock *, ColorVector> BlockColors;
99 MapVector<BasicBlock *, std::vector<BasicBlock *>> FuncletBlocks;
100 };
101
102 } // end anonymous namespace
103
104 char WinEHPrepare::ID = 0;
105 INITIALIZE_PASS(WinEHPrepare, DEBUG_TYPE, "Prepare Windows exceptions",
106 false, false)
107
createWinEHPass(bool DemoteCatchSwitchPHIOnly)108 FunctionPass *llvm::createWinEHPass(bool DemoteCatchSwitchPHIOnly) {
109 return new WinEHPrepare(DemoteCatchSwitchPHIOnly);
110 }
111
runOnFunction(Function & Fn)112 bool WinEHPrepare::runOnFunction(Function &Fn) {
113 if (!Fn.hasPersonalityFn())
114 return false;
115
116 // Classify the personality to see what kind of preparation we need.
117 Personality = classifyEHPersonality(Fn.getPersonalityFn());
118
119 // Do nothing if this is not a scope-based personality.
120 if (!isScopedEHPersonality(Personality))
121 return false;
122
123 DL = &Fn.getParent()->getDataLayout();
124 return prepareExplicitEH(Fn);
125 }
126
doFinalization(Module & M)127 bool WinEHPrepare::doFinalization(Module &M) { return false; }
128
getAnalysisUsage(AnalysisUsage & AU) const129 void WinEHPrepare::getAnalysisUsage(AnalysisUsage &AU) const {}
130
addUnwindMapEntry(WinEHFuncInfo & FuncInfo,int ToState,const BasicBlock * BB)131 static int addUnwindMapEntry(WinEHFuncInfo &FuncInfo, int ToState,
132 const BasicBlock *BB) {
133 CxxUnwindMapEntry UME;
134 UME.ToState = ToState;
135 UME.Cleanup = BB;
136 FuncInfo.CxxUnwindMap.push_back(UME);
137 return FuncInfo.getLastStateNumber();
138 }
139
addTryBlockMapEntry(WinEHFuncInfo & FuncInfo,int TryLow,int TryHigh,int CatchHigh,ArrayRef<const CatchPadInst * > Handlers)140 static void addTryBlockMapEntry(WinEHFuncInfo &FuncInfo, int TryLow,
141 int TryHigh, int CatchHigh,
142 ArrayRef<const CatchPadInst *> Handlers) {
143 WinEHTryBlockMapEntry TBME;
144 TBME.TryLow = TryLow;
145 TBME.TryHigh = TryHigh;
146 TBME.CatchHigh = CatchHigh;
147 assert(TBME.TryLow <= TBME.TryHigh);
148 for (const CatchPadInst *CPI : Handlers) {
149 WinEHHandlerType HT;
150 Constant *TypeInfo = cast<Constant>(CPI->getArgOperand(0));
151 if (TypeInfo->isNullValue())
152 HT.TypeDescriptor = nullptr;
153 else
154 HT.TypeDescriptor = cast<GlobalVariable>(TypeInfo->stripPointerCasts());
155 HT.Adjectives = cast<ConstantInt>(CPI->getArgOperand(1))->getZExtValue();
156 HT.Handler = CPI->getParent();
157 if (auto *AI =
158 dyn_cast<AllocaInst>(CPI->getArgOperand(2)->stripPointerCasts()))
159 HT.CatchObj.Alloca = AI;
160 else
161 HT.CatchObj.Alloca = nullptr;
162 TBME.HandlerArray.push_back(HT);
163 }
164 FuncInfo.TryBlockMap.push_back(TBME);
165 }
166
getCleanupRetUnwindDest(const CleanupPadInst * CleanupPad)167 static BasicBlock *getCleanupRetUnwindDest(const CleanupPadInst *CleanupPad) {
168 for (const User *U : CleanupPad->users())
169 if (const auto *CRI = dyn_cast<CleanupReturnInst>(U))
170 return CRI->getUnwindDest();
171 return nullptr;
172 }
173
calculateStateNumbersForInvokes(const Function * Fn,WinEHFuncInfo & FuncInfo)174 static void calculateStateNumbersForInvokes(const Function *Fn,
175 WinEHFuncInfo &FuncInfo) {
176 auto *F = const_cast<Function *>(Fn);
177 DenseMap<BasicBlock *, ColorVector> BlockColors = colorEHFunclets(*F);
178 for (BasicBlock &BB : *F) {
179 auto *II = dyn_cast<InvokeInst>(BB.getTerminator());
180 if (!II)
181 continue;
182
183 auto &BBColors = BlockColors[&BB];
184 assert(BBColors.size() == 1 && "multi-color BB not removed by preparation");
185 BasicBlock *FuncletEntryBB = BBColors.front();
186
187 BasicBlock *FuncletUnwindDest;
188 auto *FuncletPad =
189 dyn_cast<FuncletPadInst>(FuncletEntryBB->getFirstNonPHI());
190 assert(FuncletPad || FuncletEntryBB == &Fn->getEntryBlock());
191 if (!FuncletPad)
192 FuncletUnwindDest = nullptr;
193 else if (auto *CatchPad = dyn_cast<CatchPadInst>(FuncletPad))
194 FuncletUnwindDest = CatchPad->getCatchSwitch()->getUnwindDest();
195 else if (auto *CleanupPad = dyn_cast<CleanupPadInst>(FuncletPad))
196 FuncletUnwindDest = getCleanupRetUnwindDest(CleanupPad);
197 else
198 llvm_unreachable("unexpected funclet pad!");
199
200 BasicBlock *InvokeUnwindDest = II->getUnwindDest();
201 int BaseState = -1;
202 if (FuncletUnwindDest == InvokeUnwindDest) {
203 auto BaseStateI = FuncInfo.FuncletBaseStateMap.find(FuncletPad);
204 if (BaseStateI != FuncInfo.FuncletBaseStateMap.end())
205 BaseState = BaseStateI->second;
206 }
207
208 if (BaseState != -1) {
209 FuncInfo.InvokeStateMap[II] = BaseState;
210 } else {
211 Instruction *PadInst = InvokeUnwindDest->getFirstNonPHI();
212 assert(FuncInfo.EHPadStateMap.count(PadInst) && "EH Pad has no state!");
213 FuncInfo.InvokeStateMap[II] = FuncInfo.EHPadStateMap[PadInst];
214 }
215 }
216 }
217
218 // Given BB which ends in an unwind edge, return the EHPad that this BB belongs
219 // to. If the unwind edge came from an invoke, return null.
getEHPadFromPredecessor(const BasicBlock * BB,Value * ParentPad)220 static const BasicBlock *getEHPadFromPredecessor(const BasicBlock *BB,
221 Value *ParentPad) {
222 const Instruction *TI = BB->getTerminator();
223 if (isa<InvokeInst>(TI))
224 return nullptr;
225 if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(TI)) {
226 if (CatchSwitch->getParentPad() != ParentPad)
227 return nullptr;
228 return BB;
229 }
230 assert(!TI->isEHPad() && "unexpected EHPad!");
231 auto *CleanupPad = cast<CleanupReturnInst>(TI)->getCleanupPad();
232 if (CleanupPad->getParentPad() != ParentPad)
233 return nullptr;
234 return CleanupPad->getParent();
235 }
236
calculateCXXStateNumbers(WinEHFuncInfo & FuncInfo,const Instruction * FirstNonPHI,int ParentState)237 static void calculateCXXStateNumbers(WinEHFuncInfo &FuncInfo,
238 const Instruction *FirstNonPHI,
239 int ParentState) {
240 const BasicBlock *BB = FirstNonPHI->getParent();
241 assert(BB->isEHPad() && "not a funclet!");
242
243 if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(FirstNonPHI)) {
244 assert(FuncInfo.EHPadStateMap.count(CatchSwitch) == 0 &&
245 "shouldn't revist catch funclets!");
246
247 SmallVector<const CatchPadInst *, 2> Handlers;
248 for (const BasicBlock *CatchPadBB : CatchSwitch->handlers()) {
249 auto *CatchPad = cast<CatchPadInst>(CatchPadBB->getFirstNonPHI());
250 Handlers.push_back(CatchPad);
251 }
252 int TryLow = addUnwindMapEntry(FuncInfo, ParentState, nullptr);
253 FuncInfo.EHPadStateMap[CatchSwitch] = TryLow;
254 for (const BasicBlock *PredBlock : predecessors(BB))
255 if ((PredBlock = getEHPadFromPredecessor(PredBlock,
256 CatchSwitch->getParentPad())))
257 calculateCXXStateNumbers(FuncInfo, PredBlock->getFirstNonPHI(),
258 TryLow);
259 int CatchLow = addUnwindMapEntry(FuncInfo, ParentState, nullptr);
260
261 // catchpads are separate funclets in C++ EH due to the way rethrow works.
262 int TryHigh = CatchLow - 1;
263 for (const auto *CatchPad : Handlers) {
264 FuncInfo.FuncletBaseStateMap[CatchPad] = CatchLow;
265 for (const User *U : CatchPad->users()) {
266 const auto *UserI = cast<Instruction>(U);
267 if (auto *InnerCatchSwitch = dyn_cast<CatchSwitchInst>(UserI)) {
268 BasicBlock *UnwindDest = InnerCatchSwitch->getUnwindDest();
269 if (!UnwindDest || UnwindDest == CatchSwitch->getUnwindDest())
270 calculateCXXStateNumbers(FuncInfo, UserI, CatchLow);
271 }
272 if (auto *InnerCleanupPad = dyn_cast<CleanupPadInst>(UserI)) {
273 BasicBlock *UnwindDest = getCleanupRetUnwindDest(InnerCleanupPad);
274 // If a nested cleanup pad reports a null unwind destination and the
275 // enclosing catch pad doesn't it must be post-dominated by an
276 // unreachable instruction.
277 if (!UnwindDest || UnwindDest == CatchSwitch->getUnwindDest())
278 calculateCXXStateNumbers(FuncInfo, UserI, CatchLow);
279 }
280 }
281 }
282 int CatchHigh = FuncInfo.getLastStateNumber();
283 addTryBlockMapEntry(FuncInfo, TryLow, TryHigh, CatchHigh, Handlers);
284 LLVM_DEBUG(dbgs() << "TryLow[" << BB->getName() << "]: " << TryLow << '\n');
285 LLVM_DEBUG(dbgs() << "TryHigh[" << BB->getName() << "]: " << TryHigh
286 << '\n');
287 LLVM_DEBUG(dbgs() << "CatchHigh[" << BB->getName() << "]: " << CatchHigh
288 << '\n');
289 } else {
290 auto *CleanupPad = cast<CleanupPadInst>(FirstNonPHI);
291
292 // It's possible for a cleanup to be visited twice: it might have multiple
293 // cleanupret instructions.
294 if (FuncInfo.EHPadStateMap.count(CleanupPad))
295 return;
296
297 int CleanupState = addUnwindMapEntry(FuncInfo, ParentState, BB);
298 FuncInfo.EHPadStateMap[CleanupPad] = CleanupState;
299 LLVM_DEBUG(dbgs() << "Assigning state #" << CleanupState << " to BB "
300 << BB->getName() << '\n');
301 for (const BasicBlock *PredBlock : predecessors(BB)) {
302 if ((PredBlock = getEHPadFromPredecessor(PredBlock,
303 CleanupPad->getParentPad()))) {
304 calculateCXXStateNumbers(FuncInfo, PredBlock->getFirstNonPHI(),
305 CleanupState);
306 }
307 }
308 for (const User *U : CleanupPad->users()) {
309 const auto *UserI = cast<Instruction>(U);
310 if (UserI->isEHPad())
311 report_fatal_error("Cleanup funclets for the MSVC++ personality cannot "
312 "contain exceptional actions");
313 }
314 }
315 }
316
addSEHExcept(WinEHFuncInfo & FuncInfo,int ParentState,const Function * Filter,const BasicBlock * Handler)317 static int addSEHExcept(WinEHFuncInfo &FuncInfo, int ParentState,
318 const Function *Filter, const BasicBlock *Handler) {
319 SEHUnwindMapEntry Entry;
320 Entry.ToState = ParentState;
321 Entry.IsFinally = false;
322 Entry.Filter = Filter;
323 Entry.Handler = Handler;
324 FuncInfo.SEHUnwindMap.push_back(Entry);
325 return FuncInfo.SEHUnwindMap.size() - 1;
326 }
327
addSEHFinally(WinEHFuncInfo & FuncInfo,int ParentState,const BasicBlock * Handler)328 static int addSEHFinally(WinEHFuncInfo &FuncInfo, int ParentState,
329 const BasicBlock *Handler) {
330 SEHUnwindMapEntry Entry;
331 Entry.ToState = ParentState;
332 Entry.IsFinally = true;
333 Entry.Filter = nullptr;
334 Entry.Handler = Handler;
335 FuncInfo.SEHUnwindMap.push_back(Entry);
336 return FuncInfo.SEHUnwindMap.size() - 1;
337 }
338
calculateSEHStateNumbers(WinEHFuncInfo & FuncInfo,const Instruction * FirstNonPHI,int ParentState)339 static void calculateSEHStateNumbers(WinEHFuncInfo &FuncInfo,
340 const Instruction *FirstNonPHI,
341 int ParentState) {
342 const BasicBlock *BB = FirstNonPHI->getParent();
343 assert(BB->isEHPad() && "no a funclet!");
344
345 if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(FirstNonPHI)) {
346 assert(FuncInfo.EHPadStateMap.count(CatchSwitch) == 0 &&
347 "shouldn't revist catch funclets!");
348
349 // Extract the filter function and the __except basic block and create a
350 // state for them.
351 assert(CatchSwitch->getNumHandlers() == 1 &&
352 "SEH doesn't have multiple handlers per __try");
353 const auto *CatchPad =
354 cast<CatchPadInst>((*CatchSwitch->handler_begin())->getFirstNonPHI());
355 const BasicBlock *CatchPadBB = CatchPad->getParent();
356 const Constant *FilterOrNull =
357 cast<Constant>(CatchPad->getArgOperand(0)->stripPointerCasts());
358 const Function *Filter = dyn_cast<Function>(FilterOrNull);
359 assert((Filter || FilterOrNull->isNullValue()) &&
360 "unexpected filter value");
361 int TryState = addSEHExcept(FuncInfo, ParentState, Filter, CatchPadBB);
362
363 // Everything in the __try block uses TryState as its parent state.
364 FuncInfo.EHPadStateMap[CatchSwitch] = TryState;
365 LLVM_DEBUG(dbgs() << "Assigning state #" << TryState << " to BB "
366 << CatchPadBB->getName() << '\n');
367 for (const BasicBlock *PredBlock : predecessors(BB))
368 if ((PredBlock = getEHPadFromPredecessor(PredBlock,
369 CatchSwitch->getParentPad())))
370 calculateSEHStateNumbers(FuncInfo, PredBlock->getFirstNonPHI(),
371 TryState);
372
373 // Everything in the __except block unwinds to ParentState, just like code
374 // outside the __try.
375 for (const User *U : CatchPad->users()) {
376 const auto *UserI = cast<Instruction>(U);
377 if (auto *InnerCatchSwitch = dyn_cast<CatchSwitchInst>(UserI)) {
378 BasicBlock *UnwindDest = InnerCatchSwitch->getUnwindDest();
379 if (!UnwindDest || UnwindDest == CatchSwitch->getUnwindDest())
380 calculateSEHStateNumbers(FuncInfo, UserI, ParentState);
381 }
382 if (auto *InnerCleanupPad = dyn_cast<CleanupPadInst>(UserI)) {
383 BasicBlock *UnwindDest = getCleanupRetUnwindDest(InnerCleanupPad);
384 // If a nested cleanup pad reports a null unwind destination and the
385 // enclosing catch pad doesn't it must be post-dominated by an
386 // unreachable instruction.
387 if (!UnwindDest || UnwindDest == CatchSwitch->getUnwindDest())
388 calculateSEHStateNumbers(FuncInfo, UserI, ParentState);
389 }
390 }
391 } else {
392 auto *CleanupPad = cast<CleanupPadInst>(FirstNonPHI);
393
394 // It's possible for a cleanup to be visited twice: it might have multiple
395 // cleanupret instructions.
396 if (FuncInfo.EHPadStateMap.count(CleanupPad))
397 return;
398
399 int CleanupState = addSEHFinally(FuncInfo, ParentState, BB);
400 FuncInfo.EHPadStateMap[CleanupPad] = CleanupState;
401 LLVM_DEBUG(dbgs() << "Assigning state #" << CleanupState << " to BB "
402 << BB->getName() << '\n');
403 for (const BasicBlock *PredBlock : predecessors(BB))
404 if ((PredBlock =
405 getEHPadFromPredecessor(PredBlock, CleanupPad->getParentPad())))
406 calculateSEHStateNumbers(FuncInfo, PredBlock->getFirstNonPHI(),
407 CleanupState);
408 for (const User *U : CleanupPad->users()) {
409 const auto *UserI = cast<Instruction>(U);
410 if (UserI->isEHPad())
411 report_fatal_error("Cleanup funclets for the SEH personality cannot "
412 "contain exceptional actions");
413 }
414 }
415 }
416
isTopLevelPadForMSVC(const Instruction * EHPad)417 static bool isTopLevelPadForMSVC(const Instruction *EHPad) {
418 if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(EHPad))
419 return isa<ConstantTokenNone>(CatchSwitch->getParentPad()) &&
420 CatchSwitch->unwindsToCaller();
421 if (auto *CleanupPad = dyn_cast<CleanupPadInst>(EHPad))
422 return isa<ConstantTokenNone>(CleanupPad->getParentPad()) &&
423 getCleanupRetUnwindDest(CleanupPad) == nullptr;
424 if (isa<CatchPadInst>(EHPad))
425 return false;
426 llvm_unreachable("unexpected EHPad!");
427 }
428
calculateSEHStateNumbers(const Function * Fn,WinEHFuncInfo & FuncInfo)429 void llvm::calculateSEHStateNumbers(const Function *Fn,
430 WinEHFuncInfo &FuncInfo) {
431 // Don't compute state numbers twice.
432 if (!FuncInfo.SEHUnwindMap.empty())
433 return;
434
435 for (const BasicBlock &BB : *Fn) {
436 if (!BB.isEHPad())
437 continue;
438 const Instruction *FirstNonPHI = BB.getFirstNonPHI();
439 if (!isTopLevelPadForMSVC(FirstNonPHI))
440 continue;
441 ::calculateSEHStateNumbers(FuncInfo, FirstNonPHI, -1);
442 }
443
444 calculateStateNumbersForInvokes(Fn, FuncInfo);
445 }
446
calculateWinCXXEHStateNumbers(const Function * Fn,WinEHFuncInfo & FuncInfo)447 void llvm::calculateWinCXXEHStateNumbers(const Function *Fn,
448 WinEHFuncInfo &FuncInfo) {
449 // Return if it's already been done.
450 if (!FuncInfo.EHPadStateMap.empty())
451 return;
452
453 for (const BasicBlock &BB : *Fn) {
454 if (!BB.isEHPad())
455 continue;
456 const Instruction *FirstNonPHI = BB.getFirstNonPHI();
457 if (!isTopLevelPadForMSVC(FirstNonPHI))
458 continue;
459 calculateCXXStateNumbers(FuncInfo, FirstNonPHI, -1);
460 }
461
462 calculateStateNumbersForInvokes(Fn, FuncInfo);
463 }
464
addClrEHHandler(WinEHFuncInfo & FuncInfo,int HandlerParentState,int TryParentState,ClrHandlerType HandlerType,uint32_t TypeToken,const BasicBlock * Handler)465 static int addClrEHHandler(WinEHFuncInfo &FuncInfo, int HandlerParentState,
466 int TryParentState, ClrHandlerType HandlerType,
467 uint32_t TypeToken, const BasicBlock *Handler) {
468 ClrEHUnwindMapEntry Entry;
469 Entry.HandlerParentState = HandlerParentState;
470 Entry.TryParentState = TryParentState;
471 Entry.Handler = Handler;
472 Entry.HandlerType = HandlerType;
473 Entry.TypeToken = TypeToken;
474 FuncInfo.ClrEHUnwindMap.push_back(Entry);
475 return FuncInfo.ClrEHUnwindMap.size() - 1;
476 }
477
calculateClrEHStateNumbers(const Function * Fn,WinEHFuncInfo & FuncInfo)478 void llvm::calculateClrEHStateNumbers(const Function *Fn,
479 WinEHFuncInfo &FuncInfo) {
480 // Return if it's already been done.
481 if (!FuncInfo.EHPadStateMap.empty())
482 return;
483
484 // This numbering assigns one state number to each catchpad and cleanuppad.
485 // It also computes two tree-like relations over states:
486 // 1) Each state has a "HandlerParentState", which is the state of the next
487 // outer handler enclosing this state's handler (same as nearest ancestor
488 // per the ParentPad linkage on EH pads, but skipping over catchswitches).
489 // 2) Each state has a "TryParentState", which:
490 // a) for a catchpad that's not the last handler on its catchswitch, is
491 // the state of the next catchpad on that catchswitch
492 // b) for all other pads, is the state of the pad whose try region is the
493 // next outer try region enclosing this state's try region. The "try
494 // regions are not present as such in the IR, but will be inferred
495 // based on the placement of invokes and pads which reach each other
496 // by exceptional exits
497 // Catchswitches do not get their own states, but each gets mapped to the
498 // state of its first catchpad.
499
500 // Step one: walk down from outermost to innermost funclets, assigning each
501 // catchpad and cleanuppad a state number. Add an entry to the
502 // ClrEHUnwindMap for each state, recording its HandlerParentState and
503 // handler attributes. Record the TryParentState as well for each catchpad
504 // that's not the last on its catchswitch, but initialize all other entries'
505 // TryParentStates to a sentinel -1 value that the next pass will update.
506
507 // Seed a worklist with pads that have no parent.
508 SmallVector<std::pair<const Instruction *, int>, 8> Worklist;
509 for (const BasicBlock &BB : *Fn) {
510 const Instruction *FirstNonPHI = BB.getFirstNonPHI();
511 const Value *ParentPad;
512 if (const auto *CPI = dyn_cast<CleanupPadInst>(FirstNonPHI))
513 ParentPad = CPI->getParentPad();
514 else if (const auto *CSI = dyn_cast<CatchSwitchInst>(FirstNonPHI))
515 ParentPad = CSI->getParentPad();
516 else
517 continue;
518 if (isa<ConstantTokenNone>(ParentPad))
519 Worklist.emplace_back(FirstNonPHI, -1);
520 }
521
522 // Use the worklist to visit all pads, from outer to inner. Record
523 // HandlerParentState for all pads. Record TryParentState only for catchpads
524 // that aren't the last on their catchswitch (setting all other entries'
525 // TryParentStates to an initial value of -1). This loop is also responsible
526 // for setting the EHPadStateMap entry for all catchpads, cleanuppads, and
527 // catchswitches.
528 while (!Worklist.empty()) {
529 const Instruction *Pad;
530 int HandlerParentState;
531 std::tie(Pad, HandlerParentState) = Worklist.pop_back_val();
532
533 if (const auto *Cleanup = dyn_cast<CleanupPadInst>(Pad)) {
534 // Create the entry for this cleanup with the appropriate handler
535 // properties. Finally and fault handlers are distinguished by arity.
536 ClrHandlerType HandlerType =
537 (Cleanup->getNumArgOperands() ? ClrHandlerType::Fault
538 : ClrHandlerType::Finally);
539 int CleanupState = addClrEHHandler(FuncInfo, HandlerParentState, -1,
540 HandlerType, 0, Pad->getParent());
541 // Queue any child EH pads on the worklist.
542 for (const User *U : Cleanup->users())
543 if (const auto *I = dyn_cast<Instruction>(U))
544 if (I->isEHPad())
545 Worklist.emplace_back(I, CleanupState);
546 // Remember this pad's state.
547 FuncInfo.EHPadStateMap[Cleanup] = CleanupState;
548 } else {
549 // Walk the handlers of this catchswitch in reverse order since all but
550 // the last need to set the following one as its TryParentState.
551 const auto *CatchSwitch = cast<CatchSwitchInst>(Pad);
552 int CatchState = -1, FollowerState = -1;
553 SmallVector<const BasicBlock *, 4> CatchBlocks(CatchSwitch->handlers());
554 for (auto CBI = CatchBlocks.rbegin(), CBE = CatchBlocks.rend();
555 CBI != CBE; ++CBI, FollowerState = CatchState) {
556 const BasicBlock *CatchBlock = *CBI;
557 // Create the entry for this catch with the appropriate handler
558 // properties.
559 const auto *Catch = cast<CatchPadInst>(CatchBlock->getFirstNonPHI());
560 uint32_t TypeToken = static_cast<uint32_t>(
561 cast<ConstantInt>(Catch->getArgOperand(0))->getZExtValue());
562 CatchState =
563 addClrEHHandler(FuncInfo, HandlerParentState, FollowerState,
564 ClrHandlerType::Catch, TypeToken, CatchBlock);
565 // Queue any child EH pads on the worklist.
566 for (const User *U : Catch->users())
567 if (const auto *I = dyn_cast<Instruction>(U))
568 if (I->isEHPad())
569 Worklist.emplace_back(I, CatchState);
570 // Remember this catch's state.
571 FuncInfo.EHPadStateMap[Catch] = CatchState;
572 }
573 // Associate the catchswitch with the state of its first catch.
574 assert(CatchSwitch->getNumHandlers());
575 FuncInfo.EHPadStateMap[CatchSwitch] = CatchState;
576 }
577 }
578
579 // Step two: record the TryParentState of each state. For cleanuppads that
580 // don't have cleanuprets, we may need to infer this from their child pads,
581 // so visit pads in descendant-most to ancestor-most order.
582 for (auto Entry = FuncInfo.ClrEHUnwindMap.rbegin(),
583 End = FuncInfo.ClrEHUnwindMap.rend();
584 Entry != End; ++Entry) {
585 const Instruction *Pad =
586 Entry->Handler.get<const BasicBlock *>()->getFirstNonPHI();
587 // For most pads, the TryParentState is the state associated with the
588 // unwind dest of exceptional exits from it.
589 const BasicBlock *UnwindDest;
590 if (const auto *Catch = dyn_cast<CatchPadInst>(Pad)) {
591 // If a catch is not the last in its catchswitch, its TryParentState is
592 // the state associated with the next catch in the switch, even though
593 // that's not the unwind dest of exceptions escaping the catch. Those
594 // cases were already assigned a TryParentState in the first pass, so
595 // skip them.
596 if (Entry->TryParentState != -1)
597 continue;
598 // Otherwise, get the unwind dest from the catchswitch.
599 UnwindDest = Catch->getCatchSwitch()->getUnwindDest();
600 } else {
601 const auto *Cleanup = cast<CleanupPadInst>(Pad);
602 UnwindDest = nullptr;
603 for (const User *U : Cleanup->users()) {
604 if (auto *CleanupRet = dyn_cast<CleanupReturnInst>(U)) {
605 // Common and unambiguous case -- cleanupret indicates cleanup's
606 // unwind dest.
607 UnwindDest = CleanupRet->getUnwindDest();
608 break;
609 }
610
611 // Get an unwind dest for the user
612 const BasicBlock *UserUnwindDest = nullptr;
613 if (auto *Invoke = dyn_cast<InvokeInst>(U)) {
614 UserUnwindDest = Invoke->getUnwindDest();
615 } else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(U)) {
616 UserUnwindDest = CatchSwitch->getUnwindDest();
617 } else if (auto *ChildCleanup = dyn_cast<CleanupPadInst>(U)) {
618 int UserState = FuncInfo.EHPadStateMap[ChildCleanup];
619 int UserUnwindState =
620 FuncInfo.ClrEHUnwindMap[UserState].TryParentState;
621 if (UserUnwindState != -1)
622 UserUnwindDest = FuncInfo.ClrEHUnwindMap[UserUnwindState]
623 .Handler.get<const BasicBlock *>();
624 }
625
626 // Not having an unwind dest for this user might indicate that it
627 // doesn't unwind, so can't be taken as proof that the cleanup itself
628 // may unwind to caller (see e.g. SimplifyUnreachable and
629 // RemoveUnwindEdge).
630 if (!UserUnwindDest)
631 continue;
632
633 // Now we have an unwind dest for the user, but we need to see if it
634 // unwinds all the way out of the cleanup or if it stays within it.
635 const Instruction *UserUnwindPad = UserUnwindDest->getFirstNonPHI();
636 const Value *UserUnwindParent;
637 if (auto *CSI = dyn_cast<CatchSwitchInst>(UserUnwindPad))
638 UserUnwindParent = CSI->getParentPad();
639 else
640 UserUnwindParent =
641 cast<CleanupPadInst>(UserUnwindPad)->getParentPad();
642
643 // The unwind stays within the cleanup iff it targets a child of the
644 // cleanup.
645 if (UserUnwindParent == Cleanup)
646 continue;
647
648 // This unwind exits the cleanup, so its dest is the cleanup's dest.
649 UnwindDest = UserUnwindDest;
650 break;
651 }
652 }
653
654 // Record the state of the unwind dest as the TryParentState.
655 int UnwindDestState;
656
657 // If UnwindDest is null at this point, either the pad in question can
658 // be exited by unwind to caller, or it cannot be exited by unwind. In
659 // either case, reporting such cases as unwinding to caller is correct.
660 // This can lead to EH tables that "look strange" -- if this pad's is in
661 // a parent funclet which has other children that do unwind to an enclosing
662 // pad, the try region for this pad will be missing the "duplicate" EH
663 // clause entries that you'd expect to see covering the whole parent. That
664 // should be benign, since the unwind never actually happens. If it were
665 // an issue, we could add a subsequent pass that pushes unwind dests down
666 // from parents that have them to children that appear to unwind to caller.
667 if (!UnwindDest) {
668 UnwindDestState = -1;
669 } else {
670 UnwindDestState = FuncInfo.EHPadStateMap[UnwindDest->getFirstNonPHI()];
671 }
672
673 Entry->TryParentState = UnwindDestState;
674 }
675
676 // Step three: transfer information from pads to invokes.
677 calculateStateNumbersForInvokes(Fn, FuncInfo);
678 }
679
colorFunclets(Function & F)680 void WinEHPrepare::colorFunclets(Function &F) {
681 BlockColors = colorEHFunclets(F);
682
683 // Invert the map from BB to colors to color to BBs.
684 for (BasicBlock &BB : F) {
685 ColorVector &Colors = BlockColors[&BB];
686 for (BasicBlock *Color : Colors)
687 FuncletBlocks[Color].push_back(&BB);
688 }
689 }
690
demotePHIsOnFunclets(Function & F,bool DemoteCatchSwitchPHIOnly)691 void WinEHPrepare::demotePHIsOnFunclets(Function &F,
692 bool DemoteCatchSwitchPHIOnly) {
693 // Strip PHI nodes off of EH pads.
694 SmallVector<PHINode *, 16> PHINodes;
695 for (Function::iterator FI = F.begin(), FE = F.end(); FI != FE;) {
696 BasicBlock *BB = &*FI++;
697 if (!BB->isEHPad())
698 continue;
699 if (DemoteCatchSwitchPHIOnly && !isa<CatchSwitchInst>(BB->getFirstNonPHI()))
700 continue;
701
702 for (BasicBlock::iterator BI = BB->begin(), BE = BB->end(); BI != BE;) {
703 Instruction *I = &*BI++;
704 auto *PN = dyn_cast<PHINode>(I);
705 // Stop at the first non-PHI.
706 if (!PN)
707 break;
708
709 AllocaInst *SpillSlot = insertPHILoads(PN, F);
710 if (SpillSlot)
711 insertPHIStores(PN, SpillSlot);
712
713 PHINodes.push_back(PN);
714 }
715 }
716
717 for (auto *PN : PHINodes) {
718 // There may be lingering uses on other EH PHIs being removed
719 PN->replaceAllUsesWith(UndefValue::get(PN->getType()));
720 PN->eraseFromParent();
721 }
722 }
723
cloneCommonBlocks(Function & F)724 void WinEHPrepare::cloneCommonBlocks(Function &F) {
725 // We need to clone all blocks which belong to multiple funclets. Values are
726 // remapped throughout the funclet to propagate both the new instructions
727 // *and* the new basic blocks themselves.
728 for (auto &Funclets : FuncletBlocks) {
729 BasicBlock *FuncletPadBB = Funclets.first;
730 std::vector<BasicBlock *> &BlocksInFunclet = Funclets.second;
731 Value *FuncletToken;
732 if (FuncletPadBB == &F.getEntryBlock())
733 FuncletToken = ConstantTokenNone::get(F.getContext());
734 else
735 FuncletToken = FuncletPadBB->getFirstNonPHI();
736
737 std::vector<std::pair<BasicBlock *, BasicBlock *>> Orig2Clone;
738 ValueToValueMapTy VMap;
739 for (BasicBlock *BB : BlocksInFunclet) {
740 ColorVector &ColorsForBB = BlockColors[BB];
741 // We don't need to do anything if the block is monochromatic.
742 size_t NumColorsForBB = ColorsForBB.size();
743 if (NumColorsForBB == 1)
744 continue;
745
746 DEBUG_WITH_TYPE("winehprepare-coloring",
747 dbgs() << " Cloning block \'" << BB->getName()
748 << "\' for funclet \'" << FuncletPadBB->getName()
749 << "\'.\n");
750
751 // Create a new basic block and copy instructions into it!
752 BasicBlock *CBB =
753 CloneBasicBlock(BB, VMap, Twine(".for.", FuncletPadBB->getName()));
754 // Insert the clone immediately after the original to ensure determinism
755 // and to keep the same relative ordering of any funclet's blocks.
756 CBB->insertInto(&F, BB->getNextNode());
757
758 // Add basic block mapping.
759 VMap[BB] = CBB;
760
761 // Record delta operations that we need to perform to our color mappings.
762 Orig2Clone.emplace_back(BB, CBB);
763 }
764
765 // If nothing was cloned, we're done cloning in this funclet.
766 if (Orig2Clone.empty())
767 continue;
768
769 // Update our color mappings to reflect that one block has lost a color and
770 // another has gained a color.
771 for (auto &BBMapping : Orig2Clone) {
772 BasicBlock *OldBlock = BBMapping.first;
773 BasicBlock *NewBlock = BBMapping.second;
774
775 BlocksInFunclet.push_back(NewBlock);
776 ColorVector &NewColors = BlockColors[NewBlock];
777 assert(NewColors.empty() && "A new block should only have one color!");
778 NewColors.push_back(FuncletPadBB);
779
780 DEBUG_WITH_TYPE("winehprepare-coloring",
781 dbgs() << " Assigned color \'" << FuncletPadBB->getName()
782 << "\' to block \'" << NewBlock->getName()
783 << "\'.\n");
784
785 BlocksInFunclet.erase(
786 std::remove(BlocksInFunclet.begin(), BlocksInFunclet.end(), OldBlock),
787 BlocksInFunclet.end());
788 ColorVector &OldColors = BlockColors[OldBlock];
789 OldColors.erase(
790 std::remove(OldColors.begin(), OldColors.end(), FuncletPadBB),
791 OldColors.end());
792
793 DEBUG_WITH_TYPE("winehprepare-coloring",
794 dbgs() << " Removed color \'" << FuncletPadBB->getName()
795 << "\' from block \'" << OldBlock->getName()
796 << "\'.\n");
797 }
798
799 // Loop over all of the instructions in this funclet, fixing up operand
800 // references as we go. This uses VMap to do all the hard work.
801 for (BasicBlock *BB : BlocksInFunclet)
802 // Loop over all instructions, fixing each one as we find it...
803 for (Instruction &I : *BB)
804 RemapInstruction(&I, VMap,
805 RF_IgnoreMissingLocals | RF_NoModuleLevelChanges);
806
807 // Catchrets targeting cloned blocks need to be updated separately from
808 // the loop above because they are not in the current funclet.
809 SmallVector<CatchReturnInst *, 2> FixupCatchrets;
810 for (auto &BBMapping : Orig2Clone) {
811 BasicBlock *OldBlock = BBMapping.first;
812 BasicBlock *NewBlock = BBMapping.second;
813
814 FixupCatchrets.clear();
815 for (BasicBlock *Pred : predecessors(OldBlock))
816 if (auto *CatchRet = dyn_cast<CatchReturnInst>(Pred->getTerminator()))
817 if (CatchRet->getCatchSwitchParentPad() == FuncletToken)
818 FixupCatchrets.push_back(CatchRet);
819
820 for (CatchReturnInst *CatchRet : FixupCatchrets)
821 CatchRet->setSuccessor(NewBlock);
822 }
823
824 auto UpdatePHIOnClonedBlock = [&](PHINode *PN, bool IsForOldBlock) {
825 unsigned NumPreds = PN->getNumIncomingValues();
826 for (unsigned PredIdx = 0, PredEnd = NumPreds; PredIdx != PredEnd;
827 ++PredIdx) {
828 BasicBlock *IncomingBlock = PN->getIncomingBlock(PredIdx);
829 bool EdgeTargetsFunclet;
830 if (auto *CRI =
831 dyn_cast<CatchReturnInst>(IncomingBlock->getTerminator())) {
832 EdgeTargetsFunclet = (CRI->getCatchSwitchParentPad() == FuncletToken);
833 } else {
834 ColorVector &IncomingColors = BlockColors[IncomingBlock];
835 assert(!IncomingColors.empty() && "Block not colored!");
836 assert((IncomingColors.size() == 1 ||
837 llvm::all_of(IncomingColors,
838 [&](BasicBlock *Color) {
839 return Color != FuncletPadBB;
840 })) &&
841 "Cloning should leave this funclet's blocks monochromatic");
842 EdgeTargetsFunclet = (IncomingColors.front() == FuncletPadBB);
843 }
844 if (IsForOldBlock != EdgeTargetsFunclet)
845 continue;
846 PN->removeIncomingValue(IncomingBlock, /*DeletePHIIfEmpty=*/false);
847 // Revisit the next entry.
848 --PredIdx;
849 --PredEnd;
850 }
851 };
852
853 for (auto &BBMapping : Orig2Clone) {
854 BasicBlock *OldBlock = BBMapping.first;
855 BasicBlock *NewBlock = BBMapping.second;
856 for (PHINode &OldPN : OldBlock->phis()) {
857 UpdatePHIOnClonedBlock(&OldPN, /*IsForOldBlock=*/true);
858 }
859 for (PHINode &NewPN : NewBlock->phis()) {
860 UpdatePHIOnClonedBlock(&NewPN, /*IsForOldBlock=*/false);
861 }
862 }
863
864 // Check to see if SuccBB has PHI nodes. If so, we need to add entries to
865 // the PHI nodes for NewBB now.
866 for (auto &BBMapping : Orig2Clone) {
867 BasicBlock *OldBlock = BBMapping.first;
868 BasicBlock *NewBlock = BBMapping.second;
869 for (BasicBlock *SuccBB : successors(NewBlock)) {
870 for (PHINode &SuccPN : SuccBB->phis()) {
871 // Ok, we have a PHI node. Figure out what the incoming value was for
872 // the OldBlock.
873 int OldBlockIdx = SuccPN.getBasicBlockIndex(OldBlock);
874 if (OldBlockIdx == -1)
875 break;
876 Value *IV = SuccPN.getIncomingValue(OldBlockIdx);
877
878 // Remap the value if necessary.
879 if (auto *Inst = dyn_cast<Instruction>(IV)) {
880 ValueToValueMapTy::iterator I = VMap.find(Inst);
881 if (I != VMap.end())
882 IV = I->second;
883 }
884
885 SuccPN.addIncoming(IV, NewBlock);
886 }
887 }
888 }
889
890 for (ValueToValueMapTy::value_type VT : VMap) {
891 // If there were values defined in BB that are used outside the funclet,
892 // then we now have to update all uses of the value to use either the
893 // original value, the cloned value, or some PHI derived value. This can
894 // require arbitrary PHI insertion, of which we are prepared to do, clean
895 // these up now.
896 SmallVector<Use *, 16> UsesToRename;
897
898 auto *OldI = dyn_cast<Instruction>(const_cast<Value *>(VT.first));
899 if (!OldI)
900 continue;
901 auto *NewI = cast<Instruction>(VT.second);
902 // Scan all uses of this instruction to see if it is used outside of its
903 // funclet, and if so, record them in UsesToRename.
904 for (Use &U : OldI->uses()) {
905 Instruction *UserI = cast<Instruction>(U.getUser());
906 BasicBlock *UserBB = UserI->getParent();
907 ColorVector &ColorsForUserBB = BlockColors[UserBB];
908 assert(!ColorsForUserBB.empty());
909 if (ColorsForUserBB.size() > 1 ||
910 *ColorsForUserBB.begin() != FuncletPadBB)
911 UsesToRename.push_back(&U);
912 }
913
914 // If there are no uses outside the block, we're done with this
915 // instruction.
916 if (UsesToRename.empty())
917 continue;
918
919 // We found a use of OldI outside of the funclet. Rename all uses of OldI
920 // that are outside its funclet to be uses of the appropriate PHI node
921 // etc.
922 SSAUpdater SSAUpdate;
923 SSAUpdate.Initialize(OldI->getType(), OldI->getName());
924 SSAUpdate.AddAvailableValue(OldI->getParent(), OldI);
925 SSAUpdate.AddAvailableValue(NewI->getParent(), NewI);
926
927 while (!UsesToRename.empty())
928 SSAUpdate.RewriteUseAfterInsertions(*UsesToRename.pop_back_val());
929 }
930 }
931 }
932
removeImplausibleInstructions(Function & F)933 void WinEHPrepare::removeImplausibleInstructions(Function &F) {
934 // Remove implausible terminators and replace them with UnreachableInst.
935 for (auto &Funclet : FuncletBlocks) {
936 BasicBlock *FuncletPadBB = Funclet.first;
937 std::vector<BasicBlock *> &BlocksInFunclet = Funclet.second;
938 Instruction *FirstNonPHI = FuncletPadBB->getFirstNonPHI();
939 auto *FuncletPad = dyn_cast<FuncletPadInst>(FirstNonPHI);
940 auto *CatchPad = dyn_cast_or_null<CatchPadInst>(FuncletPad);
941 auto *CleanupPad = dyn_cast_or_null<CleanupPadInst>(FuncletPad);
942
943 for (BasicBlock *BB : BlocksInFunclet) {
944 for (Instruction &I : *BB) {
945 CallSite CS(&I);
946 if (!CS)
947 continue;
948
949 Value *FuncletBundleOperand = nullptr;
950 if (auto BU = CS.getOperandBundle(LLVMContext::OB_funclet))
951 FuncletBundleOperand = BU->Inputs.front();
952
953 if (FuncletBundleOperand == FuncletPad)
954 continue;
955
956 // Skip call sites which are nounwind intrinsics or inline asm.
957 auto *CalledFn =
958 dyn_cast<Function>(CS.getCalledValue()->stripPointerCasts());
959 if (CalledFn && ((CalledFn->isIntrinsic() && CS.doesNotThrow()) ||
960 CS.isInlineAsm()))
961 continue;
962
963 // This call site was not part of this funclet, remove it.
964 if (CS.isInvoke()) {
965 // Remove the unwind edge if it was an invoke.
966 removeUnwindEdge(BB);
967 // Get a pointer to the new call.
968 BasicBlock::iterator CallI =
969 std::prev(BB->getTerminator()->getIterator());
970 auto *CI = cast<CallInst>(&*CallI);
971 changeToUnreachable(CI, /*UseLLVMTrap=*/false);
972 } else {
973 changeToUnreachable(&I, /*UseLLVMTrap=*/false);
974 }
975
976 // There are no more instructions in the block (except for unreachable),
977 // we are done.
978 break;
979 }
980
981 Instruction *TI = BB->getTerminator();
982 // CatchPadInst and CleanupPadInst can't transfer control to a ReturnInst.
983 bool IsUnreachableRet = isa<ReturnInst>(TI) && FuncletPad;
984 // The token consumed by a CatchReturnInst must match the funclet token.
985 bool IsUnreachableCatchret = false;
986 if (auto *CRI = dyn_cast<CatchReturnInst>(TI))
987 IsUnreachableCatchret = CRI->getCatchPad() != CatchPad;
988 // The token consumed by a CleanupReturnInst must match the funclet token.
989 bool IsUnreachableCleanupret = false;
990 if (auto *CRI = dyn_cast<CleanupReturnInst>(TI))
991 IsUnreachableCleanupret = CRI->getCleanupPad() != CleanupPad;
992 if (IsUnreachableRet || IsUnreachableCatchret ||
993 IsUnreachableCleanupret) {
994 changeToUnreachable(TI, /*UseLLVMTrap=*/false);
995 } else if (isa<InvokeInst>(TI)) {
996 if (Personality == EHPersonality::MSVC_CXX && CleanupPad) {
997 // Invokes within a cleanuppad for the MSVC++ personality never
998 // transfer control to their unwind edge: the personality will
999 // terminate the program.
1000 removeUnwindEdge(BB);
1001 }
1002 }
1003 }
1004 }
1005 }
1006
cleanupPreparedFunclets(Function & F)1007 void WinEHPrepare::cleanupPreparedFunclets(Function &F) {
1008 // Clean-up some of the mess we made by removing useles PHI nodes, trivial
1009 // branches, etc.
1010 for (Function::iterator FI = F.begin(), FE = F.end(); FI != FE;) {
1011 BasicBlock *BB = &*FI++;
1012 SimplifyInstructionsInBlock(BB);
1013 ConstantFoldTerminator(BB, /*DeleteDeadConditions=*/true);
1014 MergeBlockIntoPredecessor(BB);
1015 }
1016
1017 // We might have some unreachable blocks after cleaning up some impossible
1018 // control flow.
1019 removeUnreachableBlocks(F);
1020 }
1021
1022 #ifndef NDEBUG
verifyPreparedFunclets(Function & F)1023 void WinEHPrepare::verifyPreparedFunclets(Function &F) {
1024 for (BasicBlock &BB : F) {
1025 size_t NumColors = BlockColors[&BB].size();
1026 assert(NumColors == 1 && "Expected monochromatic BB!");
1027 if (NumColors == 0)
1028 report_fatal_error("Uncolored BB!");
1029 if (NumColors > 1)
1030 report_fatal_error("Multicolor BB!");
1031 assert((DisableDemotion || !(BB.isEHPad() && isa<PHINode>(BB.begin()))) &&
1032 "EH Pad still has a PHI!");
1033 }
1034 }
1035 #endif
1036
prepareExplicitEH(Function & F)1037 bool WinEHPrepare::prepareExplicitEH(Function &F) {
1038 // Remove unreachable blocks. It is not valuable to assign them a color and
1039 // their existence can trick us into thinking values are alive when they are
1040 // not.
1041 removeUnreachableBlocks(F);
1042
1043 // Determine which blocks are reachable from which funclet entries.
1044 colorFunclets(F);
1045
1046 cloneCommonBlocks(F);
1047
1048 if (!DisableDemotion)
1049 demotePHIsOnFunclets(F, DemoteCatchSwitchPHIOnly ||
1050 DemoteCatchSwitchPHIOnlyOpt);
1051
1052 if (!DisableCleanups) {
1053 LLVM_DEBUG(verifyFunction(F));
1054 removeImplausibleInstructions(F);
1055
1056 LLVM_DEBUG(verifyFunction(F));
1057 cleanupPreparedFunclets(F);
1058 }
1059
1060 LLVM_DEBUG(verifyPreparedFunclets(F));
1061 // Recolor the CFG to verify that all is well.
1062 LLVM_DEBUG(colorFunclets(F));
1063 LLVM_DEBUG(verifyPreparedFunclets(F));
1064
1065 BlockColors.clear();
1066 FuncletBlocks.clear();
1067
1068 return true;
1069 }
1070
1071 // TODO: Share loads when one use dominates another, or when a catchpad exit
1072 // dominates uses (needs dominators).
insertPHILoads(PHINode * PN,Function & F)1073 AllocaInst *WinEHPrepare::insertPHILoads(PHINode *PN, Function &F) {
1074 BasicBlock *PHIBlock = PN->getParent();
1075 AllocaInst *SpillSlot = nullptr;
1076 Instruction *EHPad = PHIBlock->getFirstNonPHI();
1077
1078 if (!EHPad->isTerminator()) {
1079 // If the EHPad isn't a terminator, then we can insert a load in this block
1080 // that will dominate all uses.
1081 SpillSlot = new AllocaInst(PN->getType(), DL->getAllocaAddrSpace(), nullptr,
1082 Twine(PN->getName(), ".wineh.spillslot"),
1083 &F.getEntryBlock().front());
1084 Value *V = new LoadInst(PN->getType(), SpillSlot,
1085 Twine(PN->getName(), ".wineh.reload"),
1086 &*PHIBlock->getFirstInsertionPt());
1087 PN->replaceAllUsesWith(V);
1088 return SpillSlot;
1089 }
1090
1091 // Otherwise, we have a PHI on a terminator EHPad, and we give up and insert
1092 // loads of the slot before every use.
1093 DenseMap<BasicBlock *, Value *> Loads;
1094 for (Value::use_iterator UI = PN->use_begin(), UE = PN->use_end();
1095 UI != UE;) {
1096 Use &U = *UI++;
1097 auto *UsingInst = cast<Instruction>(U.getUser());
1098 if (isa<PHINode>(UsingInst) && UsingInst->getParent()->isEHPad()) {
1099 // Use is on an EH pad phi. Leave it alone; we'll insert loads and
1100 // stores for it separately.
1101 continue;
1102 }
1103 replaceUseWithLoad(PN, U, SpillSlot, Loads, F);
1104 }
1105 return SpillSlot;
1106 }
1107
1108 // TODO: improve store placement. Inserting at def is probably good, but need
1109 // to be careful not to introduce interfering stores (needs liveness analysis).
1110 // TODO: identify related phi nodes that can share spill slots, and share them
1111 // (also needs liveness).
insertPHIStores(PHINode * OriginalPHI,AllocaInst * SpillSlot)1112 void WinEHPrepare::insertPHIStores(PHINode *OriginalPHI,
1113 AllocaInst *SpillSlot) {
1114 // Use a worklist of (Block, Value) pairs -- the given Value needs to be
1115 // stored to the spill slot by the end of the given Block.
1116 SmallVector<std::pair<BasicBlock *, Value *>, 4> Worklist;
1117
1118 Worklist.push_back({OriginalPHI->getParent(), OriginalPHI});
1119
1120 while (!Worklist.empty()) {
1121 BasicBlock *EHBlock;
1122 Value *InVal;
1123 std::tie(EHBlock, InVal) = Worklist.pop_back_val();
1124
1125 PHINode *PN = dyn_cast<PHINode>(InVal);
1126 if (PN && PN->getParent() == EHBlock) {
1127 // The value is defined by another PHI we need to remove, with no room to
1128 // insert a store after the PHI, so each predecessor needs to store its
1129 // incoming value.
1130 for (unsigned i = 0, e = PN->getNumIncomingValues(); i < e; ++i) {
1131 Value *PredVal = PN->getIncomingValue(i);
1132
1133 // Undef can safely be skipped.
1134 if (isa<UndefValue>(PredVal))
1135 continue;
1136
1137 insertPHIStore(PN->getIncomingBlock(i), PredVal, SpillSlot, Worklist);
1138 }
1139 } else {
1140 // We need to store InVal, which dominates EHBlock, but can't put a store
1141 // in EHBlock, so need to put stores in each predecessor.
1142 for (BasicBlock *PredBlock : predecessors(EHBlock)) {
1143 insertPHIStore(PredBlock, InVal, SpillSlot, Worklist);
1144 }
1145 }
1146 }
1147 }
1148
insertPHIStore(BasicBlock * PredBlock,Value * PredVal,AllocaInst * SpillSlot,SmallVectorImpl<std::pair<BasicBlock *,Value * >> & Worklist)1149 void WinEHPrepare::insertPHIStore(
1150 BasicBlock *PredBlock, Value *PredVal, AllocaInst *SpillSlot,
1151 SmallVectorImpl<std::pair<BasicBlock *, Value *>> &Worklist) {
1152
1153 if (PredBlock->isEHPad() && PredBlock->getFirstNonPHI()->isTerminator()) {
1154 // Pred is unsplittable, so we need to queue it on the worklist.
1155 Worklist.push_back({PredBlock, PredVal});
1156 return;
1157 }
1158
1159 // Otherwise, insert the store at the end of the basic block.
1160 new StoreInst(PredVal, SpillSlot, PredBlock->getTerminator());
1161 }
1162
replaceUseWithLoad(Value * V,Use & U,AllocaInst * & SpillSlot,DenseMap<BasicBlock *,Value * > & Loads,Function & F)1163 void WinEHPrepare::replaceUseWithLoad(Value *V, Use &U, AllocaInst *&SpillSlot,
1164 DenseMap<BasicBlock *, Value *> &Loads,
1165 Function &F) {
1166 // Lazilly create the spill slot.
1167 if (!SpillSlot)
1168 SpillSlot = new AllocaInst(V->getType(), DL->getAllocaAddrSpace(), nullptr,
1169 Twine(V->getName(), ".wineh.spillslot"),
1170 &F.getEntryBlock().front());
1171
1172 auto *UsingInst = cast<Instruction>(U.getUser());
1173 if (auto *UsingPHI = dyn_cast<PHINode>(UsingInst)) {
1174 // If this is a PHI node, we can't insert a load of the value before
1175 // the use. Instead insert the load in the predecessor block
1176 // corresponding to the incoming value.
1177 //
1178 // Note that if there are multiple edges from a basic block to this
1179 // PHI node that we cannot have multiple loads. The problem is that
1180 // the resulting PHI node will have multiple values (from each load)
1181 // coming in from the same block, which is illegal SSA form.
1182 // For this reason, we keep track of and reuse loads we insert.
1183 BasicBlock *IncomingBlock = UsingPHI->getIncomingBlock(U);
1184 if (auto *CatchRet =
1185 dyn_cast<CatchReturnInst>(IncomingBlock->getTerminator())) {
1186 // Putting a load above a catchret and use on the phi would still leave
1187 // a cross-funclet def/use. We need to split the edge, change the
1188 // catchret to target the new block, and put the load there.
1189 BasicBlock *PHIBlock = UsingInst->getParent();
1190 BasicBlock *NewBlock = SplitEdge(IncomingBlock, PHIBlock);
1191 // SplitEdge gives us:
1192 // IncomingBlock:
1193 // ...
1194 // br label %NewBlock
1195 // NewBlock:
1196 // catchret label %PHIBlock
1197 // But we need:
1198 // IncomingBlock:
1199 // ...
1200 // catchret label %NewBlock
1201 // NewBlock:
1202 // br label %PHIBlock
1203 // So move the terminators to each others' blocks and swap their
1204 // successors.
1205 BranchInst *Goto = cast<BranchInst>(IncomingBlock->getTerminator());
1206 Goto->removeFromParent();
1207 CatchRet->removeFromParent();
1208 IncomingBlock->getInstList().push_back(CatchRet);
1209 NewBlock->getInstList().push_back(Goto);
1210 Goto->setSuccessor(0, PHIBlock);
1211 CatchRet->setSuccessor(NewBlock);
1212 // Update the color mapping for the newly split edge.
1213 // Grab a reference to the ColorVector to be inserted before getting the
1214 // reference to the vector we are copying because inserting the new
1215 // element in BlockColors might cause the map to be reallocated.
1216 ColorVector &ColorsForNewBlock = BlockColors[NewBlock];
1217 ColorVector &ColorsForPHIBlock = BlockColors[PHIBlock];
1218 ColorsForNewBlock = ColorsForPHIBlock;
1219 for (BasicBlock *FuncletPad : ColorsForPHIBlock)
1220 FuncletBlocks[FuncletPad].push_back(NewBlock);
1221 // Treat the new block as incoming for load insertion.
1222 IncomingBlock = NewBlock;
1223 }
1224 Value *&Load = Loads[IncomingBlock];
1225 // Insert the load into the predecessor block
1226 if (!Load)
1227 Load = new LoadInst(V->getType(), SpillSlot,
1228 Twine(V->getName(), ".wineh.reload"),
1229 /*isVolatile=*/false, IncomingBlock->getTerminator());
1230
1231 U.set(Load);
1232 } else {
1233 // Reload right before the old use.
1234 auto *Load = new LoadInst(V->getType(), SpillSlot,
1235 Twine(V->getName(), ".wineh.reload"),
1236 /*isVolatile=*/false, UsingInst);
1237 U.set(Load);
1238 }
1239 }
1240
addIPToStateRange(const InvokeInst * II,MCSymbol * InvokeBegin,MCSymbol * InvokeEnd)1241 void WinEHFuncInfo::addIPToStateRange(const InvokeInst *II,
1242 MCSymbol *InvokeBegin,
1243 MCSymbol *InvokeEnd) {
1244 assert(InvokeStateMap.count(II) &&
1245 "should get invoke with precomputed state");
1246 LabelToStateMap[InvokeBegin] = std::make_pair(InvokeStateMap[II], InvokeEnd);
1247 }
1248
WinEHFuncInfo()1249 WinEHFuncInfo::WinEHFuncInfo() {}
1250