• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 //===-- PPCInstrInfo.h - PowerPC Instruction Information --------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file contains the PowerPC implementation of the TargetInstrInfo class.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #ifndef LLVM_LIB_TARGET_POWERPC_PPCINSTRINFO_H
14 #define LLVM_LIB_TARGET_POWERPC_PPCINSTRINFO_H
15 
16 #include "PPCRegisterInfo.h"
17 #include "llvm/CodeGen/TargetInstrInfo.h"
18 
19 #define GET_INSTRINFO_HEADER
20 #include "PPCGenInstrInfo.inc"
21 
22 namespace llvm {
23 
24 /// PPCII - This namespace holds all of the PowerPC target-specific
25 /// per-instruction flags.  These must match the corresponding definitions in
26 /// PPC.td and PPCInstrFormats.td.
27 namespace PPCII {
28 enum {
29   // PPC970 Instruction Flags.  These flags describe the characteristics of the
30   // PowerPC 970 (aka G5) dispatch groups and how they are formed out of
31   // raw machine instructions.
32 
33   /// PPC970_First - This instruction starts a new dispatch group, so it will
34   /// always be the first one in the group.
35   PPC970_First = 0x1,
36 
37   /// PPC970_Single - This instruction starts a new dispatch group and
38   /// terminates it, so it will be the sole instruction in the group.
39   PPC970_Single = 0x2,
40 
41   /// PPC970_Cracked - This instruction is cracked into two pieces, requiring
42   /// two dispatch pipes to be available to issue.
43   PPC970_Cracked = 0x4,
44 
45   /// PPC970_Mask/Shift - This is a bitmask that selects the pipeline type that
46   /// an instruction is issued to.
47   PPC970_Shift = 3,
48   PPC970_Mask = 0x07 << PPC970_Shift
49 };
50 enum PPC970_Unit {
51   /// These are the various PPC970 execution unit pipelines.  Each instruction
52   /// is one of these.
53   PPC970_Pseudo = 0 << PPC970_Shift,   // Pseudo instruction
54   PPC970_FXU    = 1 << PPC970_Shift,   // Fixed Point (aka Integer/ALU) Unit
55   PPC970_LSU    = 2 << PPC970_Shift,   // Load Store Unit
56   PPC970_FPU    = 3 << PPC970_Shift,   // Floating Point Unit
57   PPC970_CRU    = 4 << PPC970_Shift,   // Control Register Unit
58   PPC970_VALU   = 5 << PPC970_Shift,   // Vector ALU
59   PPC970_VPERM  = 6 << PPC970_Shift,   // Vector Permute Unit
60   PPC970_BRU    = 7 << PPC970_Shift    // Branch Unit
61 };
62 
63 enum {
64   /// Shift count to bypass PPC970 flags
65   NewDef_Shift = 6,
66 
67   /// This instruction is an X-Form memory operation.
68   XFormMemOp = 0x1 << (NewDef_Shift+1)
69 };
70 } // end namespace PPCII
71 
72 // Instructions that have an immediate form might be convertible to that
73 // form if the correct input is a result of a load immediate. In order to
74 // know whether the transformation is special, we might need to know some
75 // of the details of the two forms.
76 struct ImmInstrInfo {
77   // Is the immediate field in the immediate form signed or unsigned?
78   uint64_t SignedImm : 1;
79   // Does the immediate need to be a multiple of some value?
80   uint64_t ImmMustBeMultipleOf : 5;
81   // Is R0/X0 treated specially by the original r+r instruction?
82   // If so, in which operand?
83   uint64_t ZeroIsSpecialOrig : 3;
84   // Is R0/X0 treated specially by the new r+i instruction?
85   // If so, in which operand?
86   uint64_t ZeroIsSpecialNew : 3;
87   // Is the operation commutative?
88   uint64_t IsCommutative : 1;
89   // The operand number to check for add-immediate def.
90   uint64_t OpNoForForwarding : 3;
91   // The operand number for the immediate.
92   uint64_t ImmOpNo : 3;
93   // The opcode of the new instruction.
94   uint64_t ImmOpcode : 16;
95   // The size of the immediate.
96   uint64_t ImmWidth : 5;
97   // The immediate should be truncated to N bits.
98   uint64_t TruncateImmTo : 5;
99   // Is the instruction summing the operand
100   uint64_t IsSummingOperands : 1;
101 };
102 
103 // Information required to convert an instruction to just a materialized
104 // immediate.
105 struct LoadImmediateInfo {
106   unsigned Imm : 16;
107   unsigned Is64Bit : 1;
108   unsigned SetCR : 1;
109 };
110 
111 class PPCSubtarget;
112 class PPCInstrInfo : public PPCGenInstrInfo {
113   PPCSubtarget &Subtarget;
114   const PPCRegisterInfo RI;
115 
116   void StoreRegToStackSlot(MachineFunction &MF, unsigned SrcReg, bool isKill,
117                            int FrameIdx, const TargetRegisterClass *RC,
118                            SmallVectorImpl<MachineInstr *> &NewMIs) const;
119   void LoadRegFromStackSlot(MachineFunction &MF, const DebugLoc &DL,
120                             unsigned DestReg, int FrameIdx,
121                             const TargetRegisterClass *RC,
122                             SmallVectorImpl<MachineInstr *> &NewMIs) const;
123 
124   // If the inst has imm-form and one of its operand is produced by a LI,
125   // put the imm into the inst directly and remove the LI if possible.
126   bool transformToImmFormFedByLI(MachineInstr &MI, const ImmInstrInfo &III,
127                                  unsigned ConstantOpNo, MachineInstr &DefMI,
128                                  int64_t Imm) const;
129   // If the inst has imm-form and one of its operand is produced by an
130   // add-immediate, try to transform it when possible.
131   bool transformToImmFormFedByAdd(MachineInstr &MI, const ImmInstrInfo &III,
132                                   unsigned ConstantOpNo, MachineInstr &DefMI,
133                                   bool KillDefMI) const;
134   // Try to find that, if the instruction 'MI' contains any operand that
135   // could be forwarded from some inst that feeds it. If yes, return the
136   // Def of that operand. And OpNoForForwarding is the operand index in
137   // the 'MI' for that 'Def'. If we see another use of this Def between
138   // the Def and the MI, SeenIntermediateUse becomes 'true'.
139   MachineInstr *getForwardingDefMI(MachineInstr &MI,
140                                    unsigned &OpNoForForwarding,
141                                    bool &SeenIntermediateUse) const;
142 
143   // Can the user MI have it's source at index \p OpNoForForwarding
144   // forwarded from an add-immediate that feeds it?
145   bool isUseMIElgibleForForwarding(MachineInstr &MI, const ImmInstrInfo &III,
146                                    unsigned OpNoForForwarding) const;
147   bool isDefMIElgibleForForwarding(MachineInstr &DefMI,
148                                    const ImmInstrInfo &III,
149                                    MachineOperand *&ImmMO,
150                                    MachineOperand *&RegMO) const;
151   bool isImmElgibleForForwarding(const MachineOperand &ImmMO,
152                                  const MachineInstr &DefMI,
153                                  const ImmInstrInfo &III,
154                                  int64_t &Imm) const;
155   bool isRegElgibleForForwarding(const MachineOperand &RegMO,
156                                  const MachineInstr &DefMI,
157                                  const MachineInstr &MI, bool KillDefMI,
158                                  bool &IsFwdFeederRegKilled) const;
159   const unsigned *getStoreOpcodesForSpillArray() const;
160   const unsigned *getLoadOpcodesForSpillArray() const;
161   virtual void anchor();
162 
163 protected:
164   /// Commutes the operands in the given instruction.
165   /// The commutable operands are specified by their indices OpIdx1 and OpIdx2.
166   ///
167   /// Do not call this method for a non-commutable instruction or for
168   /// non-commutable pair of operand indices OpIdx1 and OpIdx2.
169   /// Even though the instruction is commutable, the method may still
170   /// fail to commute the operands, null pointer is returned in such cases.
171   ///
172   /// For example, we can commute rlwimi instructions, but only if the
173   /// rotate amt is zero.  We also have to munge the immediates a bit.
174   MachineInstr *commuteInstructionImpl(MachineInstr &MI, bool NewMI,
175                                        unsigned OpIdx1,
176                                        unsigned OpIdx2) const override;
177 
178 public:
179   explicit PPCInstrInfo(PPCSubtarget &STI);
180 
181   /// getRegisterInfo - TargetInstrInfo is a superset of MRegister info.  As
182   /// such, whenever a client has an instance of instruction info, it should
183   /// always be able to get register info as well (through this method).
184   ///
getRegisterInfo()185   const PPCRegisterInfo &getRegisterInfo() const { return RI; }
186 
isXFormMemOp(unsigned Opcode)187   bool isXFormMemOp(unsigned Opcode) const {
188     return get(Opcode).TSFlags & PPCII::XFormMemOp;
189   }
isSameClassPhysRegCopy(unsigned Opcode)190   static bool isSameClassPhysRegCopy(unsigned Opcode) {
191     unsigned CopyOpcodes[] =
192       { PPC::OR, PPC::OR8, PPC::FMR, PPC::VOR, PPC::XXLOR, PPC::XXLORf,
193         PPC::XSCPSGNDP, PPC::MCRF, PPC::QVFMR, PPC::QVFMRs, PPC::QVFMRb,
194         PPC::CROR, PPC::EVOR, -1U };
195     for (int i = 0; CopyOpcodes[i] != -1U; i++)
196       if (Opcode == CopyOpcodes[i])
197         return true;
198     return false;
199   }
200 
201   ScheduleHazardRecognizer *
202   CreateTargetHazardRecognizer(const TargetSubtargetInfo *STI,
203                                const ScheduleDAG *DAG) const override;
204   ScheduleHazardRecognizer *
205   CreateTargetPostRAHazardRecognizer(const InstrItineraryData *II,
206                                      const ScheduleDAG *DAG) const override;
207 
208   unsigned getInstrLatency(const InstrItineraryData *ItinData,
209                            const MachineInstr &MI,
210                            unsigned *PredCost = nullptr) const override;
211 
212   int getOperandLatency(const InstrItineraryData *ItinData,
213                         const MachineInstr &DefMI, unsigned DefIdx,
214                         const MachineInstr &UseMI,
215                         unsigned UseIdx) const override;
getOperandLatency(const InstrItineraryData * ItinData,SDNode * DefNode,unsigned DefIdx,SDNode * UseNode,unsigned UseIdx)216   int getOperandLatency(const InstrItineraryData *ItinData,
217                         SDNode *DefNode, unsigned DefIdx,
218                         SDNode *UseNode, unsigned UseIdx) const override {
219     return PPCGenInstrInfo::getOperandLatency(ItinData, DefNode, DefIdx,
220                                               UseNode, UseIdx);
221   }
222 
hasLowDefLatency(const TargetSchedModel & SchedModel,const MachineInstr & DefMI,unsigned DefIdx)223   bool hasLowDefLatency(const TargetSchedModel &SchedModel,
224                         const MachineInstr &DefMI,
225                         unsigned DefIdx) const override {
226     // Machine LICM should hoist all instructions in low-register-pressure
227     // situations; none are sufficiently free to justify leaving in a loop
228     // body.
229     return false;
230   }
231 
useMachineCombiner()232   bool useMachineCombiner() const override {
233     return true;
234   }
235 
236   /// Return true when there is potentially a faster code sequence
237   /// for an instruction chain ending in <Root>. All potential patterns are
238   /// output in the <Pattern> array.
239   bool getMachineCombinerPatterns(
240       MachineInstr &Root,
241       SmallVectorImpl<MachineCombinerPattern> &P) const override;
242 
243   bool isAssociativeAndCommutative(const MachineInstr &Inst) const override;
244 
245   bool isCoalescableExtInstr(const MachineInstr &MI,
246                              unsigned &SrcReg, unsigned &DstReg,
247                              unsigned &SubIdx) const override;
248   unsigned isLoadFromStackSlot(const MachineInstr &MI,
249                                int &FrameIndex) const override;
250   bool isReallyTriviallyReMaterializable(const MachineInstr &MI,
251                                          AAResults *AA) const override;
252   unsigned isStoreToStackSlot(const MachineInstr &MI,
253                               int &FrameIndex) const override;
254 
255   bool findCommutedOpIndices(const MachineInstr &MI, unsigned &SrcOpIdx1,
256                              unsigned &SrcOpIdx2) const override;
257 
258   void insertNoop(MachineBasicBlock &MBB,
259                   MachineBasicBlock::iterator MI) const override;
260 
261 
262   // Branch analysis.
263   bool analyzeBranch(MachineBasicBlock &MBB, MachineBasicBlock *&TBB,
264                      MachineBasicBlock *&FBB,
265                      SmallVectorImpl<MachineOperand> &Cond,
266                      bool AllowModify) const override;
267   unsigned removeBranch(MachineBasicBlock &MBB,
268                         int *BytesRemoved = nullptr) const override;
269   unsigned insertBranch(MachineBasicBlock &MBB, MachineBasicBlock *TBB,
270                         MachineBasicBlock *FBB, ArrayRef<MachineOperand> Cond,
271                         const DebugLoc &DL,
272                         int *BytesAdded = nullptr) const override;
273 
274   // Select analysis.
275   bool canInsertSelect(const MachineBasicBlock &, ArrayRef<MachineOperand> Cond,
276                        unsigned, unsigned, int &, int &, int &) const override;
277   void insertSelect(MachineBasicBlock &MBB, MachineBasicBlock::iterator MI,
278                     const DebugLoc &DL, unsigned DstReg,
279                     ArrayRef<MachineOperand> Cond, unsigned TrueReg,
280                     unsigned FalseReg) const override;
281 
282   void copyPhysReg(MachineBasicBlock &MBB, MachineBasicBlock::iterator I,
283                    const DebugLoc &DL, MCRegister DestReg, MCRegister SrcReg,
284                    bool KillSrc) const override;
285 
286   void storeRegToStackSlot(MachineBasicBlock &MBB,
287                            MachineBasicBlock::iterator MBBI,
288                            unsigned SrcReg, bool isKill, int FrameIndex,
289                            const TargetRegisterClass *RC,
290                            const TargetRegisterInfo *TRI) const override;
291 
292   void loadRegFromStackSlot(MachineBasicBlock &MBB,
293                             MachineBasicBlock::iterator MBBI,
294                             unsigned DestReg, int FrameIndex,
295                             const TargetRegisterClass *RC,
296                             const TargetRegisterInfo *TRI) const override;
297 
298   unsigned getStoreOpcodeForSpill(unsigned Reg,
299                                   const TargetRegisterClass *RC = nullptr) const;
300 
301   unsigned getLoadOpcodeForSpill(unsigned Reg,
302                                  const TargetRegisterClass *RC = nullptr) const;
303 
304   bool
305   reverseBranchCondition(SmallVectorImpl<MachineOperand> &Cond) const override;
306 
307   bool FoldImmediate(MachineInstr &UseMI, MachineInstr &DefMI, unsigned Reg,
308                      MachineRegisterInfo *MRI) const override;
309 
310   // If conversion by predication (only supported by some branch instructions).
311   // All of the profitability checks always return true; it is always
312   // profitable to use the predicated branches.
isProfitableToIfCvt(MachineBasicBlock & MBB,unsigned NumCycles,unsigned ExtraPredCycles,BranchProbability Probability)313   bool isProfitableToIfCvt(MachineBasicBlock &MBB,
314                           unsigned NumCycles, unsigned ExtraPredCycles,
315                           BranchProbability Probability) const override {
316     return true;
317   }
318 
319   bool isProfitableToIfCvt(MachineBasicBlock &TMBB,
320                            unsigned NumT, unsigned ExtraT,
321                            MachineBasicBlock &FMBB,
322                            unsigned NumF, unsigned ExtraF,
323                            BranchProbability Probability) const override;
324 
isProfitableToDupForIfCvt(MachineBasicBlock & MBB,unsigned NumCycles,BranchProbability Probability)325   bool isProfitableToDupForIfCvt(MachineBasicBlock &MBB, unsigned NumCycles,
326                                  BranchProbability Probability) const override {
327     return true;
328   }
329 
isProfitableToUnpredicate(MachineBasicBlock & TMBB,MachineBasicBlock & FMBB)330   bool isProfitableToUnpredicate(MachineBasicBlock &TMBB,
331                                  MachineBasicBlock &FMBB) const override {
332     return false;
333   }
334 
335   // Predication support.
336   bool isPredicated(const MachineInstr &MI) const override;
337 
338   bool isUnpredicatedTerminator(const MachineInstr &MI) const override;
339 
340   bool PredicateInstruction(MachineInstr &MI,
341                             ArrayRef<MachineOperand> Pred) const override;
342 
343   bool SubsumesPredicate(ArrayRef<MachineOperand> Pred1,
344                          ArrayRef<MachineOperand> Pred2) const override;
345 
346   bool DefinesPredicate(MachineInstr &MI,
347                         std::vector<MachineOperand> &Pred) const override;
348 
349   // Comparison optimization.
350 
351   bool analyzeCompare(const MachineInstr &MI, unsigned &SrcReg,
352                       unsigned &SrcReg2, int &Mask, int &Value) const override;
353 
354   bool optimizeCompareInstr(MachineInstr &CmpInstr, unsigned SrcReg,
355                             unsigned SrcReg2, int Mask, int Value,
356                             const MachineRegisterInfo *MRI) const override;
357 
358 
359   /// Return true if get the base operand, byte offset of an instruction and
360   /// the memory width. Width is the size of memory that is being
361   /// loaded/stored (e.g. 1, 2, 4, 8).
362   bool getMemOperandWithOffsetWidth(const MachineInstr &LdSt,
363                                     const MachineOperand *&BaseOp,
364                                     int64_t &Offset, unsigned &Width,
365                                     const TargetRegisterInfo *TRI) const;
366 
367   /// Return true if two MIs access different memory addresses and false
368   /// otherwise
369   bool
370   areMemAccessesTriviallyDisjoint(const MachineInstr &MIa,
371                                   const MachineInstr &MIb) const override;
372 
373   /// GetInstSize - Return the number of bytes of code the specified
374   /// instruction may be.  This returns the maximum number of bytes.
375   ///
376   unsigned getInstSizeInBytes(const MachineInstr &MI) const override;
377 
378   void getNoop(MCInst &NopInst) const override;
379 
380   std::pair<unsigned, unsigned>
381   decomposeMachineOperandsTargetFlags(unsigned TF) const override;
382 
383   ArrayRef<std::pair<unsigned, const char *>>
384   getSerializableDirectMachineOperandTargetFlags() const override;
385 
386   ArrayRef<std::pair<unsigned, const char *>>
387   getSerializableBitmaskMachineOperandTargetFlags() const override;
388 
389   // Expand VSX Memory Pseudo instruction to either a VSX or a FP instruction.
390   bool expandVSXMemPseudo(MachineInstr &MI) const;
391 
392   // Lower pseudo instructions after register allocation.
393   bool expandPostRAPseudo(MachineInstr &MI) const override;
394 
isVFRegister(unsigned Reg)395   static bool isVFRegister(unsigned Reg) {
396     return Reg >= PPC::VF0 && Reg <= PPC::VF31;
397   }
isVRRegister(unsigned Reg)398   static bool isVRRegister(unsigned Reg) {
399     return Reg >= PPC::V0 && Reg <= PPC::V31;
400   }
401   const TargetRegisterClass *updatedRC(const TargetRegisterClass *RC) const;
402   static int getRecordFormOpcode(unsigned Opcode);
403 
404   bool isTOCSaveMI(const MachineInstr &MI) const;
405 
406   bool isSignOrZeroExtended(const MachineInstr &MI, bool SignExt,
407                             const unsigned PhiDepth) const;
408 
409   /// Return true if the output of the instruction is always a sign-extended,
410   /// i.e. 0 to 31-th bits are same as 32-th bit.
411   bool isSignExtended(const MachineInstr &MI, const unsigned depth = 0) const {
412     return isSignOrZeroExtended(MI, true, depth);
413   }
414 
415   /// Return true if the output of the instruction is always zero-extended,
416   /// i.e. 0 to 31-th bits are all zeros
417   bool isZeroExtended(const MachineInstr &MI, const unsigned depth = 0) const {
418    return isSignOrZeroExtended(MI, false, depth);
419   }
420 
421   bool convertToImmediateForm(MachineInstr &MI,
422                               MachineInstr **KilledDef = nullptr) const;
423   bool foldFrameOffset(MachineInstr &MI) const;
424   bool isADDIInstrEligibleForFolding(MachineInstr &ADDIMI, int64_t &Imm) const;
425   bool isADDInstrEligibleForFolding(MachineInstr &ADDMI) const;
426   bool isImmInstrEligibleForFolding(MachineInstr &MI, unsigned &BaseReg,
427                                     unsigned &XFormOpcode,
428                                     int64_t &OffsetOfImmInstr,
429                                     ImmInstrInfo &III) const;
430   bool isValidToBeChangedReg(MachineInstr *ADDMI, unsigned Index,
431                              MachineInstr *&ADDIMI, int64_t &OffsetAddi,
432                              int64_t OffsetImm) const;
433 
434   /// Fixup killed/dead flag for register \p RegNo between instructions [\p
435   /// StartMI, \p EndMI]. Some PostRA transformations may violate register
436   /// killed/dead flags semantics, this function can be called to fix up. Before
437   /// calling this function,
438   /// 1. Ensure that \p RegNo liveness is killed after instruction \p EndMI.
439   /// 2. Ensure that there is no new definition between (\p StartMI, \p EndMI)
440   ///    and possible definition for \p RegNo is \p StartMI or \p EndMI.
441   /// 3. Ensure that all instructions between [\p StartMI, \p EndMI] are in same
442   ///    basic block.
443   void fixupIsDeadOrKill(MachineInstr &StartMI, MachineInstr &EndMI,
444                          unsigned RegNo) const;
445   void replaceInstrWithLI(MachineInstr &MI, const LoadImmediateInfo &LII) const;
446   void replaceInstrOperandWithImm(MachineInstr &MI, unsigned OpNo,
447                                   int64_t Imm) const;
448 
449   bool instrHasImmForm(unsigned Opc, bool IsVFReg, ImmInstrInfo &III,
450                        bool PostRA) const;
451 
452   // In PostRA phase, try to find instruction defines \p Reg before \p MI.
453   // \p SeenIntermediate is set to true if uses between DefMI and \p MI exist.
454   MachineInstr *getDefMIPostRA(unsigned Reg, MachineInstr &MI,
455                                bool &SeenIntermediateUse) const;
456 
457   /// getRegNumForOperand - some operands use different numbering schemes
458   /// for the same registers. For example, a VSX instruction may have any of
459   /// vs0-vs63 allocated whereas an Altivec instruction could only have
460   /// vs32-vs63 allocated (numbered as v0-v31). This function returns the actual
461   /// register number needed for the opcode/operand number combination.
462   /// The operand number argument will be useful when we need to extend this
463   /// to instructions that use both Altivec and VSX numbering (for different
464   /// operands).
getRegNumForOperand(const MCInstrDesc & Desc,unsigned Reg,unsigned OpNo)465   static unsigned getRegNumForOperand(const MCInstrDesc &Desc, unsigned Reg,
466                                       unsigned OpNo) {
467     int16_t regClass = Desc.OpInfo[OpNo].RegClass;
468     switch (regClass) {
469       // We store F0-F31, VF0-VF31 in MCOperand and it should be F0-F31,
470       // VSX32-VSX63 during encoding/disassembling
471       case PPC::VSSRCRegClassID:
472       case PPC::VSFRCRegClassID:
473         if (isVFRegister(Reg))
474           return PPC::VSX32 + (Reg - PPC::VF0);
475         break;
476       // We store VSL0-VSL31, V0-V31 in MCOperand and it should be VSL0-VSL31,
477       // VSX32-VSX63 during encoding/disassembling
478       case PPC::VSRCRegClassID:
479         if (isVRRegister(Reg))
480           return PPC::VSX32 + (Reg - PPC::V0);
481         break;
482       // Other RegClass doesn't need mapping
483       default:
484         break;
485     }
486     return Reg;
487   }
488 
489   /// Check \p Opcode is BDNZ (Decrement CTR and branch if it is still nonzero).
490   bool isBDNZ(unsigned Opcode) const;
491 
492   /// Find the hardware loop instruction used to set-up the specified loop.
493   /// On PPC, we have two instructions used to set-up the hardware loop
494   /// (MTCTRloop, MTCTR8loop) with corresponding endloop (BDNZ, BDNZ8)
495   /// instructions to indicate the end of a loop.
496   MachineInstr *
497   findLoopInstr(MachineBasicBlock &PreHeader,
498                 SmallPtrSet<MachineBasicBlock *, 8> &Visited) const;
499 
500   /// Analyze loop L, which must be a single-basic-block loop, and if the
501   /// conditions can be understood enough produce a PipelinerLoopInfo object.
502   std::unique_ptr<TargetInstrInfo::PipelinerLoopInfo>
503   analyzeLoopForPipelining(MachineBasicBlock *LoopBB) const override;
504 };
505 
506 }
507 
508 #endif
509