1 //===- ConstantRange.cpp - ConstantRange implementation -------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // Represent a range of possible values that may occur when the program is run
10 // for an integral value. This keeps track of a lower and upper bound for the
11 // constant, which MAY wrap around the end of the numeric range. To do this, it
12 // keeps track of a [lower, upper) bound, which specifies an interval just like
13 // STL iterators. When used with boolean values, the following are important
14 // ranges (other integral ranges use min/max values for special range values):
15 //
16 // [F, F) = {} = Empty set
17 // [T, F) = {T}
18 // [F, T) = {F}
19 // [T, T) = {F, T} = Full set
20 //
21 //===----------------------------------------------------------------------===//
22
23 #include "llvm/ADT/APInt.h"
24 #include "llvm/Config/llvm-config.h"
25 #include "llvm/IR/ConstantRange.h"
26 #include "llvm/IR/Constants.h"
27 #include "llvm/IR/InstrTypes.h"
28 #include "llvm/IR/Instruction.h"
29 #include "llvm/IR/Metadata.h"
30 #include "llvm/IR/Operator.h"
31 #include "llvm/Support/Compiler.h"
32 #include "llvm/Support/Debug.h"
33 #include "llvm/Support/ErrorHandling.h"
34 #include "llvm/Support/KnownBits.h"
35 #include "llvm/Support/raw_ostream.h"
36 #include <algorithm>
37 #include <cassert>
38 #include <cstdint>
39
40 using namespace llvm;
41
ConstantRange(uint32_t BitWidth,bool Full)42 ConstantRange::ConstantRange(uint32_t BitWidth, bool Full)
43 : Lower(Full ? APInt::getMaxValue(BitWidth) : APInt::getMinValue(BitWidth)),
44 Upper(Lower) {}
45
ConstantRange(APInt V)46 ConstantRange::ConstantRange(APInt V)
47 : Lower(std::move(V)), Upper(Lower + 1) {}
48
ConstantRange(APInt L,APInt U)49 ConstantRange::ConstantRange(APInt L, APInt U)
50 : Lower(std::move(L)), Upper(std::move(U)) {
51 assert(Lower.getBitWidth() == Upper.getBitWidth() &&
52 "ConstantRange with unequal bit widths");
53 assert((Lower != Upper || (Lower.isMaxValue() || Lower.isMinValue())) &&
54 "Lower == Upper, but they aren't min or max value!");
55 }
56
fromKnownBits(const KnownBits & Known,bool IsSigned)57 ConstantRange ConstantRange::fromKnownBits(const KnownBits &Known,
58 bool IsSigned) {
59 assert(!Known.hasConflict() && "Expected valid KnownBits");
60
61 if (Known.isUnknown())
62 return getFull(Known.getBitWidth());
63
64 // For unsigned ranges, or signed ranges with known sign bit, create a simple
65 // range between the smallest and largest possible value.
66 if (!IsSigned || Known.isNegative() || Known.isNonNegative())
67 return ConstantRange(Known.getMinValue(), Known.getMaxValue() + 1);
68
69 // If we don't know the sign bit, pick the lower bound as a negative number
70 // and the upper bound as a non-negative one.
71 APInt Lower = Known.getMinValue(), Upper = Known.getMaxValue();
72 Lower.setSignBit();
73 Upper.clearSignBit();
74 return ConstantRange(Lower, Upper + 1);
75 }
76
makeAllowedICmpRegion(CmpInst::Predicate Pred,const ConstantRange & CR)77 ConstantRange ConstantRange::makeAllowedICmpRegion(CmpInst::Predicate Pred,
78 const ConstantRange &CR) {
79 if (CR.isEmptySet())
80 return CR;
81
82 uint32_t W = CR.getBitWidth();
83 switch (Pred) {
84 default:
85 llvm_unreachable("Invalid ICmp predicate to makeAllowedICmpRegion()");
86 case CmpInst::ICMP_EQ:
87 return CR;
88 case CmpInst::ICMP_NE:
89 if (CR.isSingleElement())
90 return ConstantRange(CR.getUpper(), CR.getLower());
91 return getFull(W);
92 case CmpInst::ICMP_ULT: {
93 APInt UMax(CR.getUnsignedMax());
94 if (UMax.isMinValue())
95 return getEmpty(W);
96 return ConstantRange(APInt::getMinValue(W), std::move(UMax));
97 }
98 case CmpInst::ICMP_SLT: {
99 APInt SMax(CR.getSignedMax());
100 if (SMax.isMinSignedValue())
101 return getEmpty(W);
102 return ConstantRange(APInt::getSignedMinValue(W), std::move(SMax));
103 }
104 case CmpInst::ICMP_ULE:
105 return getNonEmpty(APInt::getMinValue(W), CR.getUnsignedMax() + 1);
106 case CmpInst::ICMP_SLE:
107 return getNonEmpty(APInt::getSignedMinValue(W), CR.getSignedMax() + 1);
108 case CmpInst::ICMP_UGT: {
109 APInt UMin(CR.getUnsignedMin());
110 if (UMin.isMaxValue())
111 return getEmpty(W);
112 return ConstantRange(std::move(UMin) + 1, APInt::getNullValue(W));
113 }
114 case CmpInst::ICMP_SGT: {
115 APInt SMin(CR.getSignedMin());
116 if (SMin.isMaxSignedValue())
117 return getEmpty(W);
118 return ConstantRange(std::move(SMin) + 1, APInt::getSignedMinValue(W));
119 }
120 case CmpInst::ICMP_UGE:
121 return getNonEmpty(CR.getUnsignedMin(), APInt::getNullValue(W));
122 case CmpInst::ICMP_SGE:
123 return getNonEmpty(CR.getSignedMin(), APInt::getSignedMinValue(W));
124 }
125 }
126
makeSatisfyingICmpRegion(CmpInst::Predicate Pred,const ConstantRange & CR)127 ConstantRange ConstantRange::makeSatisfyingICmpRegion(CmpInst::Predicate Pred,
128 const ConstantRange &CR) {
129 // Follows from De-Morgan's laws:
130 //
131 // ~(~A union ~B) == A intersect B.
132 //
133 return makeAllowedICmpRegion(CmpInst::getInversePredicate(Pred), CR)
134 .inverse();
135 }
136
makeExactICmpRegion(CmpInst::Predicate Pred,const APInt & C)137 ConstantRange ConstantRange::makeExactICmpRegion(CmpInst::Predicate Pred,
138 const APInt &C) {
139 // Computes the exact range that is equal to both the constant ranges returned
140 // by makeAllowedICmpRegion and makeSatisfyingICmpRegion. This is always true
141 // when RHS is a singleton such as an APInt and so the assert is valid.
142 // However for non-singleton RHS, for example ult [2,5) makeAllowedICmpRegion
143 // returns [0,4) but makeSatisfyICmpRegion returns [0,2).
144 //
145 assert(makeAllowedICmpRegion(Pred, C) == makeSatisfyingICmpRegion(Pred, C));
146 return makeAllowedICmpRegion(Pred, C);
147 }
148
getEquivalentICmp(CmpInst::Predicate & Pred,APInt & RHS) const149 bool ConstantRange::getEquivalentICmp(CmpInst::Predicate &Pred,
150 APInt &RHS) const {
151 bool Success = false;
152
153 if (isFullSet() || isEmptySet()) {
154 Pred = isEmptySet() ? CmpInst::ICMP_ULT : CmpInst::ICMP_UGE;
155 RHS = APInt(getBitWidth(), 0);
156 Success = true;
157 } else if (auto *OnlyElt = getSingleElement()) {
158 Pred = CmpInst::ICMP_EQ;
159 RHS = *OnlyElt;
160 Success = true;
161 } else if (auto *OnlyMissingElt = getSingleMissingElement()) {
162 Pred = CmpInst::ICMP_NE;
163 RHS = *OnlyMissingElt;
164 Success = true;
165 } else if (getLower().isMinSignedValue() || getLower().isMinValue()) {
166 Pred =
167 getLower().isMinSignedValue() ? CmpInst::ICMP_SLT : CmpInst::ICMP_ULT;
168 RHS = getUpper();
169 Success = true;
170 } else if (getUpper().isMinSignedValue() || getUpper().isMinValue()) {
171 Pred =
172 getUpper().isMinSignedValue() ? CmpInst::ICMP_SGE : CmpInst::ICMP_UGE;
173 RHS = getLower();
174 Success = true;
175 }
176
177 assert((!Success || ConstantRange::makeExactICmpRegion(Pred, RHS) == *this) &&
178 "Bad result!");
179
180 return Success;
181 }
182
183 /// Exact mul nuw region for single element RHS.
makeExactMulNUWRegion(const APInt & V)184 static ConstantRange makeExactMulNUWRegion(const APInt &V) {
185 unsigned BitWidth = V.getBitWidth();
186 if (V == 0)
187 return ConstantRange::getFull(V.getBitWidth());
188
189 return ConstantRange::getNonEmpty(
190 APIntOps::RoundingUDiv(APInt::getMinValue(BitWidth), V,
191 APInt::Rounding::UP),
192 APIntOps::RoundingUDiv(APInt::getMaxValue(BitWidth), V,
193 APInt::Rounding::DOWN) + 1);
194 }
195
196 /// Exact mul nsw region for single element RHS.
makeExactMulNSWRegion(const APInt & V)197 static ConstantRange makeExactMulNSWRegion(const APInt &V) {
198 // Handle special case for 0, -1 and 1. See the last for reason why we
199 // specialize -1 and 1.
200 unsigned BitWidth = V.getBitWidth();
201 if (V == 0 || V.isOneValue())
202 return ConstantRange::getFull(BitWidth);
203
204 APInt MinValue = APInt::getSignedMinValue(BitWidth);
205 APInt MaxValue = APInt::getSignedMaxValue(BitWidth);
206 // e.g. Returning [-127, 127], represented as [-127, -128).
207 if (V.isAllOnesValue())
208 return ConstantRange(-MaxValue, MinValue);
209
210 APInt Lower, Upper;
211 if (V.isNegative()) {
212 Lower = APIntOps::RoundingSDiv(MaxValue, V, APInt::Rounding::UP);
213 Upper = APIntOps::RoundingSDiv(MinValue, V, APInt::Rounding::DOWN);
214 } else {
215 Lower = APIntOps::RoundingSDiv(MinValue, V, APInt::Rounding::UP);
216 Upper = APIntOps::RoundingSDiv(MaxValue, V, APInt::Rounding::DOWN);
217 }
218 // ConstantRange ctor take a half inclusive interval [Lower, Upper + 1).
219 // Upper + 1 is guaranteed not to overflow, because |divisor| > 1. 0, -1,
220 // and 1 are already handled as special cases.
221 return ConstantRange(Lower, Upper + 1);
222 }
223
224 ConstantRange
makeGuaranteedNoWrapRegion(Instruction::BinaryOps BinOp,const ConstantRange & Other,unsigned NoWrapKind)225 ConstantRange::makeGuaranteedNoWrapRegion(Instruction::BinaryOps BinOp,
226 const ConstantRange &Other,
227 unsigned NoWrapKind) {
228 using OBO = OverflowingBinaryOperator;
229
230 assert(Instruction::isBinaryOp(BinOp) && "Binary operators only!");
231
232 assert((NoWrapKind == OBO::NoSignedWrap ||
233 NoWrapKind == OBO::NoUnsignedWrap) &&
234 "NoWrapKind invalid!");
235
236 bool Unsigned = NoWrapKind == OBO::NoUnsignedWrap;
237 unsigned BitWidth = Other.getBitWidth();
238
239 switch (BinOp) {
240 default:
241 llvm_unreachable("Unsupported binary op");
242
243 case Instruction::Add: {
244 if (Unsigned)
245 return getNonEmpty(APInt::getNullValue(BitWidth),
246 -Other.getUnsignedMax());
247
248 APInt SignedMinVal = APInt::getSignedMinValue(BitWidth);
249 APInt SMin = Other.getSignedMin(), SMax = Other.getSignedMax();
250 return getNonEmpty(
251 SMin.isNegative() ? SignedMinVal - SMin : SignedMinVal,
252 SMax.isStrictlyPositive() ? SignedMinVal - SMax : SignedMinVal);
253 }
254
255 case Instruction::Sub: {
256 if (Unsigned)
257 return getNonEmpty(Other.getUnsignedMax(), APInt::getMinValue(BitWidth));
258
259 APInt SignedMinVal = APInt::getSignedMinValue(BitWidth);
260 APInt SMin = Other.getSignedMin(), SMax = Other.getSignedMax();
261 return getNonEmpty(
262 SMax.isStrictlyPositive() ? SignedMinVal + SMax : SignedMinVal,
263 SMin.isNegative() ? SignedMinVal + SMin : SignedMinVal);
264 }
265
266 case Instruction::Mul:
267 if (Unsigned)
268 return makeExactMulNUWRegion(Other.getUnsignedMax());
269
270 return makeExactMulNSWRegion(Other.getSignedMin())
271 .intersectWith(makeExactMulNSWRegion(Other.getSignedMax()));
272
273 case Instruction::Shl: {
274 // For given range of shift amounts, if we ignore all illegal shift amounts
275 // (that always produce poison), what shift amount range is left?
276 ConstantRange ShAmt = Other.intersectWith(
277 ConstantRange(APInt(BitWidth, 0), APInt(BitWidth, (BitWidth - 1) + 1)));
278 if (ShAmt.isEmptySet()) {
279 // If the entire range of shift amounts is already poison-producing,
280 // then we can freely add more poison-producing flags ontop of that.
281 return getFull(BitWidth);
282 }
283 // There are some legal shift amounts, we can compute conservatively-correct
284 // range of no-wrap inputs. Note that by now we have clamped the ShAmtUMax
285 // to be at most bitwidth-1, which results in most conservative range.
286 APInt ShAmtUMax = ShAmt.getUnsignedMax();
287 if (Unsigned)
288 return getNonEmpty(APInt::getNullValue(BitWidth),
289 APInt::getMaxValue(BitWidth).lshr(ShAmtUMax) + 1);
290 return getNonEmpty(APInt::getSignedMinValue(BitWidth).ashr(ShAmtUMax),
291 APInt::getSignedMaxValue(BitWidth).ashr(ShAmtUMax) + 1);
292 }
293 }
294 }
295
makeExactNoWrapRegion(Instruction::BinaryOps BinOp,const APInt & Other,unsigned NoWrapKind)296 ConstantRange ConstantRange::makeExactNoWrapRegion(Instruction::BinaryOps BinOp,
297 const APInt &Other,
298 unsigned NoWrapKind) {
299 // makeGuaranteedNoWrapRegion() is exact for single-element ranges, as
300 // "for all" and "for any" coincide in this case.
301 return makeGuaranteedNoWrapRegion(BinOp, ConstantRange(Other), NoWrapKind);
302 }
303
isFullSet() const304 bool ConstantRange::isFullSet() const {
305 return Lower == Upper && Lower.isMaxValue();
306 }
307
isEmptySet() const308 bool ConstantRange::isEmptySet() const {
309 return Lower == Upper && Lower.isMinValue();
310 }
311
isWrappedSet() const312 bool ConstantRange::isWrappedSet() const {
313 return Lower.ugt(Upper) && !Upper.isNullValue();
314 }
315
isUpperWrapped() const316 bool ConstantRange::isUpperWrapped() const {
317 return Lower.ugt(Upper);
318 }
319
isSignWrappedSet() const320 bool ConstantRange::isSignWrappedSet() const {
321 return Lower.sgt(Upper) && !Upper.isMinSignedValue();
322 }
323
isUpperSignWrapped() const324 bool ConstantRange::isUpperSignWrapped() const {
325 return Lower.sgt(Upper);
326 }
327
328 bool
isSizeStrictlySmallerThan(const ConstantRange & Other) const329 ConstantRange::isSizeStrictlySmallerThan(const ConstantRange &Other) const {
330 assert(getBitWidth() == Other.getBitWidth());
331 if (isFullSet())
332 return false;
333 if (Other.isFullSet())
334 return true;
335 return (Upper - Lower).ult(Other.Upper - Other.Lower);
336 }
337
338 bool
isSizeLargerThan(uint64_t MaxSize) const339 ConstantRange::isSizeLargerThan(uint64_t MaxSize) const {
340 assert(MaxSize && "MaxSize can't be 0.");
341 // If this a full set, we need special handling to avoid needing an extra bit
342 // to represent the size.
343 if (isFullSet())
344 return APInt::getMaxValue(getBitWidth()).ugt(MaxSize - 1);
345
346 return (Upper - Lower).ugt(MaxSize);
347 }
348
isAllNegative() const349 bool ConstantRange::isAllNegative() const {
350 // Empty set is all negative, full set is not.
351 if (isEmptySet())
352 return true;
353 if (isFullSet())
354 return false;
355
356 return !isUpperSignWrapped() && !Upper.isStrictlyPositive();
357 }
358
isAllNonNegative() const359 bool ConstantRange::isAllNonNegative() const {
360 // Empty and full set are automatically treated correctly.
361 return !isSignWrappedSet() && Lower.isNonNegative();
362 }
363
getUnsignedMax() const364 APInt ConstantRange::getUnsignedMax() const {
365 if (isFullSet() || isUpperWrapped())
366 return APInt::getMaxValue(getBitWidth());
367 return getUpper() - 1;
368 }
369
getUnsignedMin() const370 APInt ConstantRange::getUnsignedMin() const {
371 if (isFullSet() || isWrappedSet())
372 return APInt::getMinValue(getBitWidth());
373 return getLower();
374 }
375
getSignedMax() const376 APInt ConstantRange::getSignedMax() const {
377 if (isFullSet() || isUpperSignWrapped())
378 return APInt::getSignedMaxValue(getBitWidth());
379 return getUpper() - 1;
380 }
381
getSignedMin() const382 APInt ConstantRange::getSignedMin() const {
383 if (isFullSet() || isSignWrappedSet())
384 return APInt::getSignedMinValue(getBitWidth());
385 return getLower();
386 }
387
contains(const APInt & V) const388 bool ConstantRange::contains(const APInt &V) const {
389 if (Lower == Upper)
390 return isFullSet();
391
392 if (!isUpperWrapped())
393 return Lower.ule(V) && V.ult(Upper);
394 return Lower.ule(V) || V.ult(Upper);
395 }
396
contains(const ConstantRange & Other) const397 bool ConstantRange::contains(const ConstantRange &Other) const {
398 if (isFullSet() || Other.isEmptySet()) return true;
399 if (isEmptySet() || Other.isFullSet()) return false;
400
401 if (!isUpperWrapped()) {
402 if (Other.isUpperWrapped())
403 return false;
404
405 return Lower.ule(Other.getLower()) && Other.getUpper().ule(Upper);
406 }
407
408 if (!Other.isUpperWrapped())
409 return Other.getUpper().ule(Upper) ||
410 Lower.ule(Other.getLower());
411
412 return Other.getUpper().ule(Upper) && Lower.ule(Other.getLower());
413 }
414
subtract(const APInt & Val) const415 ConstantRange ConstantRange::subtract(const APInt &Val) const {
416 assert(Val.getBitWidth() == getBitWidth() && "Wrong bit width");
417 // If the set is empty or full, don't modify the endpoints.
418 if (Lower == Upper)
419 return *this;
420 return ConstantRange(Lower - Val, Upper - Val);
421 }
422
difference(const ConstantRange & CR) const423 ConstantRange ConstantRange::difference(const ConstantRange &CR) const {
424 return intersectWith(CR.inverse());
425 }
426
getPreferredRange(const ConstantRange & CR1,const ConstantRange & CR2,ConstantRange::PreferredRangeType Type)427 static ConstantRange getPreferredRange(
428 const ConstantRange &CR1, const ConstantRange &CR2,
429 ConstantRange::PreferredRangeType Type) {
430 if (Type == ConstantRange::Unsigned) {
431 if (!CR1.isWrappedSet() && CR2.isWrappedSet())
432 return CR1;
433 if (CR1.isWrappedSet() && !CR2.isWrappedSet())
434 return CR2;
435 } else if (Type == ConstantRange::Signed) {
436 if (!CR1.isSignWrappedSet() && CR2.isSignWrappedSet())
437 return CR1;
438 if (CR1.isSignWrappedSet() && !CR2.isSignWrappedSet())
439 return CR2;
440 }
441
442 if (CR1.isSizeStrictlySmallerThan(CR2))
443 return CR1;
444 return CR2;
445 }
446
intersectWith(const ConstantRange & CR,PreferredRangeType Type) const447 ConstantRange ConstantRange::intersectWith(const ConstantRange &CR,
448 PreferredRangeType Type) const {
449 assert(getBitWidth() == CR.getBitWidth() &&
450 "ConstantRange types don't agree!");
451
452 // Handle common cases.
453 if ( isEmptySet() || CR.isFullSet()) return *this;
454 if (CR.isEmptySet() || isFullSet()) return CR;
455
456 if (!isUpperWrapped() && CR.isUpperWrapped())
457 return CR.intersectWith(*this, Type);
458
459 if (!isUpperWrapped() && !CR.isUpperWrapped()) {
460 if (Lower.ult(CR.Lower)) {
461 // L---U : this
462 // L---U : CR
463 if (Upper.ule(CR.Lower))
464 return getEmpty();
465
466 // L---U : this
467 // L---U : CR
468 if (Upper.ult(CR.Upper))
469 return ConstantRange(CR.Lower, Upper);
470
471 // L-------U : this
472 // L---U : CR
473 return CR;
474 }
475 // L---U : this
476 // L-------U : CR
477 if (Upper.ult(CR.Upper))
478 return *this;
479
480 // L-----U : this
481 // L-----U : CR
482 if (Lower.ult(CR.Upper))
483 return ConstantRange(Lower, CR.Upper);
484
485 // L---U : this
486 // L---U : CR
487 return getEmpty();
488 }
489
490 if (isUpperWrapped() && !CR.isUpperWrapped()) {
491 if (CR.Lower.ult(Upper)) {
492 // ------U L--- : this
493 // L--U : CR
494 if (CR.Upper.ult(Upper))
495 return CR;
496
497 // ------U L--- : this
498 // L------U : CR
499 if (CR.Upper.ule(Lower))
500 return ConstantRange(CR.Lower, Upper);
501
502 // ------U L--- : this
503 // L----------U : CR
504 return getPreferredRange(*this, CR, Type);
505 }
506 if (CR.Lower.ult(Lower)) {
507 // --U L---- : this
508 // L--U : CR
509 if (CR.Upper.ule(Lower))
510 return getEmpty();
511
512 // --U L---- : this
513 // L------U : CR
514 return ConstantRange(Lower, CR.Upper);
515 }
516
517 // --U L------ : this
518 // L--U : CR
519 return CR;
520 }
521
522 if (CR.Upper.ult(Upper)) {
523 // ------U L-- : this
524 // --U L------ : CR
525 if (CR.Lower.ult(Upper))
526 return getPreferredRange(*this, CR, Type);
527
528 // ----U L-- : this
529 // --U L---- : CR
530 if (CR.Lower.ult(Lower))
531 return ConstantRange(Lower, CR.Upper);
532
533 // ----U L---- : this
534 // --U L-- : CR
535 return CR;
536 }
537 if (CR.Upper.ule(Lower)) {
538 // --U L-- : this
539 // ----U L---- : CR
540 if (CR.Lower.ult(Lower))
541 return *this;
542
543 // --U L---- : this
544 // ----U L-- : CR
545 return ConstantRange(CR.Lower, Upper);
546 }
547
548 // --U L------ : this
549 // ------U L-- : CR
550 return getPreferredRange(*this, CR, Type);
551 }
552
unionWith(const ConstantRange & CR,PreferredRangeType Type) const553 ConstantRange ConstantRange::unionWith(const ConstantRange &CR,
554 PreferredRangeType Type) const {
555 assert(getBitWidth() == CR.getBitWidth() &&
556 "ConstantRange types don't agree!");
557
558 if ( isFullSet() || CR.isEmptySet()) return *this;
559 if (CR.isFullSet() || isEmptySet()) return CR;
560
561 if (!isUpperWrapped() && CR.isUpperWrapped())
562 return CR.unionWith(*this, Type);
563
564 if (!isUpperWrapped() && !CR.isUpperWrapped()) {
565 // L---U and L---U : this
566 // L---U L---U : CR
567 // result in one of
568 // L---------U
569 // -----U L-----
570 if (CR.Upper.ult(Lower) || Upper.ult(CR.Lower))
571 return getPreferredRange(
572 ConstantRange(Lower, CR.Upper), ConstantRange(CR.Lower, Upper), Type);
573
574 APInt L = CR.Lower.ult(Lower) ? CR.Lower : Lower;
575 APInt U = (CR.Upper - 1).ugt(Upper - 1) ? CR.Upper : Upper;
576
577 if (L.isNullValue() && U.isNullValue())
578 return getFull();
579
580 return ConstantRange(std::move(L), std::move(U));
581 }
582
583 if (!CR.isUpperWrapped()) {
584 // ------U L----- and ------U L----- : this
585 // L--U L--U : CR
586 if (CR.Upper.ule(Upper) || CR.Lower.uge(Lower))
587 return *this;
588
589 // ------U L----- : this
590 // L---------U : CR
591 if (CR.Lower.ule(Upper) && Lower.ule(CR.Upper))
592 return getFull();
593
594 // ----U L---- : this
595 // L---U : CR
596 // results in one of
597 // ----------U L----
598 // ----U L----------
599 if (Upper.ult(CR.Lower) && CR.Upper.ult(Lower))
600 return getPreferredRange(
601 ConstantRange(Lower, CR.Upper), ConstantRange(CR.Lower, Upper), Type);
602
603 // ----U L----- : this
604 // L----U : CR
605 if (Upper.ult(CR.Lower) && Lower.ule(CR.Upper))
606 return ConstantRange(CR.Lower, Upper);
607
608 // ------U L---- : this
609 // L-----U : CR
610 assert(CR.Lower.ule(Upper) && CR.Upper.ult(Lower) &&
611 "ConstantRange::unionWith missed a case with one range wrapped");
612 return ConstantRange(Lower, CR.Upper);
613 }
614
615 // ------U L---- and ------U L---- : this
616 // -U L----------- and ------------U L : CR
617 if (CR.Lower.ule(Upper) || Lower.ule(CR.Upper))
618 return getFull();
619
620 APInt L = CR.Lower.ult(Lower) ? CR.Lower : Lower;
621 APInt U = CR.Upper.ugt(Upper) ? CR.Upper : Upper;
622
623 return ConstantRange(std::move(L), std::move(U));
624 }
625
castOp(Instruction::CastOps CastOp,uint32_t ResultBitWidth) const626 ConstantRange ConstantRange::castOp(Instruction::CastOps CastOp,
627 uint32_t ResultBitWidth) const {
628 switch (CastOp) {
629 default:
630 llvm_unreachable("unsupported cast type");
631 case Instruction::Trunc:
632 return truncate(ResultBitWidth);
633 case Instruction::SExt:
634 return signExtend(ResultBitWidth);
635 case Instruction::ZExt:
636 return zeroExtend(ResultBitWidth);
637 case Instruction::BitCast:
638 return *this;
639 case Instruction::FPToUI:
640 case Instruction::FPToSI:
641 if (getBitWidth() == ResultBitWidth)
642 return *this;
643 else
644 return getFull(ResultBitWidth);
645 case Instruction::UIToFP: {
646 // TODO: use input range if available
647 auto BW = getBitWidth();
648 APInt Min = APInt::getMinValue(BW).zextOrSelf(ResultBitWidth);
649 APInt Max = APInt::getMaxValue(BW).zextOrSelf(ResultBitWidth);
650 return ConstantRange(std::move(Min), std::move(Max));
651 }
652 case Instruction::SIToFP: {
653 // TODO: use input range if available
654 auto BW = getBitWidth();
655 APInt SMin = APInt::getSignedMinValue(BW).sextOrSelf(ResultBitWidth);
656 APInt SMax = APInt::getSignedMaxValue(BW).sextOrSelf(ResultBitWidth);
657 return ConstantRange(std::move(SMin), std::move(SMax));
658 }
659 case Instruction::FPTrunc:
660 case Instruction::FPExt:
661 case Instruction::IntToPtr:
662 case Instruction::PtrToInt:
663 case Instruction::AddrSpaceCast:
664 // Conservatively return getFull set.
665 return getFull(ResultBitWidth);
666 };
667 }
668
zeroExtend(uint32_t DstTySize) const669 ConstantRange ConstantRange::zeroExtend(uint32_t DstTySize) const {
670 if (isEmptySet()) return getEmpty(DstTySize);
671
672 unsigned SrcTySize = getBitWidth();
673 assert(SrcTySize < DstTySize && "Not a value extension");
674 if (isFullSet() || isUpperWrapped()) {
675 // Change into [0, 1 << src bit width)
676 APInt LowerExt(DstTySize, 0);
677 if (!Upper) // special case: [X, 0) -- not really wrapping around
678 LowerExt = Lower.zext(DstTySize);
679 return ConstantRange(std::move(LowerExt),
680 APInt::getOneBitSet(DstTySize, SrcTySize));
681 }
682
683 return ConstantRange(Lower.zext(DstTySize), Upper.zext(DstTySize));
684 }
685
signExtend(uint32_t DstTySize) const686 ConstantRange ConstantRange::signExtend(uint32_t DstTySize) const {
687 if (isEmptySet()) return getEmpty(DstTySize);
688
689 unsigned SrcTySize = getBitWidth();
690 assert(SrcTySize < DstTySize && "Not a value extension");
691
692 // special case: [X, INT_MIN) -- not really wrapping around
693 if (Upper.isMinSignedValue())
694 return ConstantRange(Lower.sext(DstTySize), Upper.zext(DstTySize));
695
696 if (isFullSet() || isSignWrappedSet()) {
697 return ConstantRange(APInt::getHighBitsSet(DstTySize,DstTySize-SrcTySize+1),
698 APInt::getLowBitsSet(DstTySize, SrcTySize-1) + 1);
699 }
700
701 return ConstantRange(Lower.sext(DstTySize), Upper.sext(DstTySize));
702 }
703
truncate(uint32_t DstTySize) const704 ConstantRange ConstantRange::truncate(uint32_t DstTySize) const {
705 assert(getBitWidth() > DstTySize && "Not a value truncation");
706 if (isEmptySet())
707 return getEmpty(DstTySize);
708 if (isFullSet())
709 return getFull(DstTySize);
710
711 APInt LowerDiv(Lower), UpperDiv(Upper);
712 ConstantRange Union(DstTySize, /*isFullSet=*/false);
713
714 // Analyze wrapped sets in their two parts: [0, Upper) \/ [Lower, MaxValue]
715 // We use the non-wrapped set code to analyze the [Lower, MaxValue) part, and
716 // then we do the union with [MaxValue, Upper)
717 if (isUpperWrapped()) {
718 // If Upper is greater than or equal to MaxValue(DstTy), it covers the whole
719 // truncated range.
720 if (Upper.getActiveBits() > DstTySize ||
721 Upper.countTrailingOnes() == DstTySize)
722 return getFull(DstTySize);
723
724 Union = ConstantRange(APInt::getMaxValue(DstTySize),Upper.trunc(DstTySize));
725 UpperDiv.setAllBits();
726
727 // Union covers the MaxValue case, so return if the remaining range is just
728 // MaxValue(DstTy).
729 if (LowerDiv == UpperDiv)
730 return Union;
731 }
732
733 // Chop off the most significant bits that are past the destination bitwidth.
734 if (LowerDiv.getActiveBits() > DstTySize) {
735 // Mask to just the signficant bits and subtract from LowerDiv/UpperDiv.
736 APInt Adjust = LowerDiv & APInt::getBitsSetFrom(getBitWidth(), DstTySize);
737 LowerDiv -= Adjust;
738 UpperDiv -= Adjust;
739 }
740
741 unsigned UpperDivWidth = UpperDiv.getActiveBits();
742 if (UpperDivWidth <= DstTySize)
743 return ConstantRange(LowerDiv.trunc(DstTySize),
744 UpperDiv.trunc(DstTySize)).unionWith(Union);
745
746 // The truncated value wraps around. Check if we can do better than fullset.
747 if (UpperDivWidth == DstTySize + 1) {
748 // Clear the MSB so that UpperDiv wraps around.
749 UpperDiv.clearBit(DstTySize);
750 if (UpperDiv.ult(LowerDiv))
751 return ConstantRange(LowerDiv.trunc(DstTySize),
752 UpperDiv.trunc(DstTySize)).unionWith(Union);
753 }
754
755 return getFull(DstTySize);
756 }
757
zextOrTrunc(uint32_t DstTySize) const758 ConstantRange ConstantRange::zextOrTrunc(uint32_t DstTySize) const {
759 unsigned SrcTySize = getBitWidth();
760 if (SrcTySize > DstTySize)
761 return truncate(DstTySize);
762 if (SrcTySize < DstTySize)
763 return zeroExtend(DstTySize);
764 return *this;
765 }
766
sextOrTrunc(uint32_t DstTySize) const767 ConstantRange ConstantRange::sextOrTrunc(uint32_t DstTySize) const {
768 unsigned SrcTySize = getBitWidth();
769 if (SrcTySize > DstTySize)
770 return truncate(DstTySize);
771 if (SrcTySize < DstTySize)
772 return signExtend(DstTySize);
773 return *this;
774 }
775
binaryOp(Instruction::BinaryOps BinOp,const ConstantRange & Other) const776 ConstantRange ConstantRange::binaryOp(Instruction::BinaryOps BinOp,
777 const ConstantRange &Other) const {
778 assert(Instruction::isBinaryOp(BinOp) && "Binary operators only!");
779
780 switch (BinOp) {
781 case Instruction::Add:
782 return add(Other);
783 case Instruction::Sub:
784 return sub(Other);
785 case Instruction::Mul:
786 return multiply(Other);
787 case Instruction::UDiv:
788 return udiv(Other);
789 case Instruction::SDiv:
790 return sdiv(Other);
791 case Instruction::URem:
792 return urem(Other);
793 case Instruction::SRem:
794 return srem(Other);
795 case Instruction::Shl:
796 return shl(Other);
797 case Instruction::LShr:
798 return lshr(Other);
799 case Instruction::AShr:
800 return ashr(Other);
801 case Instruction::And:
802 return binaryAnd(Other);
803 case Instruction::Or:
804 return binaryOr(Other);
805 // Note: floating point operations applied to abstract ranges are just
806 // ideal integer operations with a lossy representation
807 case Instruction::FAdd:
808 return add(Other);
809 case Instruction::FSub:
810 return sub(Other);
811 case Instruction::FMul:
812 return multiply(Other);
813 default:
814 // Conservatively return getFull set.
815 return getFull();
816 }
817 }
818
overflowingBinaryOp(Instruction::BinaryOps BinOp,const ConstantRange & Other,unsigned NoWrapKind) const819 ConstantRange ConstantRange::overflowingBinaryOp(Instruction::BinaryOps BinOp,
820 const ConstantRange &Other,
821 unsigned NoWrapKind) const {
822 assert(Instruction::isBinaryOp(BinOp) && "Binary operators only!");
823
824 switch (BinOp) {
825 case Instruction::Add:
826 return addWithNoWrap(Other, NoWrapKind);
827 case Instruction::Sub:
828 return subWithNoWrap(Other, NoWrapKind);
829 default:
830 // Don't know about this Overflowing Binary Operation.
831 // Conservatively fallback to plain binop handling.
832 return binaryOp(BinOp, Other);
833 }
834 }
835
836 ConstantRange
add(const ConstantRange & Other) const837 ConstantRange::add(const ConstantRange &Other) const {
838 if (isEmptySet() || Other.isEmptySet())
839 return getEmpty();
840 if (isFullSet() || Other.isFullSet())
841 return getFull();
842
843 APInt NewLower = getLower() + Other.getLower();
844 APInt NewUpper = getUpper() + Other.getUpper() - 1;
845 if (NewLower == NewUpper)
846 return getFull();
847
848 ConstantRange X = ConstantRange(std::move(NewLower), std::move(NewUpper));
849 if (X.isSizeStrictlySmallerThan(*this) ||
850 X.isSizeStrictlySmallerThan(Other))
851 // We've wrapped, therefore, full set.
852 return getFull();
853 return X;
854 }
855
addWithNoWrap(const ConstantRange & Other,unsigned NoWrapKind,PreferredRangeType RangeType) const856 ConstantRange ConstantRange::addWithNoWrap(const ConstantRange &Other,
857 unsigned NoWrapKind,
858 PreferredRangeType RangeType) const {
859 // Calculate the range for "X + Y" which is guaranteed not to wrap(overflow).
860 // (X is from this, and Y is from Other)
861 if (isEmptySet() || Other.isEmptySet())
862 return getEmpty();
863 if (isFullSet() && Other.isFullSet())
864 return getFull();
865
866 using OBO = OverflowingBinaryOperator;
867 ConstantRange Result = add(Other);
868
869 // If an overflow happens for every value pair in these two constant ranges,
870 // we must return Empty set. In this case, we get that for free, because we
871 // get lucky that intersection of add() with uadd_sat()/sadd_sat() results
872 // in an empty set.
873
874 if (NoWrapKind & OBO::NoSignedWrap)
875 Result = Result.intersectWith(sadd_sat(Other), RangeType);
876
877 if (NoWrapKind & OBO::NoUnsignedWrap)
878 Result = Result.intersectWith(uadd_sat(Other), RangeType);
879
880 return Result;
881 }
882
883 ConstantRange
sub(const ConstantRange & Other) const884 ConstantRange::sub(const ConstantRange &Other) const {
885 if (isEmptySet() || Other.isEmptySet())
886 return getEmpty();
887 if (isFullSet() || Other.isFullSet())
888 return getFull();
889
890 APInt NewLower = getLower() - Other.getUpper() + 1;
891 APInt NewUpper = getUpper() - Other.getLower();
892 if (NewLower == NewUpper)
893 return getFull();
894
895 ConstantRange X = ConstantRange(std::move(NewLower), std::move(NewUpper));
896 if (X.isSizeStrictlySmallerThan(*this) ||
897 X.isSizeStrictlySmallerThan(Other))
898 // We've wrapped, therefore, full set.
899 return getFull();
900 return X;
901 }
902
subWithNoWrap(const ConstantRange & Other,unsigned NoWrapKind,PreferredRangeType RangeType) const903 ConstantRange ConstantRange::subWithNoWrap(const ConstantRange &Other,
904 unsigned NoWrapKind,
905 PreferredRangeType RangeType) const {
906 // Calculate the range for "X - Y" which is guaranteed not to wrap(overflow).
907 // (X is from this, and Y is from Other)
908 if (isEmptySet() || Other.isEmptySet())
909 return getEmpty();
910 if (isFullSet() && Other.isFullSet())
911 return getFull();
912
913 using OBO = OverflowingBinaryOperator;
914 ConstantRange Result = sub(Other);
915
916 // If an overflow happens for every value pair in these two constant ranges,
917 // we must return Empty set. In signed case, we get that for free, because we
918 // get lucky that intersection of sub() with ssub_sat() results in an
919 // empty set. But for unsigned we must perform the overflow check manually.
920
921 if (NoWrapKind & OBO::NoSignedWrap)
922 Result = Result.intersectWith(ssub_sat(Other), RangeType);
923
924 if (NoWrapKind & OBO::NoUnsignedWrap) {
925 if (getUnsignedMax().ult(Other.getUnsignedMin()))
926 return getEmpty(); // Always overflows.
927 Result = Result.intersectWith(usub_sat(Other), RangeType);
928 }
929
930 return Result;
931 }
932
933 ConstantRange
multiply(const ConstantRange & Other) const934 ConstantRange::multiply(const ConstantRange &Other) const {
935 // TODO: If either operand is a single element and the multiply is known to
936 // be non-wrapping, round the result min and max value to the appropriate
937 // multiple of that element. If wrapping is possible, at least adjust the
938 // range according to the greatest power-of-two factor of the single element.
939
940 if (isEmptySet() || Other.isEmptySet())
941 return getEmpty();
942
943 // Multiplication is signedness-independent. However different ranges can be
944 // obtained depending on how the input ranges are treated. These different
945 // ranges are all conservatively correct, but one might be better than the
946 // other. We calculate two ranges; one treating the inputs as unsigned
947 // and the other signed, then return the smallest of these ranges.
948
949 // Unsigned range first.
950 APInt this_min = getUnsignedMin().zext(getBitWidth() * 2);
951 APInt this_max = getUnsignedMax().zext(getBitWidth() * 2);
952 APInt Other_min = Other.getUnsignedMin().zext(getBitWidth() * 2);
953 APInt Other_max = Other.getUnsignedMax().zext(getBitWidth() * 2);
954
955 ConstantRange Result_zext = ConstantRange(this_min * Other_min,
956 this_max * Other_max + 1);
957 ConstantRange UR = Result_zext.truncate(getBitWidth());
958
959 // If the unsigned range doesn't wrap, and isn't negative then it's a range
960 // from one positive number to another which is as good as we can generate.
961 // In this case, skip the extra work of generating signed ranges which aren't
962 // going to be better than this range.
963 if (!UR.isUpperWrapped() &&
964 (UR.getUpper().isNonNegative() || UR.getUpper().isMinSignedValue()))
965 return UR;
966
967 // Now the signed range. Because we could be dealing with negative numbers
968 // here, the lower bound is the smallest of the cartesian product of the
969 // lower and upper ranges; for example:
970 // [-1,4) * [-2,3) = min(-1*-2, -1*2, 3*-2, 3*2) = -6.
971 // Similarly for the upper bound, swapping min for max.
972
973 this_min = getSignedMin().sext(getBitWidth() * 2);
974 this_max = getSignedMax().sext(getBitWidth() * 2);
975 Other_min = Other.getSignedMin().sext(getBitWidth() * 2);
976 Other_max = Other.getSignedMax().sext(getBitWidth() * 2);
977
978 auto L = {this_min * Other_min, this_min * Other_max,
979 this_max * Other_min, this_max * Other_max};
980 auto Compare = [](const APInt &A, const APInt &B) { return A.slt(B); };
981 ConstantRange Result_sext(std::min(L, Compare), std::max(L, Compare) + 1);
982 ConstantRange SR = Result_sext.truncate(getBitWidth());
983
984 return UR.isSizeStrictlySmallerThan(SR) ? UR : SR;
985 }
986
987 ConstantRange
smax(const ConstantRange & Other) const988 ConstantRange::smax(const ConstantRange &Other) const {
989 // X smax Y is: range(smax(X_smin, Y_smin),
990 // smax(X_smax, Y_smax))
991 if (isEmptySet() || Other.isEmptySet())
992 return getEmpty();
993 APInt NewL = APIntOps::smax(getSignedMin(), Other.getSignedMin());
994 APInt NewU = APIntOps::smax(getSignedMax(), Other.getSignedMax()) + 1;
995 return getNonEmpty(std::move(NewL), std::move(NewU));
996 }
997
998 ConstantRange
umax(const ConstantRange & Other) const999 ConstantRange::umax(const ConstantRange &Other) const {
1000 // X umax Y is: range(umax(X_umin, Y_umin),
1001 // umax(X_umax, Y_umax))
1002 if (isEmptySet() || Other.isEmptySet())
1003 return getEmpty();
1004 APInt NewL = APIntOps::umax(getUnsignedMin(), Other.getUnsignedMin());
1005 APInt NewU = APIntOps::umax(getUnsignedMax(), Other.getUnsignedMax()) + 1;
1006 return getNonEmpty(std::move(NewL), std::move(NewU));
1007 }
1008
1009 ConstantRange
smin(const ConstantRange & Other) const1010 ConstantRange::smin(const ConstantRange &Other) const {
1011 // X smin Y is: range(smin(X_smin, Y_smin),
1012 // smin(X_smax, Y_smax))
1013 if (isEmptySet() || Other.isEmptySet())
1014 return getEmpty();
1015 APInt NewL = APIntOps::smin(getSignedMin(), Other.getSignedMin());
1016 APInt NewU = APIntOps::smin(getSignedMax(), Other.getSignedMax()) + 1;
1017 return getNonEmpty(std::move(NewL), std::move(NewU));
1018 }
1019
1020 ConstantRange
umin(const ConstantRange & Other) const1021 ConstantRange::umin(const ConstantRange &Other) const {
1022 // X umin Y is: range(umin(X_umin, Y_umin),
1023 // umin(X_umax, Y_umax))
1024 if (isEmptySet() || Other.isEmptySet())
1025 return getEmpty();
1026 APInt NewL = APIntOps::umin(getUnsignedMin(), Other.getUnsignedMin());
1027 APInt NewU = APIntOps::umin(getUnsignedMax(), Other.getUnsignedMax()) + 1;
1028 return getNonEmpty(std::move(NewL), std::move(NewU));
1029 }
1030
1031 ConstantRange
udiv(const ConstantRange & RHS) const1032 ConstantRange::udiv(const ConstantRange &RHS) const {
1033 if (isEmptySet() || RHS.isEmptySet() || RHS.getUnsignedMax().isNullValue())
1034 return getEmpty();
1035
1036 APInt Lower = getUnsignedMin().udiv(RHS.getUnsignedMax());
1037
1038 APInt RHS_umin = RHS.getUnsignedMin();
1039 if (RHS_umin.isNullValue()) {
1040 // We want the lowest value in RHS excluding zero. Usually that would be 1
1041 // except for a range in the form of [X, 1) in which case it would be X.
1042 if (RHS.getUpper() == 1)
1043 RHS_umin = RHS.getLower();
1044 else
1045 RHS_umin = 1;
1046 }
1047
1048 APInt Upper = getUnsignedMax().udiv(RHS_umin) + 1;
1049 return getNonEmpty(std::move(Lower), std::move(Upper));
1050 }
1051
sdiv(const ConstantRange & RHS) const1052 ConstantRange ConstantRange::sdiv(const ConstantRange &RHS) const {
1053 // We split up the LHS and RHS into positive and negative components
1054 // and then also compute the positive and negative components of the result
1055 // separately by combining division results with the appropriate signs.
1056 APInt Zero = APInt::getNullValue(getBitWidth());
1057 APInt SignedMin = APInt::getSignedMinValue(getBitWidth());
1058 ConstantRange PosFilter(APInt(getBitWidth(), 1), SignedMin);
1059 ConstantRange NegFilter(SignedMin, Zero);
1060 ConstantRange PosL = intersectWith(PosFilter);
1061 ConstantRange NegL = intersectWith(NegFilter);
1062 ConstantRange PosR = RHS.intersectWith(PosFilter);
1063 ConstantRange NegR = RHS.intersectWith(NegFilter);
1064
1065 ConstantRange PosRes = getEmpty();
1066 if (!PosL.isEmptySet() && !PosR.isEmptySet())
1067 // pos / pos = pos.
1068 PosRes = ConstantRange(PosL.Lower.sdiv(PosR.Upper - 1),
1069 (PosL.Upper - 1).sdiv(PosR.Lower) + 1);
1070
1071 if (!NegL.isEmptySet() && !NegR.isEmptySet()) {
1072 // neg / neg = pos.
1073 //
1074 // We need to deal with one tricky case here: SignedMin / -1 is UB on the
1075 // IR level, so we'll want to exclude this case when calculating bounds.
1076 // (For APInts the operation is well-defined and yields SignedMin.) We
1077 // handle this by dropping either SignedMin from the LHS or -1 from the RHS.
1078 APInt Lo = (NegL.Upper - 1).sdiv(NegR.Lower);
1079 if (NegL.Lower.isMinSignedValue() && NegR.Upper.isNullValue()) {
1080 // Remove -1 from the LHS. Skip if it's the only element, as this would
1081 // leave us with an empty set.
1082 if (!NegR.Lower.isAllOnesValue()) {
1083 APInt AdjNegRUpper;
1084 if (RHS.Lower.isAllOnesValue())
1085 // Negative part of [-1, X] without -1 is [SignedMin, X].
1086 AdjNegRUpper = RHS.Upper;
1087 else
1088 // [X, -1] without -1 is [X, -2].
1089 AdjNegRUpper = NegR.Upper - 1;
1090
1091 PosRes = PosRes.unionWith(
1092 ConstantRange(Lo, NegL.Lower.sdiv(AdjNegRUpper - 1) + 1));
1093 }
1094
1095 // Remove SignedMin from the RHS. Skip if it's the only element, as this
1096 // would leave us with an empty set.
1097 if (NegL.Upper != SignedMin + 1) {
1098 APInt AdjNegLLower;
1099 if (Upper == SignedMin + 1)
1100 // Negative part of [X, SignedMin] without SignedMin is [X, -1].
1101 AdjNegLLower = Lower;
1102 else
1103 // [SignedMin, X] without SignedMin is [SignedMin + 1, X].
1104 AdjNegLLower = NegL.Lower + 1;
1105
1106 PosRes = PosRes.unionWith(
1107 ConstantRange(std::move(Lo),
1108 AdjNegLLower.sdiv(NegR.Upper - 1) + 1));
1109 }
1110 } else {
1111 PosRes = PosRes.unionWith(
1112 ConstantRange(std::move(Lo), NegL.Lower.sdiv(NegR.Upper - 1) + 1));
1113 }
1114 }
1115
1116 ConstantRange NegRes = getEmpty();
1117 if (!PosL.isEmptySet() && !NegR.isEmptySet())
1118 // pos / neg = neg.
1119 NegRes = ConstantRange((PosL.Upper - 1).sdiv(NegR.Upper - 1),
1120 PosL.Lower.sdiv(NegR.Lower) + 1);
1121
1122 if (!NegL.isEmptySet() && !PosR.isEmptySet())
1123 // neg / pos = neg.
1124 NegRes = NegRes.unionWith(
1125 ConstantRange(NegL.Lower.sdiv(PosR.Lower),
1126 (NegL.Upper - 1).sdiv(PosR.Upper - 1) + 1));
1127
1128 // Prefer a non-wrapping signed range here.
1129 ConstantRange Res = NegRes.unionWith(PosRes, PreferredRangeType::Signed);
1130
1131 // Preserve the zero that we dropped when splitting the LHS by sign.
1132 if (contains(Zero) && (!PosR.isEmptySet() || !NegR.isEmptySet()))
1133 Res = Res.unionWith(ConstantRange(Zero));
1134 return Res;
1135 }
1136
urem(const ConstantRange & RHS) const1137 ConstantRange ConstantRange::urem(const ConstantRange &RHS) const {
1138 if (isEmptySet() || RHS.isEmptySet() || RHS.getUnsignedMax().isNullValue())
1139 return getEmpty();
1140
1141 // L % R for L < R is L.
1142 if (getUnsignedMax().ult(RHS.getUnsignedMin()))
1143 return *this;
1144
1145 // L % R is <= L and < R.
1146 APInt Upper = APIntOps::umin(getUnsignedMax(), RHS.getUnsignedMax() - 1) + 1;
1147 return getNonEmpty(APInt::getNullValue(getBitWidth()), std::move(Upper));
1148 }
1149
srem(const ConstantRange & RHS) const1150 ConstantRange ConstantRange::srem(const ConstantRange &RHS) const {
1151 if (isEmptySet() || RHS.isEmptySet())
1152 return getEmpty();
1153
1154 ConstantRange AbsRHS = RHS.abs();
1155 APInt MinAbsRHS = AbsRHS.getUnsignedMin();
1156 APInt MaxAbsRHS = AbsRHS.getUnsignedMax();
1157
1158 // Modulus by zero is UB.
1159 if (MaxAbsRHS.isNullValue())
1160 return getEmpty();
1161
1162 if (MinAbsRHS.isNullValue())
1163 ++MinAbsRHS;
1164
1165 APInt MinLHS = getSignedMin(), MaxLHS = getSignedMax();
1166
1167 if (MinLHS.isNonNegative()) {
1168 // L % R for L < R is L.
1169 if (MaxLHS.ult(MinAbsRHS))
1170 return *this;
1171
1172 // L % R is <= L and < R.
1173 APInt Upper = APIntOps::umin(MaxLHS, MaxAbsRHS - 1) + 1;
1174 return ConstantRange(APInt::getNullValue(getBitWidth()), std::move(Upper));
1175 }
1176
1177 // Same basic logic as above, but the result is negative.
1178 if (MaxLHS.isNegative()) {
1179 if (MinLHS.ugt(-MinAbsRHS))
1180 return *this;
1181
1182 APInt Lower = APIntOps::umax(MinLHS, -MaxAbsRHS + 1);
1183 return ConstantRange(std::move(Lower), APInt(getBitWidth(), 1));
1184 }
1185
1186 // LHS range crosses zero.
1187 APInt Lower = APIntOps::umax(MinLHS, -MaxAbsRHS + 1);
1188 APInt Upper = APIntOps::umin(MaxLHS, MaxAbsRHS - 1) + 1;
1189 return ConstantRange(std::move(Lower), std::move(Upper));
1190 }
1191
1192 ConstantRange
binaryAnd(const ConstantRange & Other) const1193 ConstantRange::binaryAnd(const ConstantRange &Other) const {
1194 if (isEmptySet() || Other.isEmptySet())
1195 return getEmpty();
1196
1197 // TODO: replace this with something less conservative
1198
1199 APInt umin = APIntOps::umin(Other.getUnsignedMax(), getUnsignedMax());
1200 return getNonEmpty(APInt::getNullValue(getBitWidth()), std::move(umin) + 1);
1201 }
1202
1203 ConstantRange
binaryOr(const ConstantRange & Other) const1204 ConstantRange::binaryOr(const ConstantRange &Other) const {
1205 if (isEmptySet() || Other.isEmptySet())
1206 return getEmpty();
1207
1208 // TODO: replace this with something less conservative
1209
1210 APInt umax = APIntOps::umax(getUnsignedMin(), Other.getUnsignedMin());
1211 return getNonEmpty(std::move(umax), APInt::getNullValue(getBitWidth()));
1212 }
1213
1214 ConstantRange
shl(const ConstantRange & Other) const1215 ConstantRange::shl(const ConstantRange &Other) const {
1216 if (isEmptySet() || Other.isEmptySet())
1217 return getEmpty();
1218
1219 APInt max = getUnsignedMax();
1220 APInt Other_umax = Other.getUnsignedMax();
1221
1222 // If we are shifting by maximum amount of
1223 // zero return return the original range.
1224 if (Other_umax.isNullValue())
1225 return *this;
1226 // there's overflow!
1227 if (Other_umax.ugt(max.countLeadingZeros()))
1228 return getFull();
1229
1230 // FIXME: implement the other tricky cases
1231
1232 APInt min = getUnsignedMin();
1233 min <<= Other.getUnsignedMin();
1234 max <<= Other_umax;
1235
1236 return ConstantRange(std::move(min), std::move(max) + 1);
1237 }
1238
1239 ConstantRange
lshr(const ConstantRange & Other) const1240 ConstantRange::lshr(const ConstantRange &Other) const {
1241 if (isEmptySet() || Other.isEmptySet())
1242 return getEmpty();
1243
1244 APInt max = getUnsignedMax().lshr(Other.getUnsignedMin()) + 1;
1245 APInt min = getUnsignedMin().lshr(Other.getUnsignedMax());
1246 return getNonEmpty(std::move(min), std::move(max));
1247 }
1248
1249 ConstantRange
ashr(const ConstantRange & Other) const1250 ConstantRange::ashr(const ConstantRange &Other) const {
1251 if (isEmptySet() || Other.isEmptySet())
1252 return getEmpty();
1253
1254 // May straddle zero, so handle both positive and negative cases.
1255 // 'PosMax' is the upper bound of the result of the ashr
1256 // operation, when Upper of the LHS of ashr is a non-negative.
1257 // number. Since ashr of a non-negative number will result in a
1258 // smaller number, the Upper value of LHS is shifted right with
1259 // the minimum value of 'Other' instead of the maximum value.
1260 APInt PosMax = getSignedMax().ashr(Other.getUnsignedMin()) + 1;
1261
1262 // 'PosMin' is the lower bound of the result of the ashr
1263 // operation, when Lower of the LHS is a non-negative number.
1264 // Since ashr of a non-negative number will result in a smaller
1265 // number, the Lower value of LHS is shifted right with the
1266 // maximum value of 'Other'.
1267 APInt PosMin = getSignedMin().ashr(Other.getUnsignedMax());
1268
1269 // 'NegMax' is the upper bound of the result of the ashr
1270 // operation, when Upper of the LHS of ashr is a negative number.
1271 // Since 'ashr' of a negative number will result in a bigger
1272 // number, the Upper value of LHS is shifted right with the
1273 // maximum value of 'Other'.
1274 APInt NegMax = getSignedMax().ashr(Other.getUnsignedMax()) + 1;
1275
1276 // 'NegMin' is the lower bound of the result of the ashr
1277 // operation, when Lower of the LHS of ashr is a negative number.
1278 // Since 'ashr' of a negative number will result in a bigger
1279 // number, the Lower value of LHS is shifted right with the
1280 // minimum value of 'Other'.
1281 APInt NegMin = getSignedMin().ashr(Other.getUnsignedMin());
1282
1283 APInt max, min;
1284 if (getSignedMin().isNonNegative()) {
1285 // Upper and Lower of LHS are non-negative.
1286 min = PosMin;
1287 max = PosMax;
1288 } else if (getSignedMax().isNegative()) {
1289 // Upper and Lower of LHS are negative.
1290 min = NegMin;
1291 max = NegMax;
1292 } else {
1293 // Upper is non-negative and Lower is negative.
1294 min = NegMin;
1295 max = PosMax;
1296 }
1297 return getNonEmpty(std::move(min), std::move(max));
1298 }
1299
uadd_sat(const ConstantRange & Other) const1300 ConstantRange ConstantRange::uadd_sat(const ConstantRange &Other) const {
1301 if (isEmptySet() || Other.isEmptySet())
1302 return getEmpty();
1303
1304 APInt NewL = getUnsignedMin().uadd_sat(Other.getUnsignedMin());
1305 APInt NewU = getUnsignedMax().uadd_sat(Other.getUnsignedMax()) + 1;
1306 return getNonEmpty(std::move(NewL), std::move(NewU));
1307 }
1308
sadd_sat(const ConstantRange & Other) const1309 ConstantRange ConstantRange::sadd_sat(const ConstantRange &Other) const {
1310 if (isEmptySet() || Other.isEmptySet())
1311 return getEmpty();
1312
1313 APInt NewL = getSignedMin().sadd_sat(Other.getSignedMin());
1314 APInt NewU = getSignedMax().sadd_sat(Other.getSignedMax()) + 1;
1315 return getNonEmpty(std::move(NewL), std::move(NewU));
1316 }
1317
usub_sat(const ConstantRange & Other) const1318 ConstantRange ConstantRange::usub_sat(const ConstantRange &Other) const {
1319 if (isEmptySet() || Other.isEmptySet())
1320 return getEmpty();
1321
1322 APInt NewL = getUnsignedMin().usub_sat(Other.getUnsignedMax());
1323 APInt NewU = getUnsignedMax().usub_sat(Other.getUnsignedMin()) + 1;
1324 return getNonEmpty(std::move(NewL), std::move(NewU));
1325 }
1326
ssub_sat(const ConstantRange & Other) const1327 ConstantRange ConstantRange::ssub_sat(const ConstantRange &Other) const {
1328 if (isEmptySet() || Other.isEmptySet())
1329 return getEmpty();
1330
1331 APInt NewL = getSignedMin().ssub_sat(Other.getSignedMax());
1332 APInt NewU = getSignedMax().ssub_sat(Other.getSignedMin()) + 1;
1333 return getNonEmpty(std::move(NewL), std::move(NewU));
1334 }
1335
umul_sat(const ConstantRange & Other) const1336 ConstantRange ConstantRange::umul_sat(const ConstantRange &Other) const {
1337 if (isEmptySet() || Other.isEmptySet())
1338 return getEmpty();
1339
1340 APInt NewL = getUnsignedMin().umul_sat(Other.getUnsignedMin());
1341 APInt NewU = getUnsignedMax().umul_sat(Other.getUnsignedMax()) + 1;
1342 return getNonEmpty(std::move(NewL), std::move(NewU));
1343 }
1344
smul_sat(const ConstantRange & Other) const1345 ConstantRange ConstantRange::smul_sat(const ConstantRange &Other) const {
1346 if (isEmptySet() || Other.isEmptySet())
1347 return getEmpty();
1348
1349 // Because we could be dealing with negative numbers here, the lower bound is
1350 // the smallest of the cartesian product of the lower and upper ranges;
1351 // for example:
1352 // [-1,4) * [-2,3) = min(-1*-2, -1*2, 3*-2, 3*2) = -6.
1353 // Similarly for the upper bound, swapping min for max.
1354
1355 APInt this_min = getSignedMin().sext(getBitWidth() * 2);
1356 APInt this_max = getSignedMax().sext(getBitWidth() * 2);
1357 APInt Other_min = Other.getSignedMin().sext(getBitWidth() * 2);
1358 APInt Other_max = Other.getSignedMax().sext(getBitWidth() * 2);
1359
1360 auto L = {this_min * Other_min, this_min * Other_max, this_max * Other_min,
1361 this_max * Other_max};
1362 auto Compare = [](const APInt &A, const APInt &B) { return A.slt(B); };
1363
1364 // Note that we wanted to perform signed saturating multiplication,
1365 // so since we performed plain multiplication in twice the bitwidth,
1366 // we need to perform signed saturating truncation.
1367 return getNonEmpty(std::min(L, Compare).truncSSat(getBitWidth()),
1368 std::max(L, Compare).truncSSat(getBitWidth()) + 1);
1369 }
1370
ushl_sat(const ConstantRange & Other) const1371 ConstantRange ConstantRange::ushl_sat(const ConstantRange &Other) const {
1372 if (isEmptySet() || Other.isEmptySet())
1373 return getEmpty();
1374
1375 APInt NewL = getUnsignedMin().ushl_sat(Other.getUnsignedMin());
1376 APInt NewU = getUnsignedMax().ushl_sat(Other.getUnsignedMax()) + 1;
1377 return getNonEmpty(std::move(NewL), std::move(NewU));
1378 }
1379
sshl_sat(const ConstantRange & Other) const1380 ConstantRange ConstantRange::sshl_sat(const ConstantRange &Other) const {
1381 if (isEmptySet() || Other.isEmptySet())
1382 return getEmpty();
1383
1384 APInt Min = getSignedMin(), Max = getSignedMax();
1385 APInt ShAmtMin = Other.getUnsignedMin(), ShAmtMax = Other.getUnsignedMax();
1386 APInt NewL = Min.sshl_sat(Min.isNonNegative() ? ShAmtMin : ShAmtMax);
1387 APInt NewU = Max.sshl_sat(Max.isNegative() ? ShAmtMin : ShAmtMax) + 1;
1388 return getNonEmpty(std::move(NewL), std::move(NewU));
1389 }
1390
inverse() const1391 ConstantRange ConstantRange::inverse() const {
1392 if (isFullSet())
1393 return getEmpty();
1394 if (isEmptySet())
1395 return getFull();
1396 return ConstantRange(Upper, Lower);
1397 }
1398
abs() const1399 ConstantRange ConstantRange::abs() const {
1400 if (isEmptySet())
1401 return getEmpty();
1402
1403 if (isSignWrappedSet()) {
1404 APInt Lo;
1405 // Check whether the range crosses zero.
1406 if (Upper.isStrictlyPositive() || !Lower.isStrictlyPositive())
1407 Lo = APInt::getNullValue(getBitWidth());
1408 else
1409 Lo = APIntOps::umin(Lower, -Upper + 1);
1410
1411 // SignedMin is included in the result range.
1412 return ConstantRange(Lo, APInt::getSignedMinValue(getBitWidth()) + 1);
1413 }
1414
1415 APInt SMin = getSignedMin(), SMax = getSignedMax();
1416
1417 // All non-negative.
1418 if (SMin.isNonNegative())
1419 return *this;
1420
1421 // All negative.
1422 if (SMax.isNegative())
1423 return ConstantRange(-SMax, -SMin + 1);
1424
1425 // Range crosses zero.
1426 return ConstantRange(APInt::getNullValue(getBitWidth()),
1427 APIntOps::umax(-SMin, SMax) + 1);
1428 }
1429
unsignedAddMayOverflow(const ConstantRange & Other) const1430 ConstantRange::OverflowResult ConstantRange::unsignedAddMayOverflow(
1431 const ConstantRange &Other) const {
1432 if (isEmptySet() || Other.isEmptySet())
1433 return OverflowResult::MayOverflow;
1434
1435 APInt Min = getUnsignedMin(), Max = getUnsignedMax();
1436 APInt OtherMin = Other.getUnsignedMin(), OtherMax = Other.getUnsignedMax();
1437
1438 // a u+ b overflows high iff a u> ~b.
1439 if (Min.ugt(~OtherMin))
1440 return OverflowResult::AlwaysOverflowsHigh;
1441 if (Max.ugt(~OtherMax))
1442 return OverflowResult::MayOverflow;
1443 return OverflowResult::NeverOverflows;
1444 }
1445
signedAddMayOverflow(const ConstantRange & Other) const1446 ConstantRange::OverflowResult ConstantRange::signedAddMayOverflow(
1447 const ConstantRange &Other) const {
1448 if (isEmptySet() || Other.isEmptySet())
1449 return OverflowResult::MayOverflow;
1450
1451 APInt Min = getSignedMin(), Max = getSignedMax();
1452 APInt OtherMin = Other.getSignedMin(), OtherMax = Other.getSignedMax();
1453
1454 APInt SignedMin = APInt::getSignedMinValue(getBitWidth());
1455 APInt SignedMax = APInt::getSignedMaxValue(getBitWidth());
1456
1457 // a s+ b overflows high iff a s>=0 && b s>= 0 && a s> smax - b.
1458 // a s+ b overflows low iff a s< 0 && b s< 0 && a s< smin - b.
1459 if (Min.isNonNegative() && OtherMin.isNonNegative() &&
1460 Min.sgt(SignedMax - OtherMin))
1461 return OverflowResult::AlwaysOverflowsHigh;
1462 if (Max.isNegative() && OtherMax.isNegative() &&
1463 Max.slt(SignedMin - OtherMax))
1464 return OverflowResult::AlwaysOverflowsLow;
1465
1466 if (Max.isNonNegative() && OtherMax.isNonNegative() &&
1467 Max.sgt(SignedMax - OtherMax))
1468 return OverflowResult::MayOverflow;
1469 if (Min.isNegative() && OtherMin.isNegative() &&
1470 Min.slt(SignedMin - OtherMin))
1471 return OverflowResult::MayOverflow;
1472
1473 return OverflowResult::NeverOverflows;
1474 }
1475
unsignedSubMayOverflow(const ConstantRange & Other) const1476 ConstantRange::OverflowResult ConstantRange::unsignedSubMayOverflow(
1477 const ConstantRange &Other) const {
1478 if (isEmptySet() || Other.isEmptySet())
1479 return OverflowResult::MayOverflow;
1480
1481 APInt Min = getUnsignedMin(), Max = getUnsignedMax();
1482 APInt OtherMin = Other.getUnsignedMin(), OtherMax = Other.getUnsignedMax();
1483
1484 // a u- b overflows low iff a u< b.
1485 if (Max.ult(OtherMin))
1486 return OverflowResult::AlwaysOverflowsLow;
1487 if (Min.ult(OtherMax))
1488 return OverflowResult::MayOverflow;
1489 return OverflowResult::NeverOverflows;
1490 }
1491
signedSubMayOverflow(const ConstantRange & Other) const1492 ConstantRange::OverflowResult ConstantRange::signedSubMayOverflow(
1493 const ConstantRange &Other) const {
1494 if (isEmptySet() || Other.isEmptySet())
1495 return OverflowResult::MayOverflow;
1496
1497 APInt Min = getSignedMin(), Max = getSignedMax();
1498 APInt OtherMin = Other.getSignedMin(), OtherMax = Other.getSignedMax();
1499
1500 APInt SignedMin = APInt::getSignedMinValue(getBitWidth());
1501 APInt SignedMax = APInt::getSignedMaxValue(getBitWidth());
1502
1503 // a s- b overflows high iff a s>=0 && b s< 0 && a s> smax + b.
1504 // a s- b overflows low iff a s< 0 && b s>= 0 && a s< smin + b.
1505 if (Min.isNonNegative() && OtherMax.isNegative() &&
1506 Min.sgt(SignedMax + OtherMax))
1507 return OverflowResult::AlwaysOverflowsHigh;
1508 if (Max.isNegative() && OtherMin.isNonNegative() &&
1509 Max.slt(SignedMin + OtherMin))
1510 return OverflowResult::AlwaysOverflowsLow;
1511
1512 if (Max.isNonNegative() && OtherMin.isNegative() &&
1513 Max.sgt(SignedMax + OtherMin))
1514 return OverflowResult::MayOverflow;
1515 if (Min.isNegative() && OtherMax.isNonNegative() &&
1516 Min.slt(SignedMin + OtherMax))
1517 return OverflowResult::MayOverflow;
1518
1519 return OverflowResult::NeverOverflows;
1520 }
1521
unsignedMulMayOverflow(const ConstantRange & Other) const1522 ConstantRange::OverflowResult ConstantRange::unsignedMulMayOverflow(
1523 const ConstantRange &Other) const {
1524 if (isEmptySet() || Other.isEmptySet())
1525 return OverflowResult::MayOverflow;
1526
1527 APInt Min = getUnsignedMin(), Max = getUnsignedMax();
1528 APInt OtherMin = Other.getUnsignedMin(), OtherMax = Other.getUnsignedMax();
1529 bool Overflow;
1530
1531 (void) Min.umul_ov(OtherMin, Overflow);
1532 if (Overflow)
1533 return OverflowResult::AlwaysOverflowsHigh;
1534
1535 (void) Max.umul_ov(OtherMax, Overflow);
1536 if (Overflow)
1537 return OverflowResult::MayOverflow;
1538
1539 return OverflowResult::NeverOverflows;
1540 }
1541
print(raw_ostream & OS) const1542 void ConstantRange::print(raw_ostream &OS) const {
1543 if (isFullSet())
1544 OS << "full-set";
1545 else if (isEmptySet())
1546 OS << "empty-set";
1547 else
1548 OS << "[" << Lower << "," << Upper << ")";
1549 }
1550
1551 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
dump() const1552 LLVM_DUMP_METHOD void ConstantRange::dump() const {
1553 print(dbgs());
1554 }
1555 #endif
1556
getConstantRangeFromMetadata(const MDNode & Ranges)1557 ConstantRange llvm::getConstantRangeFromMetadata(const MDNode &Ranges) {
1558 const unsigned NumRanges = Ranges.getNumOperands() / 2;
1559 assert(NumRanges >= 1 && "Must have at least one range!");
1560 assert(Ranges.getNumOperands() % 2 == 0 && "Must be a sequence of pairs");
1561
1562 auto *FirstLow = mdconst::extract<ConstantInt>(Ranges.getOperand(0));
1563 auto *FirstHigh = mdconst::extract<ConstantInt>(Ranges.getOperand(1));
1564
1565 ConstantRange CR(FirstLow->getValue(), FirstHigh->getValue());
1566
1567 for (unsigned i = 1; i < NumRanges; ++i) {
1568 auto *Low = mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 0));
1569 auto *High = mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 1));
1570
1571 // Note: unionWith will potentially create a range that contains values not
1572 // contained in any of the original N ranges.
1573 CR = CR.unionWith(ConstantRange(Low->getValue(), High->getValue()));
1574 }
1575
1576 return CR;
1577 }
1578