1 //===-- HexagonISelLoweringHVX.cpp --- Lowering HVX operations ------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8
9 #include "HexagonISelLowering.h"
10 #include "HexagonRegisterInfo.h"
11 #include "HexagonSubtarget.h"
12 #include "llvm/Support/CommandLine.h"
13
14 using namespace llvm;
15
16 static const MVT LegalV64[] = { MVT::v64i8, MVT::v32i16, MVT::v16i32 };
17 static const MVT LegalW64[] = { MVT::v128i8, MVT::v64i16, MVT::v32i32 };
18 static const MVT LegalV128[] = { MVT::v128i8, MVT::v64i16, MVT::v32i32 };
19 static const MVT LegalW128[] = { MVT::v256i8, MVT::v128i16, MVT::v64i32 };
20
21
22 void
initializeHVXLowering()23 HexagonTargetLowering::initializeHVXLowering() {
24 if (Subtarget.useHVX64BOps()) {
25 addRegisterClass(MVT::v64i8, &Hexagon::HvxVRRegClass);
26 addRegisterClass(MVT::v32i16, &Hexagon::HvxVRRegClass);
27 addRegisterClass(MVT::v16i32, &Hexagon::HvxVRRegClass);
28 addRegisterClass(MVT::v128i8, &Hexagon::HvxWRRegClass);
29 addRegisterClass(MVT::v64i16, &Hexagon::HvxWRRegClass);
30 addRegisterClass(MVT::v32i32, &Hexagon::HvxWRRegClass);
31 // These "short" boolean vector types should be legal because
32 // they will appear as results of vector compares. If they were
33 // not legal, type legalization would try to make them legal
34 // and that would require using operations that do not use or
35 // produce such types. That, in turn, would imply using custom
36 // nodes, which would be unoptimizable by the DAG combiner.
37 // The idea is to rely on target-independent operations as much
38 // as possible.
39 addRegisterClass(MVT::v16i1, &Hexagon::HvxQRRegClass);
40 addRegisterClass(MVT::v32i1, &Hexagon::HvxQRRegClass);
41 addRegisterClass(MVT::v64i1, &Hexagon::HvxQRRegClass);
42 addRegisterClass(MVT::v512i1, &Hexagon::HvxQRRegClass);
43 } else if (Subtarget.useHVX128BOps()) {
44 addRegisterClass(MVT::v128i8, &Hexagon::HvxVRRegClass);
45 addRegisterClass(MVT::v64i16, &Hexagon::HvxVRRegClass);
46 addRegisterClass(MVT::v32i32, &Hexagon::HvxVRRegClass);
47 addRegisterClass(MVT::v256i8, &Hexagon::HvxWRRegClass);
48 addRegisterClass(MVT::v128i16, &Hexagon::HvxWRRegClass);
49 addRegisterClass(MVT::v64i32, &Hexagon::HvxWRRegClass);
50 addRegisterClass(MVT::v32i1, &Hexagon::HvxQRRegClass);
51 addRegisterClass(MVT::v64i1, &Hexagon::HvxQRRegClass);
52 addRegisterClass(MVT::v128i1, &Hexagon::HvxQRRegClass);
53 addRegisterClass(MVT::v1024i1, &Hexagon::HvxQRRegClass);
54 }
55
56 // Set up operation actions.
57
58 bool Use64b = Subtarget.useHVX64BOps();
59 ArrayRef<MVT> LegalV = Use64b ? LegalV64 : LegalV128;
60 ArrayRef<MVT> LegalW = Use64b ? LegalW64 : LegalW128;
61 MVT ByteV = Use64b ? MVT::v64i8 : MVT::v128i8;
62 MVT ByteW = Use64b ? MVT::v128i8 : MVT::v256i8;
63
64 auto setPromoteTo = [this] (unsigned Opc, MVT FromTy, MVT ToTy) {
65 setOperationAction(Opc, FromTy, Promote);
66 AddPromotedToType(Opc, FromTy, ToTy);
67 };
68
69 setOperationAction(ISD::VECTOR_SHUFFLE, ByteV, Legal);
70 setOperationAction(ISD::VECTOR_SHUFFLE, ByteW, Legal);
71
72 for (MVT T : LegalV) {
73 setIndexedLoadAction(ISD::POST_INC, T, Legal);
74 setIndexedStoreAction(ISD::POST_INC, T, Legal);
75
76 setOperationAction(ISD::AND, T, Legal);
77 setOperationAction(ISD::OR, T, Legal);
78 setOperationAction(ISD::XOR, T, Legal);
79 setOperationAction(ISD::ADD, T, Legal);
80 setOperationAction(ISD::SUB, T, Legal);
81 setOperationAction(ISD::CTPOP, T, Legal);
82 setOperationAction(ISD::CTLZ, T, Legal);
83 if (T != ByteV) {
84 setOperationAction(ISD::SIGN_EXTEND_VECTOR_INREG, T, Legal);
85 setOperationAction(ISD::ZERO_EXTEND_VECTOR_INREG, T, Legal);
86 setOperationAction(ISD::BSWAP, T, Legal);
87 }
88
89 setOperationAction(ISD::CTTZ, T, Custom);
90 setOperationAction(ISD::LOAD, T, Custom);
91 setOperationAction(ISD::MUL, T, Custom);
92 setOperationAction(ISD::MULHS, T, Custom);
93 setOperationAction(ISD::MULHU, T, Custom);
94 setOperationAction(ISD::BUILD_VECTOR, T, Custom);
95 // Make concat-vectors custom to handle concats of more than 2 vectors.
96 setOperationAction(ISD::CONCAT_VECTORS, T, Custom);
97 setOperationAction(ISD::INSERT_SUBVECTOR, T, Custom);
98 setOperationAction(ISD::INSERT_VECTOR_ELT, T, Custom);
99 setOperationAction(ISD::EXTRACT_SUBVECTOR, T, Custom);
100 setOperationAction(ISD::EXTRACT_VECTOR_ELT, T, Custom);
101 setOperationAction(ISD::ANY_EXTEND, T, Custom);
102 setOperationAction(ISD::SIGN_EXTEND, T, Custom);
103 setOperationAction(ISD::ZERO_EXTEND, T, Custom);
104 if (T != ByteV) {
105 setOperationAction(ISD::ANY_EXTEND_VECTOR_INREG, T, Custom);
106 // HVX only has shifts of words and halfwords.
107 setOperationAction(ISD::SRA, T, Custom);
108 setOperationAction(ISD::SHL, T, Custom);
109 setOperationAction(ISD::SRL, T, Custom);
110
111 // Promote all shuffles to operate on vectors of bytes.
112 setPromoteTo(ISD::VECTOR_SHUFFLE, T, ByteV);
113 }
114
115 setCondCodeAction(ISD::SETNE, T, Expand);
116 setCondCodeAction(ISD::SETLE, T, Expand);
117 setCondCodeAction(ISD::SETGE, T, Expand);
118 setCondCodeAction(ISD::SETLT, T, Expand);
119 setCondCodeAction(ISD::SETULE, T, Expand);
120 setCondCodeAction(ISD::SETUGE, T, Expand);
121 setCondCodeAction(ISD::SETULT, T, Expand);
122 }
123
124 for (MVT T : LegalW) {
125 // Custom-lower BUILD_VECTOR for vector pairs. The standard (target-
126 // independent) handling of it would convert it to a load, which is
127 // not always the optimal choice.
128 setOperationAction(ISD::BUILD_VECTOR, T, Custom);
129 // Make concat-vectors custom to handle concats of more than 2 vectors.
130 setOperationAction(ISD::CONCAT_VECTORS, T, Custom);
131
132 // Custom-lower these operations for pairs. Expand them into a concat
133 // of the corresponding operations on individual vectors.
134 setOperationAction(ISD::ANY_EXTEND, T, Custom);
135 setOperationAction(ISD::SIGN_EXTEND, T, Custom);
136 setOperationAction(ISD::ZERO_EXTEND, T, Custom);
137 setOperationAction(ISD::SIGN_EXTEND_INREG, T, Custom);
138 setOperationAction(ISD::ANY_EXTEND_VECTOR_INREG, T, Custom);
139 setOperationAction(ISD::SIGN_EXTEND_VECTOR_INREG, T, Legal);
140 setOperationAction(ISD::ZERO_EXTEND_VECTOR_INREG, T, Legal);
141
142 setOperationAction(ISD::LOAD, T, Custom);
143 setOperationAction(ISD::STORE, T, Custom);
144 setOperationAction(ISD::CTLZ, T, Custom);
145 setOperationAction(ISD::CTTZ, T, Custom);
146 setOperationAction(ISD::CTPOP, T, Custom);
147
148 setOperationAction(ISD::ADD, T, Legal);
149 setOperationAction(ISD::SUB, T, Legal);
150 setOperationAction(ISD::MUL, T, Custom);
151 setOperationAction(ISD::MULHS, T, Custom);
152 setOperationAction(ISD::MULHU, T, Custom);
153 setOperationAction(ISD::AND, T, Custom);
154 setOperationAction(ISD::OR, T, Custom);
155 setOperationAction(ISD::XOR, T, Custom);
156 setOperationAction(ISD::SETCC, T, Custom);
157 setOperationAction(ISD::VSELECT, T, Custom);
158 if (T != ByteW) {
159 setOperationAction(ISD::SRA, T, Custom);
160 setOperationAction(ISD::SHL, T, Custom);
161 setOperationAction(ISD::SRL, T, Custom);
162
163 // Promote all shuffles to operate on vectors of bytes.
164 setPromoteTo(ISD::VECTOR_SHUFFLE, T, ByteW);
165 }
166 }
167
168 // Boolean vectors.
169
170 for (MVT T : LegalW) {
171 // Boolean types for vector pairs will overlap with the boolean
172 // types for single vectors, e.g.
173 // v64i8 -> v64i1 (single)
174 // v64i16 -> v64i1 (pair)
175 // Set these actions first, and allow the single actions to overwrite
176 // any duplicates.
177 MVT BoolW = MVT::getVectorVT(MVT::i1, T.getVectorNumElements());
178 setOperationAction(ISD::SETCC, BoolW, Custom);
179 setOperationAction(ISD::AND, BoolW, Custom);
180 setOperationAction(ISD::OR, BoolW, Custom);
181 setOperationAction(ISD::XOR, BoolW, Custom);
182 }
183
184 for (MVT T : LegalV) {
185 MVT BoolV = MVT::getVectorVT(MVT::i1, T.getVectorNumElements());
186 setOperationAction(ISD::BUILD_VECTOR, BoolV, Custom);
187 setOperationAction(ISD::CONCAT_VECTORS, BoolV, Custom);
188 setOperationAction(ISD::INSERT_SUBVECTOR, BoolV, Custom);
189 setOperationAction(ISD::INSERT_VECTOR_ELT, BoolV, Custom);
190 setOperationAction(ISD::EXTRACT_SUBVECTOR, BoolV, Custom);
191 setOperationAction(ISD::EXTRACT_VECTOR_ELT, BoolV, Custom);
192 setOperationAction(ISD::AND, BoolV, Legal);
193 setOperationAction(ISD::OR, BoolV, Legal);
194 setOperationAction(ISD::XOR, BoolV, Legal);
195 }
196
197 if (Use64b)
198 for (MVT T: {MVT::v32i8, MVT::v32i16, MVT::v16i8, MVT::v16i16, MVT::v16i32})
199 setOperationAction(ISD::SIGN_EXTEND_INREG, T, Legal);
200 else
201 for (MVT T: {MVT::v64i8, MVT::v64i16, MVT::v32i8, MVT::v32i16, MVT::v32i32})
202 setOperationAction(ISD::SIGN_EXTEND_INREG, T, Legal);
203
204 setTargetDAGCombine(ISD::VSELECT);
205 }
206
207 SDValue
getInt(unsigned IntId,MVT ResTy,ArrayRef<SDValue> Ops,const SDLoc & dl,SelectionDAG & DAG) const208 HexagonTargetLowering::getInt(unsigned IntId, MVT ResTy, ArrayRef<SDValue> Ops,
209 const SDLoc &dl, SelectionDAG &DAG) const {
210 SmallVector<SDValue,4> IntOps;
211 IntOps.push_back(DAG.getConstant(IntId, dl, MVT::i32));
212 for (const SDValue &Op : Ops)
213 IntOps.push_back(Op);
214 return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, ResTy, IntOps);
215 }
216
217 MVT
typeJoin(const TypePair & Tys) const218 HexagonTargetLowering::typeJoin(const TypePair &Tys) const {
219 assert(Tys.first.getVectorElementType() == Tys.second.getVectorElementType());
220
221 MVT ElemTy = Tys.first.getVectorElementType();
222 return MVT::getVectorVT(ElemTy, Tys.first.getVectorNumElements() +
223 Tys.second.getVectorNumElements());
224 }
225
226 HexagonTargetLowering::TypePair
typeSplit(MVT VecTy) const227 HexagonTargetLowering::typeSplit(MVT VecTy) const {
228 assert(VecTy.isVector());
229 unsigned NumElem = VecTy.getVectorNumElements();
230 assert((NumElem % 2) == 0 && "Expecting even-sized vector type");
231 MVT HalfTy = MVT::getVectorVT(VecTy.getVectorElementType(), NumElem/2);
232 return { HalfTy, HalfTy };
233 }
234
235 MVT
typeExtElem(MVT VecTy,unsigned Factor) const236 HexagonTargetLowering::typeExtElem(MVT VecTy, unsigned Factor) const {
237 MVT ElemTy = VecTy.getVectorElementType();
238 MVT NewElemTy = MVT::getIntegerVT(ElemTy.getSizeInBits() * Factor);
239 return MVT::getVectorVT(NewElemTy, VecTy.getVectorNumElements());
240 }
241
242 MVT
typeTruncElem(MVT VecTy,unsigned Factor) const243 HexagonTargetLowering::typeTruncElem(MVT VecTy, unsigned Factor) const {
244 MVT ElemTy = VecTy.getVectorElementType();
245 MVT NewElemTy = MVT::getIntegerVT(ElemTy.getSizeInBits() / Factor);
246 return MVT::getVectorVT(NewElemTy, VecTy.getVectorNumElements());
247 }
248
249 SDValue
opCastElem(SDValue Vec,MVT ElemTy,SelectionDAG & DAG) const250 HexagonTargetLowering::opCastElem(SDValue Vec, MVT ElemTy,
251 SelectionDAG &DAG) const {
252 if (ty(Vec).getVectorElementType() == ElemTy)
253 return Vec;
254 MVT CastTy = tyVector(Vec.getValueType().getSimpleVT(), ElemTy);
255 return DAG.getBitcast(CastTy, Vec);
256 }
257
258 SDValue
opJoin(const VectorPair & Ops,const SDLoc & dl,SelectionDAG & DAG) const259 HexagonTargetLowering::opJoin(const VectorPair &Ops, const SDLoc &dl,
260 SelectionDAG &DAG) const {
261 return DAG.getNode(ISD::CONCAT_VECTORS, dl, typeJoin(ty(Ops)),
262 Ops.second, Ops.first);
263 }
264
265 HexagonTargetLowering::VectorPair
opSplit(SDValue Vec,const SDLoc & dl,SelectionDAG & DAG) const266 HexagonTargetLowering::opSplit(SDValue Vec, const SDLoc &dl,
267 SelectionDAG &DAG) const {
268 TypePair Tys = typeSplit(ty(Vec));
269 if (Vec.getOpcode() == HexagonISD::QCAT)
270 return VectorPair(Vec.getOperand(0), Vec.getOperand(1));
271 return DAG.SplitVector(Vec, dl, Tys.first, Tys.second);
272 }
273
274 bool
isHvxSingleTy(MVT Ty) const275 HexagonTargetLowering::isHvxSingleTy(MVT Ty) const {
276 return Subtarget.isHVXVectorType(Ty) &&
277 Ty.getSizeInBits() == 8 * Subtarget.getVectorLength();
278 }
279
280 bool
isHvxPairTy(MVT Ty) const281 HexagonTargetLowering::isHvxPairTy(MVT Ty) const {
282 return Subtarget.isHVXVectorType(Ty) &&
283 Ty.getSizeInBits() == 16 * Subtarget.getVectorLength();
284 }
285
286 SDValue
convertToByteIndex(SDValue ElemIdx,MVT ElemTy,SelectionDAG & DAG) const287 HexagonTargetLowering::convertToByteIndex(SDValue ElemIdx, MVT ElemTy,
288 SelectionDAG &DAG) const {
289 if (ElemIdx.getValueType().getSimpleVT() != MVT::i32)
290 ElemIdx = DAG.getBitcast(MVT::i32, ElemIdx);
291
292 unsigned ElemWidth = ElemTy.getSizeInBits();
293 if (ElemWidth == 8)
294 return ElemIdx;
295
296 unsigned L = Log2_32(ElemWidth/8);
297 const SDLoc &dl(ElemIdx);
298 return DAG.getNode(ISD::SHL, dl, MVT::i32,
299 {ElemIdx, DAG.getConstant(L, dl, MVT::i32)});
300 }
301
302 SDValue
getIndexInWord32(SDValue Idx,MVT ElemTy,SelectionDAG & DAG) const303 HexagonTargetLowering::getIndexInWord32(SDValue Idx, MVT ElemTy,
304 SelectionDAG &DAG) const {
305 unsigned ElemWidth = ElemTy.getSizeInBits();
306 assert(ElemWidth >= 8 && ElemWidth <= 32);
307 if (ElemWidth == 32)
308 return Idx;
309
310 if (ty(Idx) != MVT::i32)
311 Idx = DAG.getBitcast(MVT::i32, Idx);
312 const SDLoc &dl(Idx);
313 SDValue Mask = DAG.getConstant(32/ElemWidth - 1, dl, MVT::i32);
314 SDValue SubIdx = DAG.getNode(ISD::AND, dl, MVT::i32, {Idx, Mask});
315 return SubIdx;
316 }
317
318 SDValue
getByteShuffle(const SDLoc & dl,SDValue Op0,SDValue Op1,ArrayRef<int> Mask,SelectionDAG & DAG) const319 HexagonTargetLowering::getByteShuffle(const SDLoc &dl, SDValue Op0,
320 SDValue Op1, ArrayRef<int> Mask,
321 SelectionDAG &DAG) const {
322 MVT OpTy = ty(Op0);
323 assert(OpTy == ty(Op1));
324
325 MVT ElemTy = OpTy.getVectorElementType();
326 if (ElemTy == MVT::i8)
327 return DAG.getVectorShuffle(OpTy, dl, Op0, Op1, Mask);
328 assert(ElemTy.getSizeInBits() >= 8);
329
330 MVT ResTy = tyVector(OpTy, MVT::i8);
331 unsigned ElemSize = ElemTy.getSizeInBits() / 8;
332
333 SmallVector<int,128> ByteMask;
334 for (int M : Mask) {
335 if (M < 0) {
336 for (unsigned I = 0; I != ElemSize; ++I)
337 ByteMask.push_back(-1);
338 } else {
339 int NewM = M*ElemSize;
340 for (unsigned I = 0; I != ElemSize; ++I)
341 ByteMask.push_back(NewM+I);
342 }
343 }
344 assert(ResTy.getVectorNumElements() == ByteMask.size());
345 return DAG.getVectorShuffle(ResTy, dl, opCastElem(Op0, MVT::i8, DAG),
346 opCastElem(Op1, MVT::i8, DAG), ByteMask);
347 }
348
349 SDValue
buildHvxVectorReg(ArrayRef<SDValue> Values,const SDLoc & dl,MVT VecTy,SelectionDAG & DAG) const350 HexagonTargetLowering::buildHvxVectorReg(ArrayRef<SDValue> Values,
351 const SDLoc &dl, MVT VecTy,
352 SelectionDAG &DAG) const {
353 unsigned VecLen = Values.size();
354 MachineFunction &MF = DAG.getMachineFunction();
355 MVT ElemTy = VecTy.getVectorElementType();
356 unsigned ElemWidth = ElemTy.getSizeInBits();
357 unsigned HwLen = Subtarget.getVectorLength();
358
359 unsigned ElemSize = ElemWidth / 8;
360 assert(ElemSize*VecLen == HwLen);
361 SmallVector<SDValue,32> Words;
362
363 if (VecTy.getVectorElementType() != MVT::i32) {
364 assert((ElemSize == 1 || ElemSize == 2) && "Invalid element size");
365 unsigned OpsPerWord = (ElemSize == 1) ? 4 : 2;
366 MVT PartVT = MVT::getVectorVT(VecTy.getVectorElementType(), OpsPerWord);
367 for (unsigned i = 0; i != VecLen; i += OpsPerWord) {
368 SDValue W = buildVector32(Values.slice(i, OpsPerWord), dl, PartVT, DAG);
369 Words.push_back(DAG.getBitcast(MVT::i32, W));
370 }
371 } else {
372 Words.assign(Values.begin(), Values.end());
373 }
374
375 unsigned NumWords = Words.size();
376 bool IsSplat = true, IsUndef = true;
377 SDValue SplatV;
378 for (unsigned i = 0; i != NumWords && IsSplat; ++i) {
379 if (isUndef(Words[i]))
380 continue;
381 IsUndef = false;
382 if (!SplatV.getNode())
383 SplatV = Words[i];
384 else if (SplatV != Words[i])
385 IsSplat = false;
386 }
387 if (IsUndef)
388 return DAG.getUNDEF(VecTy);
389 if (IsSplat) {
390 assert(SplatV.getNode());
391 auto *IdxN = dyn_cast<ConstantSDNode>(SplatV.getNode());
392 if (IdxN && IdxN->isNullValue())
393 return getZero(dl, VecTy, DAG);
394 return DAG.getNode(HexagonISD::VSPLATW, dl, VecTy, SplatV);
395 }
396
397 // Delay recognizing constant vectors until here, so that we can generate
398 // a vsplat.
399 SmallVector<ConstantInt*, 128> Consts(VecLen);
400 bool AllConst = getBuildVectorConstInts(Values, VecTy, DAG, Consts);
401 if (AllConst) {
402 ArrayRef<Constant*> Tmp((Constant**)Consts.begin(),
403 (Constant**)Consts.end());
404 Constant *CV = ConstantVector::get(Tmp);
405 unsigned Align = HwLen;
406 SDValue CP = LowerConstantPool(DAG.getConstantPool(CV, VecTy, Align), DAG);
407 return DAG.getLoad(VecTy, dl, DAG.getEntryNode(), CP,
408 MachinePointerInfo::getConstantPool(MF), Align);
409 }
410
411 // A special case is a situation where the vector is built entirely from
412 // elements extracted from another vector. This could be done via a shuffle
413 // more efficiently, but typically, the size of the source vector will not
414 // match the size of the vector being built (which precludes the use of a
415 // shuffle directly).
416 // This only handles a single source vector, and the vector being built
417 // should be of a sub-vector type of the source vector type.
418 auto IsBuildFromExtracts = [this,&Values] (SDValue &SrcVec,
419 SmallVectorImpl<int> &SrcIdx) {
420 SDValue Vec;
421 for (SDValue V : Values) {
422 if (isUndef(V)) {
423 SrcIdx.push_back(-1);
424 continue;
425 }
426 if (V.getOpcode() != ISD::EXTRACT_VECTOR_ELT)
427 return false;
428 // All extracts should come from the same vector.
429 SDValue T = V.getOperand(0);
430 if (Vec.getNode() != nullptr && T.getNode() != Vec.getNode())
431 return false;
432 Vec = T;
433 ConstantSDNode *C = dyn_cast<ConstantSDNode>(V.getOperand(1));
434 if (C == nullptr)
435 return false;
436 int I = C->getSExtValue();
437 assert(I >= 0 && "Negative element index");
438 SrcIdx.push_back(I);
439 }
440 SrcVec = Vec;
441 return true;
442 };
443
444 SmallVector<int,128> ExtIdx;
445 SDValue ExtVec;
446 if (IsBuildFromExtracts(ExtVec, ExtIdx)) {
447 MVT ExtTy = ty(ExtVec);
448 unsigned ExtLen = ExtTy.getVectorNumElements();
449 if (ExtLen == VecLen || ExtLen == 2*VecLen) {
450 // Construct a new shuffle mask that will produce a vector with the same
451 // number of elements as the input vector, and such that the vector we
452 // want will be the initial subvector of it.
453 SmallVector<int,128> Mask;
454 BitVector Used(ExtLen);
455
456 for (int M : ExtIdx) {
457 Mask.push_back(M);
458 if (M >= 0)
459 Used.set(M);
460 }
461 // Fill the rest of the mask with the unused elements of ExtVec in hopes
462 // that it will result in a permutation of ExtVec's elements. It's still
463 // fine if it doesn't (e.g. if undefs are present, or elements are
464 // repeated), but permutations can always be done efficiently via vdelta
465 // and vrdelta.
466 for (unsigned I = 0; I != ExtLen; ++I) {
467 if (Mask.size() == ExtLen)
468 break;
469 if (!Used.test(I))
470 Mask.push_back(I);
471 }
472
473 SDValue S = DAG.getVectorShuffle(ExtTy, dl, ExtVec,
474 DAG.getUNDEF(ExtTy), Mask);
475 if (ExtLen == VecLen)
476 return S;
477 return DAG.getTargetExtractSubreg(Hexagon::vsub_lo, dl, VecTy, S);
478 }
479 }
480
481 // Construct two halves in parallel, then or them together.
482 assert(4*Words.size() == Subtarget.getVectorLength());
483 SDValue HalfV0 = getInstr(Hexagon::V6_vd0, dl, VecTy, {}, DAG);
484 SDValue HalfV1 = getInstr(Hexagon::V6_vd0, dl, VecTy, {}, DAG);
485 SDValue S = DAG.getConstant(4, dl, MVT::i32);
486 for (unsigned i = 0; i != NumWords/2; ++i) {
487 SDValue N = DAG.getNode(HexagonISD::VINSERTW0, dl, VecTy,
488 {HalfV0, Words[i]});
489 SDValue M = DAG.getNode(HexagonISD::VINSERTW0, dl, VecTy,
490 {HalfV1, Words[i+NumWords/2]});
491 HalfV0 = DAG.getNode(HexagonISD::VROR, dl, VecTy, {N, S});
492 HalfV1 = DAG.getNode(HexagonISD::VROR, dl, VecTy, {M, S});
493 }
494
495 HalfV0 = DAG.getNode(HexagonISD::VROR, dl, VecTy,
496 {HalfV0, DAG.getConstant(HwLen/2, dl, MVT::i32)});
497 SDValue DstV = DAG.getNode(ISD::OR, dl, VecTy, {HalfV0, HalfV1});
498 return DstV;
499 }
500
501 SDValue
createHvxPrefixPred(SDValue PredV,const SDLoc & dl,unsigned BitBytes,bool ZeroFill,SelectionDAG & DAG) const502 HexagonTargetLowering::createHvxPrefixPred(SDValue PredV, const SDLoc &dl,
503 unsigned BitBytes, bool ZeroFill, SelectionDAG &DAG) const {
504 MVT PredTy = ty(PredV);
505 unsigned HwLen = Subtarget.getVectorLength();
506 MVT ByteTy = MVT::getVectorVT(MVT::i8, HwLen);
507
508 if (Subtarget.isHVXVectorType(PredTy, true)) {
509 // Move the vector predicate SubV to a vector register, and scale it
510 // down to match the representation (bytes per type element) that VecV
511 // uses. The scaling down will pick every 2nd or 4th (every Scale-th
512 // in general) element and put them at the front of the resulting
513 // vector. This subvector will then be inserted into the Q2V of VecV.
514 // To avoid having an operation that generates an illegal type (short
515 // vector), generate a full size vector.
516 //
517 SDValue T = DAG.getNode(HexagonISD::Q2V, dl, ByteTy, PredV);
518 SmallVector<int,128> Mask(HwLen);
519 // Scale = BitBytes(PredV) / Given BitBytes.
520 unsigned Scale = HwLen / (PredTy.getVectorNumElements() * BitBytes);
521 unsigned BlockLen = PredTy.getVectorNumElements() * BitBytes;
522
523 for (unsigned i = 0; i != HwLen; ++i) {
524 unsigned Num = i % Scale;
525 unsigned Off = i / Scale;
526 Mask[BlockLen*Num + Off] = i;
527 }
528 SDValue S = DAG.getVectorShuffle(ByteTy, dl, T, DAG.getUNDEF(ByteTy), Mask);
529 if (!ZeroFill)
530 return S;
531 // Fill the bytes beyond BlockLen with 0s.
532 MVT BoolTy = MVT::getVectorVT(MVT::i1, HwLen);
533 SDValue Q = getInstr(Hexagon::V6_pred_scalar2, dl, BoolTy,
534 {DAG.getConstant(BlockLen, dl, MVT::i32)}, DAG);
535 SDValue M = DAG.getNode(HexagonISD::Q2V, dl, ByteTy, Q);
536 return DAG.getNode(ISD::AND, dl, ByteTy, S, M);
537 }
538
539 // Make sure that this is a valid scalar predicate.
540 assert(PredTy == MVT::v2i1 || PredTy == MVT::v4i1 || PredTy == MVT::v8i1);
541
542 unsigned Bytes = 8 / PredTy.getVectorNumElements();
543 SmallVector<SDValue,4> Words[2];
544 unsigned IdxW = 0;
545
546 auto Lo32 = [&DAG, &dl] (SDValue P) {
547 return DAG.getTargetExtractSubreg(Hexagon::isub_lo, dl, MVT::i32, P);
548 };
549 auto Hi32 = [&DAG, &dl] (SDValue P) {
550 return DAG.getTargetExtractSubreg(Hexagon::isub_hi, dl, MVT::i32, P);
551 };
552
553 SDValue W0 = isUndef(PredV)
554 ? DAG.getUNDEF(MVT::i64)
555 : DAG.getNode(HexagonISD::P2D, dl, MVT::i64, PredV);
556 Words[IdxW].push_back(Hi32(W0));
557 Words[IdxW].push_back(Lo32(W0));
558
559 while (Bytes < BitBytes) {
560 IdxW ^= 1;
561 Words[IdxW].clear();
562
563 if (Bytes < 4) {
564 for (const SDValue &W : Words[IdxW ^ 1]) {
565 SDValue T = expandPredicate(W, dl, DAG);
566 Words[IdxW].push_back(Hi32(T));
567 Words[IdxW].push_back(Lo32(T));
568 }
569 } else {
570 for (const SDValue &W : Words[IdxW ^ 1]) {
571 Words[IdxW].push_back(W);
572 Words[IdxW].push_back(W);
573 }
574 }
575 Bytes *= 2;
576 }
577
578 assert(Bytes == BitBytes);
579
580 SDValue Vec = ZeroFill ? getZero(dl, ByteTy, DAG) : DAG.getUNDEF(ByteTy);
581 SDValue S4 = DAG.getConstant(HwLen-4, dl, MVT::i32);
582 for (const SDValue &W : Words[IdxW]) {
583 Vec = DAG.getNode(HexagonISD::VROR, dl, ByteTy, Vec, S4);
584 Vec = DAG.getNode(HexagonISD::VINSERTW0, dl, ByteTy, Vec, W);
585 }
586
587 return Vec;
588 }
589
590 SDValue
buildHvxVectorPred(ArrayRef<SDValue> Values,const SDLoc & dl,MVT VecTy,SelectionDAG & DAG) const591 HexagonTargetLowering::buildHvxVectorPred(ArrayRef<SDValue> Values,
592 const SDLoc &dl, MVT VecTy,
593 SelectionDAG &DAG) const {
594 // Construct a vector V of bytes, such that a comparison V >u 0 would
595 // produce the required vector predicate.
596 unsigned VecLen = Values.size();
597 unsigned HwLen = Subtarget.getVectorLength();
598 assert(VecLen <= HwLen || VecLen == 8*HwLen);
599 SmallVector<SDValue,128> Bytes;
600 bool AllT = true, AllF = true;
601
602 auto IsTrue = [] (SDValue V) {
603 if (const auto *N = dyn_cast<ConstantSDNode>(V.getNode()))
604 return !N->isNullValue();
605 return false;
606 };
607 auto IsFalse = [] (SDValue V) {
608 if (const auto *N = dyn_cast<ConstantSDNode>(V.getNode()))
609 return N->isNullValue();
610 return false;
611 };
612
613 if (VecLen <= HwLen) {
614 // In the hardware, each bit of a vector predicate corresponds to a byte
615 // of a vector register. Calculate how many bytes does a bit of VecTy
616 // correspond to.
617 assert(HwLen % VecLen == 0);
618 unsigned BitBytes = HwLen / VecLen;
619 for (SDValue V : Values) {
620 AllT &= IsTrue(V);
621 AllF &= IsFalse(V);
622
623 SDValue Ext = !V.isUndef() ? DAG.getZExtOrTrunc(V, dl, MVT::i8)
624 : DAG.getUNDEF(MVT::i8);
625 for (unsigned B = 0; B != BitBytes; ++B)
626 Bytes.push_back(Ext);
627 }
628 } else {
629 // There are as many i1 values, as there are bits in a vector register.
630 // Divide the values into groups of 8 and check that each group consists
631 // of the same value (ignoring undefs).
632 for (unsigned I = 0; I != VecLen; I += 8) {
633 unsigned B = 0;
634 // Find the first non-undef value in this group.
635 for (; B != 8; ++B) {
636 if (!Values[I+B].isUndef())
637 break;
638 }
639 SDValue F = Values[I+B];
640 AllT &= IsTrue(F);
641 AllF &= IsFalse(F);
642
643 SDValue Ext = (B < 8) ? DAG.getZExtOrTrunc(F, dl, MVT::i8)
644 : DAG.getUNDEF(MVT::i8);
645 Bytes.push_back(Ext);
646 // Verify that the rest of values in the group are the same as the
647 // first.
648 for (; B != 8; ++B)
649 assert(Values[I+B].isUndef() || Values[I+B] == F);
650 }
651 }
652
653 if (AllT)
654 return DAG.getNode(HexagonISD::QTRUE, dl, VecTy);
655 if (AllF)
656 return DAG.getNode(HexagonISD::QFALSE, dl, VecTy);
657
658 MVT ByteTy = MVT::getVectorVT(MVT::i8, HwLen);
659 SDValue ByteVec = buildHvxVectorReg(Bytes, dl, ByteTy, DAG);
660 return DAG.getNode(HexagonISD::V2Q, dl, VecTy, ByteVec);
661 }
662
663 SDValue
extractHvxElementReg(SDValue VecV,SDValue IdxV,const SDLoc & dl,MVT ResTy,SelectionDAG & DAG) const664 HexagonTargetLowering::extractHvxElementReg(SDValue VecV, SDValue IdxV,
665 const SDLoc &dl, MVT ResTy, SelectionDAG &DAG) const {
666 MVT ElemTy = ty(VecV).getVectorElementType();
667
668 unsigned ElemWidth = ElemTy.getSizeInBits();
669 assert(ElemWidth >= 8 && ElemWidth <= 32);
670 (void)ElemWidth;
671
672 SDValue ByteIdx = convertToByteIndex(IdxV, ElemTy, DAG);
673 SDValue ExWord = DAG.getNode(HexagonISD::VEXTRACTW, dl, MVT::i32,
674 {VecV, ByteIdx});
675 if (ElemTy == MVT::i32)
676 return ExWord;
677
678 // Have an extracted word, need to extract the smaller element out of it.
679 // 1. Extract the bits of (the original) IdxV that correspond to the index
680 // of the desired element in the 32-bit word.
681 SDValue SubIdx = getIndexInWord32(IdxV, ElemTy, DAG);
682 // 2. Extract the element from the word.
683 SDValue ExVec = DAG.getBitcast(tyVector(ty(ExWord), ElemTy), ExWord);
684 return extractVector(ExVec, SubIdx, dl, ElemTy, MVT::i32, DAG);
685 }
686
687 SDValue
extractHvxElementPred(SDValue VecV,SDValue IdxV,const SDLoc & dl,MVT ResTy,SelectionDAG & DAG) const688 HexagonTargetLowering::extractHvxElementPred(SDValue VecV, SDValue IdxV,
689 const SDLoc &dl, MVT ResTy, SelectionDAG &DAG) const {
690 // Implement other return types if necessary.
691 assert(ResTy == MVT::i1);
692
693 unsigned HwLen = Subtarget.getVectorLength();
694 MVT ByteTy = MVT::getVectorVT(MVT::i8, HwLen);
695 SDValue ByteVec = DAG.getNode(HexagonISD::Q2V, dl, ByteTy, VecV);
696
697 unsigned Scale = HwLen / ty(VecV).getVectorNumElements();
698 SDValue ScV = DAG.getConstant(Scale, dl, MVT::i32);
699 IdxV = DAG.getNode(ISD::MUL, dl, MVT::i32, IdxV, ScV);
700
701 SDValue ExtB = extractHvxElementReg(ByteVec, IdxV, dl, MVT::i32, DAG);
702 SDValue Zero = DAG.getTargetConstant(0, dl, MVT::i32);
703 return getInstr(Hexagon::C2_cmpgtui, dl, MVT::i1, {ExtB, Zero}, DAG);
704 }
705
706 SDValue
insertHvxElementReg(SDValue VecV,SDValue IdxV,SDValue ValV,const SDLoc & dl,SelectionDAG & DAG) const707 HexagonTargetLowering::insertHvxElementReg(SDValue VecV, SDValue IdxV,
708 SDValue ValV, const SDLoc &dl, SelectionDAG &DAG) const {
709 MVT ElemTy = ty(VecV).getVectorElementType();
710
711 unsigned ElemWidth = ElemTy.getSizeInBits();
712 assert(ElemWidth >= 8 && ElemWidth <= 32);
713 (void)ElemWidth;
714
715 auto InsertWord = [&DAG,&dl,this] (SDValue VecV, SDValue ValV,
716 SDValue ByteIdxV) {
717 MVT VecTy = ty(VecV);
718 unsigned HwLen = Subtarget.getVectorLength();
719 SDValue MaskV = DAG.getNode(ISD::AND, dl, MVT::i32,
720 {ByteIdxV, DAG.getConstant(-4, dl, MVT::i32)});
721 SDValue RotV = DAG.getNode(HexagonISD::VROR, dl, VecTy, {VecV, MaskV});
722 SDValue InsV = DAG.getNode(HexagonISD::VINSERTW0, dl, VecTy, {RotV, ValV});
723 SDValue SubV = DAG.getNode(ISD::SUB, dl, MVT::i32,
724 {DAG.getConstant(HwLen, dl, MVT::i32), MaskV});
725 SDValue TorV = DAG.getNode(HexagonISD::VROR, dl, VecTy, {InsV, SubV});
726 return TorV;
727 };
728
729 SDValue ByteIdx = convertToByteIndex(IdxV, ElemTy, DAG);
730 if (ElemTy == MVT::i32)
731 return InsertWord(VecV, ValV, ByteIdx);
732
733 // If this is not inserting a 32-bit word, convert it into such a thing.
734 // 1. Extract the existing word from the target vector.
735 SDValue WordIdx = DAG.getNode(ISD::SRL, dl, MVT::i32,
736 {ByteIdx, DAG.getConstant(2, dl, MVT::i32)});
737 SDValue Ext = extractHvxElementReg(opCastElem(VecV, MVT::i32, DAG), WordIdx,
738 dl, MVT::i32, DAG);
739
740 // 2. Treating the extracted word as a 32-bit vector, insert the given
741 // value into it.
742 SDValue SubIdx = getIndexInWord32(IdxV, ElemTy, DAG);
743 MVT SubVecTy = tyVector(ty(Ext), ElemTy);
744 SDValue Ins = insertVector(DAG.getBitcast(SubVecTy, Ext),
745 ValV, SubIdx, dl, ElemTy, DAG);
746
747 // 3. Insert the 32-bit word back into the original vector.
748 return InsertWord(VecV, Ins, ByteIdx);
749 }
750
751 SDValue
insertHvxElementPred(SDValue VecV,SDValue IdxV,SDValue ValV,const SDLoc & dl,SelectionDAG & DAG) const752 HexagonTargetLowering::insertHvxElementPred(SDValue VecV, SDValue IdxV,
753 SDValue ValV, const SDLoc &dl, SelectionDAG &DAG) const {
754 unsigned HwLen = Subtarget.getVectorLength();
755 MVT ByteTy = MVT::getVectorVT(MVT::i8, HwLen);
756 SDValue ByteVec = DAG.getNode(HexagonISD::Q2V, dl, ByteTy, VecV);
757
758 unsigned Scale = HwLen / ty(VecV).getVectorNumElements();
759 SDValue ScV = DAG.getConstant(Scale, dl, MVT::i32);
760 IdxV = DAG.getNode(ISD::MUL, dl, MVT::i32, IdxV, ScV);
761 ValV = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::i32, ValV);
762
763 SDValue InsV = insertHvxElementReg(ByteVec, IdxV, ValV, dl, DAG);
764 return DAG.getNode(HexagonISD::V2Q, dl, ty(VecV), InsV);
765 }
766
767 SDValue
extractHvxSubvectorReg(SDValue VecV,SDValue IdxV,const SDLoc & dl,MVT ResTy,SelectionDAG & DAG) const768 HexagonTargetLowering::extractHvxSubvectorReg(SDValue VecV, SDValue IdxV,
769 const SDLoc &dl, MVT ResTy, SelectionDAG &DAG) const {
770 MVT VecTy = ty(VecV);
771 unsigned HwLen = Subtarget.getVectorLength();
772 unsigned Idx = cast<ConstantSDNode>(IdxV.getNode())->getZExtValue();
773 MVT ElemTy = VecTy.getVectorElementType();
774 unsigned ElemWidth = ElemTy.getSizeInBits();
775
776 // If the source vector is a vector pair, get the single vector containing
777 // the subvector of interest. The subvector will never overlap two single
778 // vectors.
779 if (isHvxPairTy(VecTy)) {
780 unsigned SubIdx;
781 if (Idx * ElemWidth >= 8*HwLen) {
782 SubIdx = Hexagon::vsub_hi;
783 Idx -= VecTy.getVectorNumElements() / 2;
784 } else {
785 SubIdx = Hexagon::vsub_lo;
786 }
787 VecTy = typeSplit(VecTy).first;
788 VecV = DAG.getTargetExtractSubreg(SubIdx, dl, VecTy, VecV);
789 if (VecTy == ResTy)
790 return VecV;
791 }
792
793 // The only meaningful subvectors of a single HVX vector are those that
794 // fit in a scalar register.
795 assert(ResTy.getSizeInBits() == 32 || ResTy.getSizeInBits() == 64);
796
797 MVT WordTy = tyVector(VecTy, MVT::i32);
798 SDValue WordVec = DAG.getBitcast(WordTy, VecV);
799 unsigned WordIdx = (Idx*ElemWidth) / 32;
800
801 SDValue W0Idx = DAG.getConstant(WordIdx, dl, MVT::i32);
802 SDValue W0 = extractHvxElementReg(WordVec, W0Idx, dl, MVT::i32, DAG);
803 if (ResTy.getSizeInBits() == 32)
804 return DAG.getBitcast(ResTy, W0);
805
806 SDValue W1Idx = DAG.getConstant(WordIdx+1, dl, MVT::i32);
807 SDValue W1 = extractHvxElementReg(WordVec, W1Idx, dl, MVT::i32, DAG);
808 SDValue WW = DAG.getNode(HexagonISD::COMBINE, dl, MVT::i64, {W1, W0});
809 return DAG.getBitcast(ResTy, WW);
810 }
811
812 SDValue
extractHvxSubvectorPred(SDValue VecV,SDValue IdxV,const SDLoc & dl,MVT ResTy,SelectionDAG & DAG) const813 HexagonTargetLowering::extractHvxSubvectorPred(SDValue VecV, SDValue IdxV,
814 const SDLoc &dl, MVT ResTy, SelectionDAG &DAG) const {
815 MVT VecTy = ty(VecV);
816 unsigned HwLen = Subtarget.getVectorLength();
817 MVT ByteTy = MVT::getVectorVT(MVT::i8, HwLen);
818 SDValue ByteVec = DAG.getNode(HexagonISD::Q2V, dl, ByteTy, VecV);
819 // IdxV is required to be a constant.
820 unsigned Idx = cast<ConstantSDNode>(IdxV.getNode())->getZExtValue();
821
822 unsigned ResLen = ResTy.getVectorNumElements();
823 unsigned BitBytes = HwLen / VecTy.getVectorNumElements();
824 unsigned Offset = Idx * BitBytes;
825 SDValue Undef = DAG.getUNDEF(ByteTy);
826 SmallVector<int,128> Mask;
827
828 if (Subtarget.isHVXVectorType(ResTy, true)) {
829 // Converting between two vector predicates. Since the result is shorter
830 // than the source, it will correspond to a vector predicate with the
831 // relevant bits replicated. The replication count is the ratio of the
832 // source and target vector lengths.
833 unsigned Rep = VecTy.getVectorNumElements() / ResLen;
834 assert(isPowerOf2_32(Rep) && HwLen % Rep == 0);
835 for (unsigned i = 0; i != HwLen/Rep; ++i) {
836 for (unsigned j = 0; j != Rep; ++j)
837 Mask.push_back(i + Offset);
838 }
839 SDValue ShuffV = DAG.getVectorShuffle(ByteTy, dl, ByteVec, Undef, Mask);
840 return DAG.getNode(HexagonISD::V2Q, dl, ResTy, ShuffV);
841 }
842
843 // Converting between a vector predicate and a scalar predicate. In the
844 // vector predicate, a group of BitBytes bits will correspond to a single
845 // i1 element of the source vector type. Those bits will all have the same
846 // value. The same will be true for ByteVec, where each byte corresponds
847 // to a bit in the vector predicate.
848 // The algorithm is to traverse the ByteVec, going over the i1 values from
849 // the source vector, and generate the corresponding representation in an
850 // 8-byte vector. To avoid repeated extracts from ByteVec, shuffle the
851 // elements so that the interesting 8 bytes will be in the low end of the
852 // vector.
853 unsigned Rep = 8 / ResLen;
854 // Make sure the output fill the entire vector register, so repeat the
855 // 8-byte groups as many times as necessary.
856 for (unsigned r = 0; r != HwLen/ResLen; ++r) {
857 // This will generate the indexes of the 8 interesting bytes.
858 for (unsigned i = 0; i != ResLen; ++i) {
859 for (unsigned j = 0; j != Rep; ++j)
860 Mask.push_back(Offset + i*BitBytes);
861 }
862 }
863
864 SDValue Zero = getZero(dl, MVT::i32, DAG);
865 SDValue ShuffV = DAG.getVectorShuffle(ByteTy, dl, ByteVec, Undef, Mask);
866 // Combine the two low words from ShuffV into a v8i8, and byte-compare
867 // them against 0.
868 SDValue W0 = DAG.getNode(HexagonISD::VEXTRACTW, dl, MVT::i32, {ShuffV, Zero});
869 SDValue W1 = DAG.getNode(HexagonISD::VEXTRACTW, dl, MVT::i32,
870 {ShuffV, DAG.getConstant(4, dl, MVT::i32)});
871 SDValue Vec64 = DAG.getNode(HexagonISD::COMBINE, dl, MVT::v8i8, {W1, W0});
872 return getInstr(Hexagon::A4_vcmpbgtui, dl, ResTy,
873 {Vec64, DAG.getTargetConstant(0, dl, MVT::i32)}, DAG);
874 }
875
876 SDValue
insertHvxSubvectorReg(SDValue VecV,SDValue SubV,SDValue IdxV,const SDLoc & dl,SelectionDAG & DAG) const877 HexagonTargetLowering::insertHvxSubvectorReg(SDValue VecV, SDValue SubV,
878 SDValue IdxV, const SDLoc &dl, SelectionDAG &DAG) const {
879 MVT VecTy = ty(VecV);
880 MVT SubTy = ty(SubV);
881 unsigned HwLen = Subtarget.getVectorLength();
882 MVT ElemTy = VecTy.getVectorElementType();
883 unsigned ElemWidth = ElemTy.getSizeInBits();
884
885 bool IsPair = isHvxPairTy(VecTy);
886 MVT SingleTy = MVT::getVectorVT(ElemTy, (8*HwLen)/ElemWidth);
887 // The two single vectors that VecV consists of, if it's a pair.
888 SDValue V0, V1;
889 SDValue SingleV = VecV;
890 SDValue PickHi;
891
892 if (IsPair) {
893 V0 = DAG.getTargetExtractSubreg(Hexagon::vsub_lo, dl, SingleTy, VecV);
894 V1 = DAG.getTargetExtractSubreg(Hexagon::vsub_hi, dl, SingleTy, VecV);
895
896 SDValue HalfV = DAG.getConstant(SingleTy.getVectorNumElements(),
897 dl, MVT::i32);
898 PickHi = DAG.getSetCC(dl, MVT::i1, IdxV, HalfV, ISD::SETUGT);
899 if (isHvxSingleTy(SubTy)) {
900 if (const auto *CN = dyn_cast<const ConstantSDNode>(IdxV.getNode())) {
901 unsigned Idx = CN->getZExtValue();
902 assert(Idx == 0 || Idx == VecTy.getVectorNumElements()/2);
903 unsigned SubIdx = (Idx == 0) ? Hexagon::vsub_lo : Hexagon::vsub_hi;
904 return DAG.getTargetInsertSubreg(SubIdx, dl, VecTy, VecV, SubV);
905 }
906 // If IdxV is not a constant, generate the two variants: with the
907 // SubV as the high and as the low subregister, and select the right
908 // pair based on the IdxV.
909 SDValue InLo = DAG.getNode(ISD::CONCAT_VECTORS, dl, VecTy, {SubV, V1});
910 SDValue InHi = DAG.getNode(ISD::CONCAT_VECTORS, dl, VecTy, {V0, SubV});
911 return DAG.getNode(ISD::SELECT, dl, VecTy, PickHi, InHi, InLo);
912 }
913 // The subvector being inserted must be entirely contained in one of
914 // the vectors V0 or V1. Set SingleV to the correct one, and update
915 // IdxV to be the index relative to the beginning of that vector.
916 SDValue S = DAG.getNode(ISD::SUB, dl, MVT::i32, IdxV, HalfV);
917 IdxV = DAG.getNode(ISD::SELECT, dl, MVT::i32, PickHi, S, IdxV);
918 SingleV = DAG.getNode(ISD::SELECT, dl, SingleTy, PickHi, V1, V0);
919 }
920
921 // The only meaningful subvectors of a single HVX vector are those that
922 // fit in a scalar register.
923 assert(SubTy.getSizeInBits() == 32 || SubTy.getSizeInBits() == 64);
924 // Convert IdxV to be index in bytes.
925 auto *IdxN = dyn_cast<ConstantSDNode>(IdxV.getNode());
926 if (!IdxN || !IdxN->isNullValue()) {
927 IdxV = DAG.getNode(ISD::MUL, dl, MVT::i32, IdxV,
928 DAG.getConstant(ElemWidth/8, dl, MVT::i32));
929 SingleV = DAG.getNode(HexagonISD::VROR, dl, SingleTy, SingleV, IdxV);
930 }
931 // When inserting a single word, the rotation back to the original position
932 // would be by HwLen-Idx, but if two words are inserted, it will need to be
933 // by (HwLen-4)-Idx.
934 unsigned RolBase = HwLen;
935 if (VecTy.getSizeInBits() == 32) {
936 SDValue V = DAG.getBitcast(MVT::i32, SubV);
937 SingleV = DAG.getNode(HexagonISD::VINSERTW0, dl, SingleTy, V);
938 } else {
939 SDValue V = DAG.getBitcast(MVT::i64, SubV);
940 SDValue R0 = DAG.getTargetExtractSubreg(Hexagon::isub_lo, dl, MVT::i32, V);
941 SDValue R1 = DAG.getTargetExtractSubreg(Hexagon::isub_hi, dl, MVT::i32, V);
942 SingleV = DAG.getNode(HexagonISD::VINSERTW0, dl, SingleTy, SingleV, R0);
943 SingleV = DAG.getNode(HexagonISD::VROR, dl, SingleTy, SingleV,
944 DAG.getConstant(4, dl, MVT::i32));
945 SingleV = DAG.getNode(HexagonISD::VINSERTW0, dl, SingleTy, SingleV, R1);
946 RolBase = HwLen-4;
947 }
948 // If the vector wasn't ror'ed, don't ror it back.
949 if (RolBase != 4 || !IdxN || !IdxN->isNullValue()) {
950 SDValue RolV = DAG.getNode(ISD::SUB, dl, MVT::i32,
951 DAG.getConstant(RolBase, dl, MVT::i32), IdxV);
952 SingleV = DAG.getNode(HexagonISD::VROR, dl, SingleTy, SingleV, RolV);
953 }
954
955 if (IsPair) {
956 SDValue InLo = DAG.getNode(ISD::CONCAT_VECTORS, dl, VecTy, {SingleV, V1});
957 SDValue InHi = DAG.getNode(ISD::CONCAT_VECTORS, dl, VecTy, {V0, SingleV});
958 return DAG.getNode(ISD::SELECT, dl, VecTy, PickHi, InHi, InLo);
959 }
960 return SingleV;
961 }
962
963 SDValue
insertHvxSubvectorPred(SDValue VecV,SDValue SubV,SDValue IdxV,const SDLoc & dl,SelectionDAG & DAG) const964 HexagonTargetLowering::insertHvxSubvectorPred(SDValue VecV, SDValue SubV,
965 SDValue IdxV, const SDLoc &dl, SelectionDAG &DAG) const {
966 MVT VecTy = ty(VecV);
967 MVT SubTy = ty(SubV);
968 assert(Subtarget.isHVXVectorType(VecTy, true));
969 // VecV is an HVX vector predicate. SubV may be either an HVX vector
970 // predicate as well, or it can be a scalar predicate.
971
972 unsigned VecLen = VecTy.getVectorNumElements();
973 unsigned HwLen = Subtarget.getVectorLength();
974 assert(HwLen % VecLen == 0 && "Unexpected vector type");
975
976 unsigned Scale = VecLen / SubTy.getVectorNumElements();
977 unsigned BitBytes = HwLen / VecLen;
978 unsigned BlockLen = HwLen / Scale;
979
980 MVT ByteTy = MVT::getVectorVT(MVT::i8, HwLen);
981 SDValue ByteVec = DAG.getNode(HexagonISD::Q2V, dl, ByteTy, VecV);
982 SDValue ByteSub = createHvxPrefixPred(SubV, dl, BitBytes, false, DAG);
983 SDValue ByteIdx;
984
985 auto *IdxN = dyn_cast<ConstantSDNode>(IdxV.getNode());
986 if (!IdxN || !IdxN->isNullValue()) {
987 ByteIdx = DAG.getNode(ISD::MUL, dl, MVT::i32, IdxV,
988 DAG.getConstant(BitBytes, dl, MVT::i32));
989 ByteVec = DAG.getNode(HexagonISD::VROR, dl, ByteTy, ByteVec, ByteIdx);
990 }
991
992 // ByteVec is the target vector VecV rotated in such a way that the
993 // subvector should be inserted at index 0. Generate a predicate mask
994 // and use vmux to do the insertion.
995 MVT BoolTy = MVT::getVectorVT(MVT::i1, HwLen);
996 SDValue Q = getInstr(Hexagon::V6_pred_scalar2, dl, BoolTy,
997 {DAG.getConstant(BlockLen, dl, MVT::i32)}, DAG);
998 ByteVec = getInstr(Hexagon::V6_vmux, dl, ByteTy, {Q, ByteSub, ByteVec}, DAG);
999 // Rotate ByteVec back, and convert to a vector predicate.
1000 if (!IdxN || !IdxN->isNullValue()) {
1001 SDValue HwLenV = DAG.getConstant(HwLen, dl, MVT::i32);
1002 SDValue ByteXdi = DAG.getNode(ISD::SUB, dl, MVT::i32, HwLenV, ByteIdx);
1003 ByteVec = DAG.getNode(HexagonISD::VROR, dl, ByteTy, ByteVec, ByteXdi);
1004 }
1005 return DAG.getNode(HexagonISD::V2Q, dl, VecTy, ByteVec);
1006 }
1007
1008 SDValue
extendHvxVectorPred(SDValue VecV,const SDLoc & dl,MVT ResTy,bool ZeroExt,SelectionDAG & DAG) const1009 HexagonTargetLowering::extendHvxVectorPred(SDValue VecV, const SDLoc &dl,
1010 MVT ResTy, bool ZeroExt, SelectionDAG &DAG) const {
1011 // Sign- and any-extending of a vector predicate to a vector register is
1012 // equivalent to Q2V. For zero-extensions, generate a vmux between 0 and
1013 // a vector of 1s (where the 1s are of type matching the vector type).
1014 assert(Subtarget.isHVXVectorType(ResTy));
1015 if (!ZeroExt)
1016 return DAG.getNode(HexagonISD::Q2V, dl, ResTy, VecV);
1017
1018 assert(ty(VecV).getVectorNumElements() == ResTy.getVectorNumElements());
1019 SDValue True = DAG.getNode(HexagonISD::VSPLAT, dl, ResTy,
1020 DAG.getConstant(1, dl, MVT::i32));
1021 SDValue False = getZero(dl, ResTy, DAG);
1022 return DAG.getSelect(dl, ResTy, VecV, True, False);
1023 }
1024
1025 SDValue
LowerHvxBuildVector(SDValue Op,SelectionDAG & DAG) const1026 HexagonTargetLowering::LowerHvxBuildVector(SDValue Op, SelectionDAG &DAG)
1027 const {
1028 const SDLoc &dl(Op);
1029 MVT VecTy = ty(Op);
1030
1031 unsigned Size = Op.getNumOperands();
1032 SmallVector<SDValue,128> Ops;
1033 for (unsigned i = 0; i != Size; ++i)
1034 Ops.push_back(Op.getOperand(i));
1035
1036 if (VecTy.getVectorElementType() == MVT::i1)
1037 return buildHvxVectorPred(Ops, dl, VecTy, DAG);
1038
1039 if (VecTy.getSizeInBits() == 16*Subtarget.getVectorLength()) {
1040 ArrayRef<SDValue> A(Ops);
1041 MVT SingleTy = typeSplit(VecTy).first;
1042 SDValue V0 = buildHvxVectorReg(A.take_front(Size/2), dl, SingleTy, DAG);
1043 SDValue V1 = buildHvxVectorReg(A.drop_front(Size/2), dl, SingleTy, DAG);
1044 return DAG.getNode(ISD::CONCAT_VECTORS, dl, VecTy, V0, V1);
1045 }
1046
1047 return buildHvxVectorReg(Ops, dl, VecTy, DAG);
1048 }
1049
1050 SDValue
LowerHvxConcatVectors(SDValue Op,SelectionDAG & DAG) const1051 HexagonTargetLowering::LowerHvxConcatVectors(SDValue Op, SelectionDAG &DAG)
1052 const {
1053 // Vector concatenation of two integer (non-bool) vectors does not need
1054 // special lowering. Custom-lower concats of bool vectors and expand
1055 // concats of more than 2 vectors.
1056 MVT VecTy = ty(Op);
1057 const SDLoc &dl(Op);
1058 unsigned NumOp = Op.getNumOperands();
1059 if (VecTy.getVectorElementType() != MVT::i1) {
1060 if (NumOp == 2)
1061 return Op;
1062 // Expand the other cases into a build-vector.
1063 SmallVector<SDValue,8> Elems;
1064 for (SDValue V : Op.getNode()->ops())
1065 DAG.ExtractVectorElements(V, Elems);
1066 // A vector of i16 will be broken up into a build_vector of i16's.
1067 // This is a problem, since at the time of operation legalization,
1068 // all operations are expected to be type-legalized, and i16 is not
1069 // a legal type. If any of the extracted elements is not of a valid
1070 // type, sign-extend it to a valid one.
1071 for (unsigned i = 0, e = Elems.size(); i != e; ++i) {
1072 SDValue V = Elems[i];
1073 MVT Ty = ty(V);
1074 if (!isTypeLegal(Ty)) {
1075 EVT NTy = getTypeToTransformTo(*DAG.getContext(), Ty);
1076 if (V.getOpcode() == ISD::EXTRACT_VECTOR_ELT) {
1077 Elems[i] = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, NTy,
1078 DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, NTy,
1079 V.getOperand(0), V.getOperand(1)),
1080 DAG.getValueType(Ty));
1081 continue;
1082 }
1083 // A few less complicated cases.
1084 if (V.getOpcode() == ISD::Constant)
1085 Elems[i] = DAG.getSExtOrTrunc(V, dl, NTy);
1086 else if (V.isUndef())
1087 Elems[i] = DAG.getUNDEF(NTy);
1088 else
1089 llvm_unreachable("Unexpected vector element");
1090 }
1091 }
1092 return DAG.getBuildVector(VecTy, dl, Elems);
1093 }
1094
1095 assert(VecTy.getVectorElementType() == MVT::i1);
1096 unsigned HwLen = Subtarget.getVectorLength();
1097 assert(isPowerOf2_32(NumOp) && HwLen % NumOp == 0);
1098
1099 SDValue Op0 = Op.getOperand(0);
1100
1101 // If the operands are HVX types (i.e. not scalar predicates), then
1102 // defer the concatenation, and create QCAT instead.
1103 if (Subtarget.isHVXVectorType(ty(Op0), true)) {
1104 if (NumOp == 2)
1105 return DAG.getNode(HexagonISD::QCAT, dl, VecTy, Op0, Op.getOperand(1));
1106
1107 ArrayRef<SDUse> U(Op.getNode()->ops());
1108 SmallVector<SDValue,4> SV(U.begin(), U.end());
1109 ArrayRef<SDValue> Ops(SV);
1110
1111 MVT HalfTy = typeSplit(VecTy).first;
1112 SDValue V0 = DAG.getNode(ISD::CONCAT_VECTORS, dl, HalfTy,
1113 Ops.take_front(NumOp/2));
1114 SDValue V1 = DAG.getNode(ISD::CONCAT_VECTORS, dl, HalfTy,
1115 Ops.take_back(NumOp/2));
1116 return DAG.getNode(HexagonISD::QCAT, dl, VecTy, V0, V1);
1117 }
1118
1119 // Count how many bytes (in a vector register) each bit in VecTy
1120 // corresponds to.
1121 unsigned BitBytes = HwLen / VecTy.getVectorNumElements();
1122
1123 SmallVector<SDValue,8> Prefixes;
1124 for (SDValue V : Op.getNode()->op_values()) {
1125 SDValue P = createHvxPrefixPred(V, dl, BitBytes, true, DAG);
1126 Prefixes.push_back(P);
1127 }
1128
1129 unsigned InpLen = ty(Op.getOperand(0)).getVectorNumElements();
1130 MVT ByteTy = MVT::getVectorVT(MVT::i8, HwLen);
1131 SDValue S = DAG.getConstant(InpLen*BitBytes, dl, MVT::i32);
1132 SDValue Res = getZero(dl, ByteTy, DAG);
1133 for (unsigned i = 0, e = Prefixes.size(); i != e; ++i) {
1134 Res = DAG.getNode(HexagonISD::VROR, dl, ByteTy, Res, S);
1135 Res = DAG.getNode(ISD::OR, dl, ByteTy, Res, Prefixes[e-i-1]);
1136 }
1137 return DAG.getNode(HexagonISD::V2Q, dl, VecTy, Res);
1138 }
1139
1140 SDValue
LowerHvxExtractElement(SDValue Op,SelectionDAG & DAG) const1141 HexagonTargetLowering::LowerHvxExtractElement(SDValue Op, SelectionDAG &DAG)
1142 const {
1143 // Change the type of the extracted element to i32.
1144 SDValue VecV = Op.getOperand(0);
1145 MVT ElemTy = ty(VecV).getVectorElementType();
1146 const SDLoc &dl(Op);
1147 SDValue IdxV = Op.getOperand(1);
1148 if (ElemTy == MVT::i1)
1149 return extractHvxElementPred(VecV, IdxV, dl, ty(Op), DAG);
1150
1151 return extractHvxElementReg(VecV, IdxV, dl, ty(Op), DAG);
1152 }
1153
1154 SDValue
LowerHvxInsertElement(SDValue Op,SelectionDAG & DAG) const1155 HexagonTargetLowering::LowerHvxInsertElement(SDValue Op, SelectionDAG &DAG)
1156 const {
1157 const SDLoc &dl(Op);
1158 SDValue VecV = Op.getOperand(0);
1159 SDValue ValV = Op.getOperand(1);
1160 SDValue IdxV = Op.getOperand(2);
1161 MVT ElemTy = ty(VecV).getVectorElementType();
1162 if (ElemTy == MVT::i1)
1163 return insertHvxElementPred(VecV, IdxV, ValV, dl, DAG);
1164
1165 return insertHvxElementReg(VecV, IdxV, ValV, dl, DAG);
1166 }
1167
1168 SDValue
LowerHvxExtractSubvector(SDValue Op,SelectionDAG & DAG) const1169 HexagonTargetLowering::LowerHvxExtractSubvector(SDValue Op, SelectionDAG &DAG)
1170 const {
1171 SDValue SrcV = Op.getOperand(0);
1172 MVT SrcTy = ty(SrcV);
1173 MVT DstTy = ty(Op);
1174 SDValue IdxV = Op.getOperand(1);
1175 unsigned Idx = cast<ConstantSDNode>(IdxV.getNode())->getZExtValue();
1176 assert(Idx % DstTy.getVectorNumElements() == 0);
1177 (void)Idx;
1178 const SDLoc &dl(Op);
1179
1180 MVT ElemTy = SrcTy.getVectorElementType();
1181 if (ElemTy == MVT::i1)
1182 return extractHvxSubvectorPred(SrcV, IdxV, dl, DstTy, DAG);
1183
1184 return extractHvxSubvectorReg(SrcV, IdxV, dl, DstTy, DAG);
1185 }
1186
1187 SDValue
LowerHvxInsertSubvector(SDValue Op,SelectionDAG & DAG) const1188 HexagonTargetLowering::LowerHvxInsertSubvector(SDValue Op, SelectionDAG &DAG)
1189 const {
1190 // Idx does not need to be a constant.
1191 SDValue VecV = Op.getOperand(0);
1192 SDValue ValV = Op.getOperand(1);
1193 SDValue IdxV = Op.getOperand(2);
1194
1195 const SDLoc &dl(Op);
1196 MVT VecTy = ty(VecV);
1197 MVT ElemTy = VecTy.getVectorElementType();
1198 if (ElemTy == MVT::i1)
1199 return insertHvxSubvectorPred(VecV, ValV, IdxV, dl, DAG);
1200
1201 return insertHvxSubvectorReg(VecV, ValV, IdxV, dl, DAG);
1202 }
1203
1204 SDValue
LowerHvxAnyExt(SDValue Op,SelectionDAG & DAG) const1205 HexagonTargetLowering::LowerHvxAnyExt(SDValue Op, SelectionDAG &DAG) const {
1206 // Lower any-extends of boolean vectors to sign-extends, since they
1207 // translate directly to Q2V. Zero-extending could also be done equally
1208 // fast, but Q2V is used/recognized in more places.
1209 // For all other vectors, use zero-extend.
1210 MVT ResTy = ty(Op);
1211 SDValue InpV = Op.getOperand(0);
1212 MVT ElemTy = ty(InpV).getVectorElementType();
1213 if (ElemTy == MVT::i1 && Subtarget.isHVXVectorType(ResTy))
1214 return LowerHvxSignExt(Op, DAG);
1215 return DAG.getNode(ISD::ZERO_EXTEND, SDLoc(Op), ResTy, InpV);
1216 }
1217
1218 SDValue
LowerHvxSignExt(SDValue Op,SelectionDAG & DAG) const1219 HexagonTargetLowering::LowerHvxSignExt(SDValue Op, SelectionDAG &DAG) const {
1220 MVT ResTy = ty(Op);
1221 SDValue InpV = Op.getOperand(0);
1222 MVT ElemTy = ty(InpV).getVectorElementType();
1223 if (ElemTy == MVT::i1 && Subtarget.isHVXVectorType(ResTy))
1224 return extendHvxVectorPred(InpV, SDLoc(Op), ty(Op), false, DAG);
1225 return Op;
1226 }
1227
1228 SDValue
LowerHvxZeroExt(SDValue Op,SelectionDAG & DAG) const1229 HexagonTargetLowering::LowerHvxZeroExt(SDValue Op, SelectionDAG &DAG) const {
1230 MVT ResTy = ty(Op);
1231 SDValue InpV = Op.getOperand(0);
1232 MVT ElemTy = ty(InpV).getVectorElementType();
1233 if (ElemTy == MVT::i1 && Subtarget.isHVXVectorType(ResTy))
1234 return extendHvxVectorPred(InpV, SDLoc(Op), ty(Op), true, DAG);
1235 return Op;
1236 }
1237
1238 SDValue
LowerHvxCttz(SDValue Op,SelectionDAG & DAG) const1239 HexagonTargetLowering::LowerHvxCttz(SDValue Op, SelectionDAG &DAG) const {
1240 // Lower vector CTTZ into a computation using CTLZ (Hacker's Delight):
1241 // cttz(x) = bitwidth(x) - ctlz(~x & (x-1))
1242 const SDLoc &dl(Op);
1243 MVT ResTy = ty(Op);
1244 SDValue InpV = Op.getOperand(0);
1245 assert(ResTy == ty(InpV));
1246
1247 // Calculate the vectors of 1 and bitwidth(x).
1248 MVT ElemTy = ty(InpV).getVectorElementType();
1249 unsigned ElemWidth = ElemTy.getSizeInBits();
1250 // Using uint64_t because a shift by 32 can happen.
1251 uint64_t Splat1 = 0, SplatW = 0;
1252 assert(isPowerOf2_32(ElemWidth) && ElemWidth <= 32);
1253 for (unsigned i = 0; i != 32/ElemWidth; ++i) {
1254 Splat1 = (Splat1 << ElemWidth) | 1;
1255 SplatW = (SplatW << ElemWidth) | ElemWidth;
1256 }
1257 SDValue Vec1 = DAG.getNode(HexagonISD::VSPLATW, dl, ResTy,
1258 DAG.getConstant(uint32_t(Splat1), dl, MVT::i32));
1259 SDValue VecW = DAG.getNode(HexagonISD::VSPLATW, dl, ResTy,
1260 DAG.getConstant(uint32_t(SplatW), dl, MVT::i32));
1261 SDValue VecN1 = DAG.getNode(HexagonISD::VSPLATW, dl, ResTy,
1262 DAG.getConstant(-1, dl, MVT::i32));
1263 // Do not use DAG.getNOT, because that would create BUILD_VECTOR with
1264 // a BITCAST. Here we can skip the BITCAST (so we don't have to handle
1265 // it separately in custom combine or selection).
1266 SDValue A = DAG.getNode(ISD::AND, dl, ResTy,
1267 {DAG.getNode(ISD::XOR, dl, ResTy, {InpV, VecN1}),
1268 DAG.getNode(ISD::SUB, dl, ResTy, {InpV, Vec1})});
1269 return DAG.getNode(ISD::SUB, dl, ResTy,
1270 {VecW, DAG.getNode(ISD::CTLZ, dl, ResTy, A)});
1271 }
1272
1273 SDValue
LowerHvxMul(SDValue Op,SelectionDAG & DAG) const1274 HexagonTargetLowering::LowerHvxMul(SDValue Op, SelectionDAG &DAG) const {
1275 MVT ResTy = ty(Op);
1276 assert(ResTy.isVector() && isHvxSingleTy(ResTy));
1277 const SDLoc &dl(Op);
1278 SmallVector<int,256> ShuffMask;
1279
1280 MVT ElemTy = ResTy.getVectorElementType();
1281 unsigned VecLen = ResTy.getVectorNumElements();
1282 SDValue Vs = Op.getOperand(0);
1283 SDValue Vt = Op.getOperand(1);
1284
1285 switch (ElemTy.SimpleTy) {
1286 case MVT::i8: {
1287 // For i8 vectors Vs = (a0, a1, ...), Vt = (b0, b1, ...),
1288 // V6_vmpybv Vs, Vt produces a pair of i16 vectors Hi:Lo,
1289 // where Lo = (a0*b0, a2*b2, ...), Hi = (a1*b1, a3*b3, ...).
1290 MVT ExtTy = typeExtElem(ResTy, 2);
1291 unsigned MpyOpc = ElemTy == MVT::i8 ? Hexagon::V6_vmpybv
1292 : Hexagon::V6_vmpyhv;
1293 SDValue M = getInstr(MpyOpc, dl, ExtTy, {Vs, Vt}, DAG);
1294
1295 // Discard high halves of the resulting values, collect the low halves.
1296 for (unsigned I = 0; I < VecLen; I += 2) {
1297 ShuffMask.push_back(I); // Pick even element.
1298 ShuffMask.push_back(I+VecLen); // Pick odd element.
1299 }
1300 VectorPair P = opSplit(opCastElem(M, ElemTy, DAG), dl, DAG);
1301 SDValue BS = getByteShuffle(dl, P.first, P.second, ShuffMask, DAG);
1302 return DAG.getBitcast(ResTy, BS);
1303 }
1304 case MVT::i16:
1305 // For i16 there is V6_vmpyih, which acts exactly like the MUL opcode.
1306 // (There is also V6_vmpyhv, which behaves in an analogous way to
1307 // V6_vmpybv.)
1308 return getInstr(Hexagon::V6_vmpyih, dl, ResTy, {Vs, Vt}, DAG);
1309 case MVT::i32: {
1310 // Use the following sequence for signed word multiply:
1311 // T0 = V6_vmpyiowh Vs, Vt
1312 // T1 = V6_vaslw T0, 16
1313 // T2 = V6_vmpyiewuh_acc T1, Vs, Vt
1314 SDValue S16 = DAG.getConstant(16, dl, MVT::i32);
1315 SDValue T0 = getInstr(Hexagon::V6_vmpyiowh, dl, ResTy, {Vs, Vt}, DAG);
1316 SDValue T1 = getInstr(Hexagon::V6_vaslw, dl, ResTy, {T0, S16}, DAG);
1317 SDValue T2 = getInstr(Hexagon::V6_vmpyiewuh_acc, dl, ResTy,
1318 {T1, Vs, Vt}, DAG);
1319 return T2;
1320 }
1321 default:
1322 break;
1323 }
1324 return SDValue();
1325 }
1326
1327 SDValue
LowerHvxMulh(SDValue Op,SelectionDAG & DAG) const1328 HexagonTargetLowering::LowerHvxMulh(SDValue Op, SelectionDAG &DAG) const {
1329 MVT ResTy = ty(Op);
1330 assert(ResTy.isVector());
1331 const SDLoc &dl(Op);
1332 SmallVector<int,256> ShuffMask;
1333
1334 MVT ElemTy = ResTy.getVectorElementType();
1335 unsigned VecLen = ResTy.getVectorNumElements();
1336 SDValue Vs = Op.getOperand(0);
1337 SDValue Vt = Op.getOperand(1);
1338 bool IsSigned = Op.getOpcode() == ISD::MULHS;
1339
1340 if (ElemTy == MVT::i8 || ElemTy == MVT::i16) {
1341 // For i8 vectors Vs = (a0, a1, ...), Vt = (b0, b1, ...),
1342 // V6_vmpybv Vs, Vt produces a pair of i16 vectors Hi:Lo,
1343 // where Lo = (a0*b0, a2*b2, ...), Hi = (a1*b1, a3*b3, ...).
1344 // For i16, use V6_vmpyhv, which behaves in an analogous way to
1345 // V6_vmpybv: results Lo and Hi are products of even/odd elements
1346 // respectively.
1347 MVT ExtTy = typeExtElem(ResTy, 2);
1348 unsigned MpyOpc = ElemTy == MVT::i8
1349 ? (IsSigned ? Hexagon::V6_vmpybv : Hexagon::V6_vmpyubv)
1350 : (IsSigned ? Hexagon::V6_vmpyhv : Hexagon::V6_vmpyuhv);
1351 SDValue M = getInstr(MpyOpc, dl, ExtTy, {Vs, Vt}, DAG);
1352
1353 // Discard low halves of the resulting values, collect the high halves.
1354 for (unsigned I = 0; I < VecLen; I += 2) {
1355 ShuffMask.push_back(I+1); // Pick even element.
1356 ShuffMask.push_back(I+VecLen+1); // Pick odd element.
1357 }
1358 VectorPair P = opSplit(opCastElem(M, ElemTy, DAG), dl, DAG);
1359 SDValue BS = getByteShuffle(dl, P.first, P.second, ShuffMask, DAG);
1360 return DAG.getBitcast(ResTy, BS);
1361 }
1362
1363 assert(ElemTy == MVT::i32);
1364 SDValue S16 = DAG.getConstant(16, dl, MVT::i32);
1365
1366 if (IsSigned) {
1367 // mulhs(Vs,Vt) =
1368 // = [(Hi(Vs)*2^16 + Lo(Vs)) *s (Hi(Vt)*2^16 + Lo(Vt))] >> 32
1369 // = [Hi(Vs)*2^16 *s Hi(Vt)*2^16 + Hi(Vs) *su Lo(Vt)*2^16
1370 // + Lo(Vs) *us (Hi(Vt)*2^16 + Lo(Vt))] >> 32
1371 // = [Hi(Vs) *s Hi(Vt)*2^32 + Hi(Vs) *su Lo(Vt)*2^16
1372 // + Lo(Vs) *us Vt] >> 32
1373 // The low half of Lo(Vs)*Lo(Vt) will be discarded (it's not added to
1374 // anything, so it cannot produce any carry over to higher bits),
1375 // so everything in [] can be shifted by 16 without loss of precision.
1376 // = [Hi(Vs) *s Hi(Vt)*2^16 + Hi(Vs)*su Lo(Vt) + Lo(Vs)*Vt >> 16] >> 16
1377 // = [Hi(Vs) *s Hi(Vt)*2^16 + Hi(Vs)*su Lo(Vt) + V6_vmpyewuh(Vs,Vt)] >> 16
1378 // Denote Hi(Vs) = Vs':
1379 // = [Vs'*s Hi(Vt)*2^16 + Vs' *su Lo(Vt) + V6_vmpyewuh(Vt,Vs)] >> 16
1380 // = Vs'*s Hi(Vt) + (V6_vmpyiewuh(Vs',Vt) + V6_vmpyewuh(Vt,Vs)) >> 16
1381 SDValue T0 = getInstr(Hexagon::V6_vmpyewuh, dl, ResTy, {Vt, Vs}, DAG);
1382 // Get Vs':
1383 SDValue S0 = getInstr(Hexagon::V6_vasrw, dl, ResTy, {Vs, S16}, DAG);
1384 SDValue T1 = getInstr(Hexagon::V6_vmpyiewuh_acc, dl, ResTy,
1385 {T0, S0, Vt}, DAG);
1386 // Shift by 16:
1387 SDValue S2 = getInstr(Hexagon::V6_vasrw, dl, ResTy, {T1, S16}, DAG);
1388 // Get Vs'*Hi(Vt):
1389 SDValue T2 = getInstr(Hexagon::V6_vmpyiowh, dl, ResTy, {S0, Vt}, DAG);
1390 // Add:
1391 SDValue T3 = DAG.getNode(ISD::ADD, dl, ResTy, {S2, T2});
1392 return T3;
1393 }
1394
1395 // Unsigned mulhw. (Would expansion using signed mulhw be better?)
1396
1397 auto LoVec = [&DAG,ResTy,dl] (SDValue Pair) {
1398 return DAG.getTargetExtractSubreg(Hexagon::vsub_lo, dl, ResTy, Pair);
1399 };
1400 auto HiVec = [&DAG,ResTy,dl] (SDValue Pair) {
1401 return DAG.getTargetExtractSubreg(Hexagon::vsub_hi, dl, ResTy, Pair);
1402 };
1403
1404 MVT PairTy = typeJoin({ResTy, ResTy});
1405 SDValue P = getInstr(Hexagon::V6_lvsplatw, dl, ResTy,
1406 {DAG.getConstant(0x02020202, dl, MVT::i32)}, DAG);
1407 // Multiply-unsigned halfwords:
1408 // LoVec = Vs.uh[2i] * Vt.uh[2i],
1409 // HiVec = Vs.uh[2i+1] * Vt.uh[2i+1]
1410 SDValue T0 = getInstr(Hexagon::V6_vmpyuhv, dl, PairTy, {Vs, Vt}, DAG);
1411 // The low halves in the LoVec of the pair can be discarded. They are
1412 // not added to anything (in the full-precision product), so they cannot
1413 // produce a carry into the higher bits.
1414 SDValue T1 = getInstr(Hexagon::V6_vlsrw, dl, ResTy, {LoVec(T0), S16}, DAG);
1415 // Swap low and high halves in Vt, and do the halfword multiplication
1416 // to get products Vs.uh[2i] * Vt.uh[2i+1] and Vs.uh[2i+1] * Vt.uh[2i].
1417 SDValue D0 = getInstr(Hexagon::V6_vdelta, dl, ResTy, {Vt, P}, DAG);
1418 SDValue T2 = getInstr(Hexagon::V6_vmpyuhv, dl, PairTy, {Vs, D0}, DAG);
1419 // T2 has mixed products of halfwords: Lo(Vt)*Hi(Vs) and Hi(Vt)*Lo(Vs).
1420 // These products are words, but cannot be added directly because the
1421 // sums could overflow. Add these products, by halfwords, where each sum
1422 // of a pair of halfwords gives a word.
1423 SDValue T3 = getInstr(Hexagon::V6_vadduhw, dl, PairTy,
1424 {LoVec(T2), HiVec(T2)}, DAG);
1425 // Add the high halfwords from the products of the low halfwords.
1426 SDValue T4 = DAG.getNode(ISD::ADD, dl, ResTy, {T1, LoVec(T3)});
1427 SDValue T5 = getInstr(Hexagon::V6_vlsrw, dl, ResTy, {T4, S16}, DAG);
1428 SDValue T6 = DAG.getNode(ISD::ADD, dl, ResTy, {HiVec(T0), HiVec(T3)});
1429 SDValue T7 = DAG.getNode(ISD::ADD, dl, ResTy, {T5, T6});
1430 return T7;
1431 }
1432
1433 SDValue
LowerHvxExtend(SDValue Op,SelectionDAG & DAG) const1434 HexagonTargetLowering::LowerHvxExtend(SDValue Op, SelectionDAG &DAG) const {
1435 // Sign- and zero-extends are legal.
1436 assert(Op.getOpcode() == ISD::ANY_EXTEND_VECTOR_INREG);
1437 return DAG.getNode(ISD::ZERO_EXTEND_VECTOR_INREG, SDLoc(Op), ty(Op),
1438 Op.getOperand(0));
1439 }
1440
1441 SDValue
LowerHvxShift(SDValue Op,SelectionDAG & DAG) const1442 HexagonTargetLowering::LowerHvxShift(SDValue Op, SelectionDAG &DAG) const {
1443 if (SDValue S = getVectorShiftByInt(Op, DAG))
1444 return S;
1445 return Op;
1446 }
1447
1448 SDValue
SplitHvxPairOp(SDValue Op,SelectionDAG & DAG) const1449 HexagonTargetLowering::SplitHvxPairOp(SDValue Op, SelectionDAG &DAG) const {
1450 assert(!Op.isMachineOpcode());
1451 SmallVector<SDValue,2> OpsL, OpsH;
1452 const SDLoc &dl(Op);
1453
1454 auto SplitVTNode = [&DAG,this] (const VTSDNode *N) {
1455 MVT Ty = typeSplit(N->getVT().getSimpleVT()).first;
1456 SDValue TV = DAG.getValueType(Ty);
1457 return std::make_pair(TV, TV);
1458 };
1459
1460 for (SDValue A : Op.getNode()->ops()) {
1461 VectorPair P = Subtarget.isHVXVectorType(ty(A), true)
1462 ? opSplit(A, dl, DAG)
1463 : std::make_pair(A, A);
1464 // Special case for type operand.
1465 if (Op.getOpcode() == ISD::SIGN_EXTEND_INREG) {
1466 if (const auto *N = dyn_cast<const VTSDNode>(A.getNode()))
1467 P = SplitVTNode(N);
1468 }
1469 OpsL.push_back(P.first);
1470 OpsH.push_back(P.second);
1471 }
1472
1473 MVT ResTy = ty(Op);
1474 MVT HalfTy = typeSplit(ResTy).first;
1475 SDValue L = DAG.getNode(Op.getOpcode(), dl, HalfTy, OpsL);
1476 SDValue H = DAG.getNode(Op.getOpcode(), dl, HalfTy, OpsH);
1477 SDValue S = DAG.getNode(ISD::CONCAT_VECTORS, dl, ResTy, L, H);
1478 return S;
1479 }
1480
1481 SDValue
SplitHvxMemOp(SDValue Op,SelectionDAG & DAG) const1482 HexagonTargetLowering::SplitHvxMemOp(SDValue Op, SelectionDAG &DAG) const {
1483 LSBaseSDNode *BN = cast<LSBaseSDNode>(Op.getNode());
1484 assert(BN->isUnindexed());
1485 MVT MemTy = BN->getMemoryVT().getSimpleVT();
1486 if (!isHvxPairTy(MemTy))
1487 return Op;
1488
1489 const SDLoc &dl(Op);
1490 unsigned HwLen = Subtarget.getVectorLength();
1491 MVT SingleTy = typeSplit(MemTy).first;
1492 SDValue Chain = BN->getChain();
1493 SDValue Base0 = BN->getBasePtr();
1494 SDValue Base1 = DAG.getMemBasePlusOffset(Base0, HwLen, dl);
1495
1496 MachineMemOperand *MOp0 = nullptr, *MOp1 = nullptr;
1497 if (MachineMemOperand *MMO = BN->getMemOperand()) {
1498 MachineFunction &MF = DAG.getMachineFunction();
1499 MOp0 = MF.getMachineMemOperand(MMO, 0, HwLen);
1500 MOp1 = MF.getMachineMemOperand(MMO, HwLen, HwLen);
1501 }
1502
1503 unsigned MemOpc = BN->getOpcode();
1504 SDValue NewOp;
1505
1506 if (MemOpc == ISD::LOAD) {
1507 SDValue Load0 = DAG.getLoad(SingleTy, dl, Chain, Base0, MOp0);
1508 SDValue Load1 = DAG.getLoad(SingleTy, dl, Chain, Base1, MOp1);
1509 NewOp = DAG.getMergeValues(
1510 { DAG.getNode(ISD::CONCAT_VECTORS, dl, MemTy, Load0, Load1),
1511 DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
1512 Load0.getValue(1), Load1.getValue(1)) }, dl);
1513 } else {
1514 assert(MemOpc == ISD::STORE);
1515 VectorPair Vals = opSplit(cast<StoreSDNode>(Op)->getValue(), dl, DAG);
1516 SDValue Store0 = DAG.getStore(Chain, dl, Vals.first, Base0, MOp0);
1517 SDValue Store1 = DAG.getStore(Chain, dl, Vals.second, Base1, MOp1);
1518 NewOp = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Store0, Store1);
1519 }
1520
1521 return NewOp;
1522 }
1523
1524 SDValue
LowerHvxOperation(SDValue Op,SelectionDAG & DAG) const1525 HexagonTargetLowering::LowerHvxOperation(SDValue Op, SelectionDAG &DAG) const {
1526 unsigned Opc = Op.getOpcode();
1527 bool IsPairOp = isHvxPairTy(ty(Op)) ||
1528 llvm::any_of(Op.getNode()->ops(), [this] (SDValue V) {
1529 return isHvxPairTy(ty(V));
1530 });
1531
1532 if (IsPairOp) {
1533 switch (Opc) {
1534 default:
1535 break;
1536 case ISD::LOAD:
1537 case ISD::STORE:
1538 return SplitHvxMemOp(Op, DAG);
1539 case ISD::CTPOP:
1540 case ISD::CTLZ:
1541 case ISD::CTTZ:
1542 case ISD::MUL:
1543 case ISD::MULHS:
1544 case ISD::MULHU:
1545 case ISD::AND:
1546 case ISD::OR:
1547 case ISD::XOR:
1548 case ISD::SRA:
1549 case ISD::SHL:
1550 case ISD::SRL:
1551 case ISD::SETCC:
1552 case ISD::VSELECT:
1553 case ISD::SIGN_EXTEND:
1554 case ISD::ZERO_EXTEND:
1555 case ISD::SIGN_EXTEND_INREG:
1556 return SplitHvxPairOp(Op, DAG);
1557 }
1558 }
1559
1560 switch (Opc) {
1561 default:
1562 break;
1563 case ISD::BUILD_VECTOR: return LowerHvxBuildVector(Op, DAG);
1564 case ISD::CONCAT_VECTORS: return LowerHvxConcatVectors(Op, DAG);
1565 case ISD::INSERT_SUBVECTOR: return LowerHvxInsertSubvector(Op, DAG);
1566 case ISD::INSERT_VECTOR_ELT: return LowerHvxInsertElement(Op, DAG);
1567 case ISD::EXTRACT_SUBVECTOR: return LowerHvxExtractSubvector(Op, DAG);
1568 case ISD::EXTRACT_VECTOR_ELT: return LowerHvxExtractElement(Op, DAG);
1569
1570 case ISD::ANY_EXTEND: return LowerHvxAnyExt(Op, DAG);
1571 case ISD::SIGN_EXTEND: return LowerHvxSignExt(Op, DAG);
1572 case ISD::ZERO_EXTEND: return LowerHvxZeroExt(Op, DAG);
1573 case ISD::CTTZ: return LowerHvxCttz(Op, DAG);
1574 case ISD::SRA:
1575 case ISD::SHL:
1576 case ISD::SRL: return LowerHvxShift(Op, DAG);
1577 case ISD::MUL: return LowerHvxMul(Op, DAG);
1578 case ISD::MULHS:
1579 case ISD::MULHU: return LowerHvxMulh(Op, DAG);
1580 case ISD::ANY_EXTEND_VECTOR_INREG: return LowerHvxExtend(Op, DAG);
1581 case ISD::SETCC:
1582 case ISD::INTRINSIC_VOID: return Op;
1583 // Unaligned loads will be handled by the default lowering.
1584 case ISD::LOAD: return SDValue();
1585 }
1586 #ifndef NDEBUG
1587 Op.dumpr(&DAG);
1588 #endif
1589 llvm_unreachable("Unhandled HVX operation");
1590 }
1591
1592 SDValue
PerformHvxDAGCombine(SDNode * N,DAGCombinerInfo & DCI) const1593 HexagonTargetLowering::PerformHvxDAGCombine(SDNode *N, DAGCombinerInfo &DCI)
1594 const {
1595 const SDLoc &dl(N);
1596 SDValue Op(N, 0);
1597
1598 unsigned Opc = Op.getOpcode();
1599 if (Opc == ISD::VSELECT) {
1600 // (vselect (xor x, qtrue), v0, v1) -> (vselect x, v1, v0)
1601 SDValue Cond = Op.getOperand(0);
1602 if (Cond->getOpcode() == ISD::XOR) {
1603 SDValue C0 = Cond.getOperand(0), C1 = Cond.getOperand(1);
1604 if (C1->getOpcode() == HexagonISD::QTRUE) {
1605 SDValue VSel = DCI.DAG.getNode(ISD::VSELECT, dl, ty(Op), C0,
1606 Op.getOperand(2), Op.getOperand(1));
1607 return VSel;
1608 }
1609 }
1610 }
1611 return SDValue();
1612 }
1613
1614 bool
isHvxOperation(SDValue Op) const1615 HexagonTargetLowering::isHvxOperation(SDValue Op) const {
1616 // If the type of the result, or any operand type are HVX vector types,
1617 // this is an HVX operation.
1618 return Subtarget.isHVXVectorType(ty(Op), true) ||
1619 llvm::any_of(Op.getNode()->ops(),
1620 [this] (SDValue V) {
1621 return Subtarget.isHVXVectorType(ty(V), true);
1622 });
1623 }
1624