1 //===- NaryReassociate.cpp - Reassociate n-ary expressions ----------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This pass reassociates n-ary add expressions and eliminates the redundancy
10 // exposed by the reassociation.
11 //
12 // A motivating example:
13 //
14 // void foo(int a, int b) {
15 // bar(a + b);
16 // bar((a + 2) + b);
17 // }
18 //
19 // An ideal compiler should reassociate (a + 2) + b to (a + b) + 2 and simplify
20 // the above code to
21 //
22 // int t = a + b;
23 // bar(t);
24 // bar(t + 2);
25 //
26 // However, the Reassociate pass is unable to do that because it processes each
27 // instruction individually and believes (a + 2) + b is the best form according
28 // to its rank system.
29 //
30 // To address this limitation, NaryReassociate reassociates an expression in a
31 // form that reuses existing instructions. As a result, NaryReassociate can
32 // reassociate (a + 2) + b in the example to (a + b) + 2 because it detects that
33 // (a + b) is computed before.
34 //
35 // NaryReassociate works as follows. For every instruction in the form of (a +
36 // b) + c, it checks whether a + c or b + c is already computed by a dominating
37 // instruction. If so, it then reassociates (a + b) + c into (a + c) + b or (b +
38 // c) + a and removes the redundancy accordingly. To efficiently look up whether
39 // an expression is computed before, we store each instruction seen and its SCEV
40 // into an SCEV-to-instruction map.
41 //
42 // Although the algorithm pattern-matches only ternary additions, it
43 // automatically handles many >3-ary expressions by walking through the function
44 // in the depth-first order. For example, given
45 //
46 // (a + c) + d
47 // ((a + b) + c) + d
48 //
49 // NaryReassociate first rewrites (a + b) + c to (a + c) + b, and then rewrites
50 // ((a + c) + b) + d into ((a + c) + d) + b.
51 //
52 // Finally, the above dominator-based algorithm may need to be run multiple
53 // iterations before emitting optimal code. One source of this need is that we
54 // only split an operand when it is used only once. The above algorithm can
55 // eliminate an instruction and decrease the usage count of its operands. As a
56 // result, an instruction that previously had multiple uses may become a
57 // single-use instruction and thus eligible for split consideration. For
58 // example,
59 //
60 // ac = a + c
61 // ab = a + b
62 // abc = ab + c
63 // ab2 = ab + b
64 // ab2c = ab2 + c
65 //
66 // In the first iteration, we cannot reassociate abc to ac+b because ab is used
67 // twice. However, we can reassociate ab2c to abc+b in the first iteration. As a
68 // result, ab2 becomes dead and ab will be used only once in the second
69 // iteration.
70 //
71 // Limitations and TODO items:
72 //
73 // 1) We only considers n-ary adds and muls for now. This should be extended
74 // and generalized.
75 //
76 //===----------------------------------------------------------------------===//
77
78 #include "llvm/Transforms/Scalar/NaryReassociate.h"
79 #include "llvm/ADT/DepthFirstIterator.h"
80 #include "llvm/ADT/SmallVector.h"
81 #include "llvm/Analysis/AssumptionCache.h"
82 #include "llvm/Analysis/ScalarEvolution.h"
83 #include "llvm/Analysis/TargetLibraryInfo.h"
84 #include "llvm/Analysis/TargetTransformInfo.h"
85 #include "llvm/Analysis/ValueTracking.h"
86 #include "llvm/IR/BasicBlock.h"
87 #include "llvm/IR/Constants.h"
88 #include "llvm/IR/DataLayout.h"
89 #include "llvm/IR/DerivedTypes.h"
90 #include "llvm/IR/Dominators.h"
91 #include "llvm/IR/Function.h"
92 #include "llvm/IR/GetElementPtrTypeIterator.h"
93 #include "llvm/IR/IRBuilder.h"
94 #include "llvm/IR/InstrTypes.h"
95 #include "llvm/IR/Instruction.h"
96 #include "llvm/IR/Instructions.h"
97 #include "llvm/IR/Module.h"
98 #include "llvm/IR/Operator.h"
99 #include "llvm/IR/PatternMatch.h"
100 #include "llvm/IR/Type.h"
101 #include "llvm/IR/Value.h"
102 #include "llvm/IR/ValueHandle.h"
103 #include "llvm/InitializePasses.h"
104 #include "llvm/Pass.h"
105 #include "llvm/Support/Casting.h"
106 #include "llvm/Support/ErrorHandling.h"
107 #include "llvm/Transforms/Scalar.h"
108 #include "llvm/Transforms/Utils/Local.h"
109 #include <cassert>
110 #include <cstdint>
111
112 using namespace llvm;
113 using namespace PatternMatch;
114
115 #define DEBUG_TYPE "nary-reassociate"
116
117 namespace {
118
119 class NaryReassociateLegacyPass : public FunctionPass {
120 public:
121 static char ID;
122
NaryReassociateLegacyPass()123 NaryReassociateLegacyPass() : FunctionPass(ID) {
124 initializeNaryReassociateLegacyPassPass(*PassRegistry::getPassRegistry());
125 }
126
doInitialization(Module & M)127 bool doInitialization(Module &M) override {
128 return false;
129 }
130
131 bool runOnFunction(Function &F) override;
132
getAnalysisUsage(AnalysisUsage & AU) const133 void getAnalysisUsage(AnalysisUsage &AU) const override {
134 AU.addPreserved<DominatorTreeWrapperPass>();
135 AU.addPreserved<ScalarEvolutionWrapperPass>();
136 AU.addPreserved<TargetLibraryInfoWrapperPass>();
137 AU.addRequired<AssumptionCacheTracker>();
138 AU.addRequired<DominatorTreeWrapperPass>();
139 AU.addRequired<ScalarEvolutionWrapperPass>();
140 AU.addRequired<TargetLibraryInfoWrapperPass>();
141 AU.addRequired<TargetTransformInfoWrapperPass>();
142 AU.setPreservesCFG();
143 }
144
145 private:
146 NaryReassociatePass Impl;
147 };
148
149 } // end anonymous namespace
150
151 char NaryReassociateLegacyPass::ID = 0;
152
153 INITIALIZE_PASS_BEGIN(NaryReassociateLegacyPass, "nary-reassociate",
154 "Nary reassociation", false, false)
INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)155 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
156 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
157 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass)
158 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
159 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
160 INITIALIZE_PASS_END(NaryReassociateLegacyPass, "nary-reassociate",
161 "Nary reassociation", false, false)
162
163 FunctionPass *llvm::createNaryReassociatePass() {
164 return new NaryReassociateLegacyPass();
165 }
166
runOnFunction(Function & F)167 bool NaryReassociateLegacyPass::runOnFunction(Function &F) {
168 if (skipFunction(F))
169 return false;
170
171 auto *AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
172 auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
173 auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE();
174 auto *TLI = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F);
175 auto *TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
176
177 return Impl.runImpl(F, AC, DT, SE, TLI, TTI);
178 }
179
run(Function & F,FunctionAnalysisManager & AM)180 PreservedAnalyses NaryReassociatePass::run(Function &F,
181 FunctionAnalysisManager &AM) {
182 auto *AC = &AM.getResult<AssumptionAnalysis>(F);
183 auto *DT = &AM.getResult<DominatorTreeAnalysis>(F);
184 auto *SE = &AM.getResult<ScalarEvolutionAnalysis>(F);
185 auto *TLI = &AM.getResult<TargetLibraryAnalysis>(F);
186 auto *TTI = &AM.getResult<TargetIRAnalysis>(F);
187
188 if (!runImpl(F, AC, DT, SE, TLI, TTI))
189 return PreservedAnalyses::all();
190
191 PreservedAnalyses PA;
192 PA.preserveSet<CFGAnalyses>();
193 PA.preserve<ScalarEvolutionAnalysis>();
194 return PA;
195 }
196
runImpl(Function & F,AssumptionCache * AC_,DominatorTree * DT_,ScalarEvolution * SE_,TargetLibraryInfo * TLI_,TargetTransformInfo * TTI_)197 bool NaryReassociatePass::runImpl(Function &F, AssumptionCache *AC_,
198 DominatorTree *DT_, ScalarEvolution *SE_,
199 TargetLibraryInfo *TLI_,
200 TargetTransformInfo *TTI_) {
201 AC = AC_;
202 DT = DT_;
203 SE = SE_;
204 TLI = TLI_;
205 TTI = TTI_;
206 DL = &F.getParent()->getDataLayout();
207
208 bool Changed = false, ChangedInThisIteration;
209 do {
210 ChangedInThisIteration = doOneIteration(F);
211 Changed |= ChangedInThisIteration;
212 } while (ChangedInThisIteration);
213 return Changed;
214 }
215
216 // Whitelist the instruction types NaryReassociate handles for now.
isPotentiallyNaryReassociable(Instruction * I)217 static bool isPotentiallyNaryReassociable(Instruction *I) {
218 switch (I->getOpcode()) {
219 case Instruction::Add:
220 case Instruction::GetElementPtr:
221 case Instruction::Mul:
222 return true;
223 default:
224 return false;
225 }
226 }
227
doOneIteration(Function & F)228 bool NaryReassociatePass::doOneIteration(Function &F) {
229 bool Changed = false;
230 SeenExprs.clear();
231 // Process the basic blocks in a depth first traversal of the dominator
232 // tree. This order ensures that all bases of a candidate are in Candidates
233 // when we process it.
234 for (const auto Node : depth_first(DT)) {
235 BasicBlock *BB = Node->getBlock();
236 for (auto I = BB->begin(); I != BB->end(); ++I) {
237 if (SE->isSCEVable(I->getType()) && isPotentiallyNaryReassociable(&*I)) {
238 const SCEV *OldSCEV = SE->getSCEV(&*I);
239 if (Instruction *NewI = tryReassociate(&*I)) {
240 Changed = true;
241 SE->forgetValue(&*I);
242 I->replaceAllUsesWith(NewI);
243 WeakVH NewIExist = NewI;
244 // If SeenExprs/NewIExist contains I's WeakTrackingVH/WeakVH, that
245 // entry will be replaced with nullptr if deleted.
246 RecursivelyDeleteTriviallyDeadInstructions(&*I, TLI);
247 if (!NewIExist) {
248 // Rare occation where the new instruction (NewI) have been removed,
249 // probably due to parts of the input code was dead from the
250 // beginning, reset the iterator and start over from the beginning
251 I = BB->begin();
252 continue;
253 }
254 I = NewI->getIterator();
255 }
256 // Add the rewritten instruction to SeenExprs; the original instruction
257 // is deleted.
258 const SCEV *NewSCEV = SE->getSCEV(&*I);
259 SeenExprs[NewSCEV].push_back(WeakTrackingVH(&*I));
260 // Ideally, NewSCEV should equal OldSCEV because tryReassociate(I)
261 // is equivalent to I. However, ScalarEvolution::getSCEV may
262 // weaken nsw causing NewSCEV not to equal OldSCEV. For example, suppose
263 // we reassociate
264 // I = &a[sext(i +nsw j)] // assuming sizeof(a[0]) = 4
265 // to
266 // NewI = &a[sext(i)] + sext(j).
267 //
268 // ScalarEvolution computes
269 // getSCEV(I) = a + 4 * sext(i + j)
270 // getSCEV(newI) = a + 4 * sext(i) + 4 * sext(j)
271 // which are different SCEVs.
272 //
273 // To alleviate this issue of ScalarEvolution not always capturing
274 // equivalence, we add I to SeenExprs[OldSCEV] as well so that we can
275 // map both SCEV before and after tryReassociate(I) to I.
276 //
277 // This improvement is exercised in @reassociate_gep_nsw in nary-gep.ll.
278 if (NewSCEV != OldSCEV)
279 SeenExprs[OldSCEV].push_back(WeakTrackingVH(&*I));
280 }
281 }
282 }
283 return Changed;
284 }
285
tryReassociate(Instruction * I)286 Instruction *NaryReassociatePass::tryReassociate(Instruction *I) {
287 switch (I->getOpcode()) {
288 case Instruction::Add:
289 case Instruction::Mul:
290 return tryReassociateBinaryOp(cast<BinaryOperator>(I));
291 case Instruction::GetElementPtr:
292 return tryReassociateGEP(cast<GetElementPtrInst>(I));
293 default:
294 llvm_unreachable("should be filtered out by isPotentiallyNaryReassociable");
295 }
296 }
297
isGEPFoldable(GetElementPtrInst * GEP,const TargetTransformInfo * TTI)298 static bool isGEPFoldable(GetElementPtrInst *GEP,
299 const TargetTransformInfo *TTI) {
300 SmallVector<const Value*, 4> Indices;
301 for (auto I = GEP->idx_begin(); I != GEP->idx_end(); ++I)
302 Indices.push_back(*I);
303 return TTI->getGEPCost(GEP->getSourceElementType(), GEP->getPointerOperand(),
304 Indices) == TargetTransformInfo::TCC_Free;
305 }
306
tryReassociateGEP(GetElementPtrInst * GEP)307 Instruction *NaryReassociatePass::tryReassociateGEP(GetElementPtrInst *GEP) {
308 // Not worth reassociating GEP if it is foldable.
309 if (isGEPFoldable(GEP, TTI))
310 return nullptr;
311
312 gep_type_iterator GTI = gep_type_begin(*GEP);
313 for (unsigned I = 1, E = GEP->getNumOperands(); I != E; ++I, ++GTI) {
314 if (GTI.isSequential()) {
315 if (auto *NewGEP = tryReassociateGEPAtIndex(GEP, I - 1,
316 GTI.getIndexedType())) {
317 return NewGEP;
318 }
319 }
320 }
321 return nullptr;
322 }
323
requiresSignExtension(Value * Index,GetElementPtrInst * GEP)324 bool NaryReassociatePass::requiresSignExtension(Value *Index,
325 GetElementPtrInst *GEP) {
326 unsigned PointerSizeInBits =
327 DL->getPointerSizeInBits(GEP->getType()->getPointerAddressSpace());
328 return cast<IntegerType>(Index->getType())->getBitWidth() < PointerSizeInBits;
329 }
330
331 GetElementPtrInst *
tryReassociateGEPAtIndex(GetElementPtrInst * GEP,unsigned I,Type * IndexedType)332 NaryReassociatePass::tryReassociateGEPAtIndex(GetElementPtrInst *GEP,
333 unsigned I, Type *IndexedType) {
334 Value *IndexToSplit = GEP->getOperand(I + 1);
335 if (SExtInst *SExt = dyn_cast<SExtInst>(IndexToSplit)) {
336 IndexToSplit = SExt->getOperand(0);
337 } else if (ZExtInst *ZExt = dyn_cast<ZExtInst>(IndexToSplit)) {
338 // zext can be treated as sext if the source is non-negative.
339 if (isKnownNonNegative(ZExt->getOperand(0), *DL, 0, AC, GEP, DT))
340 IndexToSplit = ZExt->getOperand(0);
341 }
342
343 if (AddOperator *AO = dyn_cast<AddOperator>(IndexToSplit)) {
344 // If the I-th index needs sext and the underlying add is not equipped with
345 // nsw, we cannot split the add because
346 // sext(LHS + RHS) != sext(LHS) + sext(RHS).
347 if (requiresSignExtension(IndexToSplit, GEP) &&
348 computeOverflowForSignedAdd(AO, *DL, AC, GEP, DT) !=
349 OverflowResult::NeverOverflows)
350 return nullptr;
351
352 Value *LHS = AO->getOperand(0), *RHS = AO->getOperand(1);
353 // IndexToSplit = LHS + RHS.
354 if (auto *NewGEP = tryReassociateGEPAtIndex(GEP, I, LHS, RHS, IndexedType))
355 return NewGEP;
356 // Symmetrically, try IndexToSplit = RHS + LHS.
357 if (LHS != RHS) {
358 if (auto *NewGEP =
359 tryReassociateGEPAtIndex(GEP, I, RHS, LHS, IndexedType))
360 return NewGEP;
361 }
362 }
363 return nullptr;
364 }
365
366 GetElementPtrInst *
tryReassociateGEPAtIndex(GetElementPtrInst * GEP,unsigned I,Value * LHS,Value * RHS,Type * IndexedType)367 NaryReassociatePass::tryReassociateGEPAtIndex(GetElementPtrInst *GEP,
368 unsigned I, Value *LHS,
369 Value *RHS, Type *IndexedType) {
370 // Look for GEP's closest dominator that has the same SCEV as GEP except that
371 // the I-th index is replaced with LHS.
372 SmallVector<const SCEV *, 4> IndexExprs;
373 for (auto Index = GEP->idx_begin(); Index != GEP->idx_end(); ++Index)
374 IndexExprs.push_back(SE->getSCEV(*Index));
375 // Replace the I-th index with LHS.
376 IndexExprs[I] = SE->getSCEV(LHS);
377 if (isKnownNonNegative(LHS, *DL, 0, AC, GEP, DT) &&
378 DL->getTypeSizeInBits(LHS->getType()) <
379 DL->getTypeSizeInBits(GEP->getOperand(I)->getType())) {
380 // Zero-extend LHS if it is non-negative. InstCombine canonicalizes sext to
381 // zext if the source operand is proved non-negative. We should do that
382 // consistently so that CandidateExpr more likely appears before. See
383 // @reassociate_gep_assume for an example of this canonicalization.
384 IndexExprs[I] =
385 SE->getZeroExtendExpr(IndexExprs[I], GEP->getOperand(I)->getType());
386 }
387 const SCEV *CandidateExpr = SE->getGEPExpr(cast<GEPOperator>(GEP),
388 IndexExprs);
389
390 Value *Candidate = findClosestMatchingDominator(CandidateExpr, GEP);
391 if (Candidate == nullptr)
392 return nullptr;
393
394 IRBuilder<> Builder(GEP);
395 // Candidate does not necessarily have the same pointer type as GEP. Use
396 // bitcast or pointer cast to make sure they have the same type, so that the
397 // later RAUW doesn't complain.
398 Candidate = Builder.CreateBitOrPointerCast(Candidate, GEP->getType());
399 assert(Candidate->getType() == GEP->getType());
400
401 // NewGEP = (char *)Candidate + RHS * sizeof(IndexedType)
402 uint64_t IndexedSize = DL->getTypeAllocSize(IndexedType);
403 Type *ElementType = GEP->getResultElementType();
404 uint64_t ElementSize = DL->getTypeAllocSize(ElementType);
405 // Another less rare case: because I is not necessarily the last index of the
406 // GEP, the size of the type at the I-th index (IndexedSize) is not
407 // necessarily divisible by ElementSize. For example,
408 //
409 // #pragma pack(1)
410 // struct S {
411 // int a[3];
412 // int64 b[8];
413 // };
414 // #pragma pack()
415 //
416 // sizeof(S) = 100 is indivisible by sizeof(int64) = 8.
417 //
418 // TODO: bail out on this case for now. We could emit uglygep.
419 if (IndexedSize % ElementSize != 0)
420 return nullptr;
421
422 // NewGEP = &Candidate[RHS * (sizeof(IndexedType) / sizeof(Candidate[0])));
423 Type *IntPtrTy = DL->getIntPtrType(GEP->getType());
424 if (RHS->getType() != IntPtrTy)
425 RHS = Builder.CreateSExtOrTrunc(RHS, IntPtrTy);
426 if (IndexedSize != ElementSize) {
427 RHS = Builder.CreateMul(
428 RHS, ConstantInt::get(IntPtrTy, IndexedSize / ElementSize));
429 }
430 GetElementPtrInst *NewGEP = cast<GetElementPtrInst>(
431 Builder.CreateGEP(GEP->getResultElementType(), Candidate, RHS));
432 NewGEP->setIsInBounds(GEP->isInBounds());
433 NewGEP->takeName(GEP);
434 return NewGEP;
435 }
436
tryReassociateBinaryOp(BinaryOperator * I)437 Instruction *NaryReassociatePass::tryReassociateBinaryOp(BinaryOperator *I) {
438 Value *LHS = I->getOperand(0), *RHS = I->getOperand(1);
439 // There is no need to reassociate 0.
440 if (SE->getSCEV(I)->isZero())
441 return nullptr;
442 if (auto *NewI = tryReassociateBinaryOp(LHS, RHS, I))
443 return NewI;
444 if (auto *NewI = tryReassociateBinaryOp(RHS, LHS, I))
445 return NewI;
446 return nullptr;
447 }
448
tryReassociateBinaryOp(Value * LHS,Value * RHS,BinaryOperator * I)449 Instruction *NaryReassociatePass::tryReassociateBinaryOp(Value *LHS, Value *RHS,
450 BinaryOperator *I) {
451 Value *A = nullptr, *B = nullptr;
452 // To be conservative, we reassociate I only when it is the only user of (A op
453 // B).
454 if (LHS->hasOneUse() && matchTernaryOp(I, LHS, A, B)) {
455 // I = (A op B) op RHS
456 // = (A op RHS) op B or (B op RHS) op A
457 const SCEV *AExpr = SE->getSCEV(A), *BExpr = SE->getSCEV(B);
458 const SCEV *RHSExpr = SE->getSCEV(RHS);
459 if (BExpr != RHSExpr) {
460 if (auto *NewI =
461 tryReassociatedBinaryOp(getBinarySCEV(I, AExpr, RHSExpr), B, I))
462 return NewI;
463 }
464 if (AExpr != RHSExpr) {
465 if (auto *NewI =
466 tryReassociatedBinaryOp(getBinarySCEV(I, BExpr, RHSExpr), A, I))
467 return NewI;
468 }
469 }
470 return nullptr;
471 }
472
tryReassociatedBinaryOp(const SCEV * LHSExpr,Value * RHS,BinaryOperator * I)473 Instruction *NaryReassociatePass::tryReassociatedBinaryOp(const SCEV *LHSExpr,
474 Value *RHS,
475 BinaryOperator *I) {
476 // Look for the closest dominator LHS of I that computes LHSExpr, and replace
477 // I with LHS op RHS.
478 auto *LHS = findClosestMatchingDominator(LHSExpr, I);
479 if (LHS == nullptr)
480 return nullptr;
481
482 Instruction *NewI = nullptr;
483 switch (I->getOpcode()) {
484 case Instruction::Add:
485 NewI = BinaryOperator::CreateAdd(LHS, RHS, "", I);
486 break;
487 case Instruction::Mul:
488 NewI = BinaryOperator::CreateMul(LHS, RHS, "", I);
489 break;
490 default:
491 llvm_unreachable("Unexpected instruction.");
492 }
493 NewI->takeName(I);
494 return NewI;
495 }
496
matchTernaryOp(BinaryOperator * I,Value * V,Value * & Op1,Value * & Op2)497 bool NaryReassociatePass::matchTernaryOp(BinaryOperator *I, Value *V,
498 Value *&Op1, Value *&Op2) {
499 switch (I->getOpcode()) {
500 case Instruction::Add:
501 return match(V, m_Add(m_Value(Op1), m_Value(Op2)));
502 case Instruction::Mul:
503 return match(V, m_Mul(m_Value(Op1), m_Value(Op2)));
504 default:
505 llvm_unreachable("Unexpected instruction.");
506 }
507 return false;
508 }
509
getBinarySCEV(BinaryOperator * I,const SCEV * LHS,const SCEV * RHS)510 const SCEV *NaryReassociatePass::getBinarySCEV(BinaryOperator *I,
511 const SCEV *LHS,
512 const SCEV *RHS) {
513 switch (I->getOpcode()) {
514 case Instruction::Add:
515 return SE->getAddExpr(LHS, RHS);
516 case Instruction::Mul:
517 return SE->getMulExpr(LHS, RHS);
518 default:
519 llvm_unreachable("Unexpected instruction.");
520 }
521 return nullptr;
522 }
523
524 Instruction *
findClosestMatchingDominator(const SCEV * CandidateExpr,Instruction * Dominatee)525 NaryReassociatePass::findClosestMatchingDominator(const SCEV *CandidateExpr,
526 Instruction *Dominatee) {
527 auto Pos = SeenExprs.find(CandidateExpr);
528 if (Pos == SeenExprs.end())
529 return nullptr;
530
531 auto &Candidates = Pos->second;
532 // Because we process the basic blocks in pre-order of the dominator tree, a
533 // candidate that doesn't dominate the current instruction won't dominate any
534 // future instruction either. Therefore, we pop it out of the stack. This
535 // optimization makes the algorithm O(n).
536 while (!Candidates.empty()) {
537 // Candidates stores WeakTrackingVHs, so a candidate can be nullptr if it's
538 // removed
539 // during rewriting.
540 if (Value *Candidate = Candidates.back()) {
541 Instruction *CandidateInstruction = cast<Instruction>(Candidate);
542 if (DT->dominates(CandidateInstruction, Dominatee))
543 return CandidateInstruction;
544 }
545 Candidates.pop_back();
546 }
547 return nullptr;
548 }
549