1 //===- PlaceSafepoints.cpp - Place GC Safepoints --------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // Place garbage collection safepoints at appropriate locations in the IR. This
10 // does not make relocation semantics or variable liveness explicit. That's
11 // done by RewriteStatepointsForGC.
12 //
13 // Terminology:
14 // - A call is said to be "parseable" if there is a stack map generated for the
15 // return PC of the call. A runtime can determine where values listed in the
16 // deopt arguments and (after RewriteStatepointsForGC) gc arguments are located
17 // on the stack when the code is suspended inside such a call. Every parse
18 // point is represented by a call wrapped in an gc.statepoint intrinsic.
19 // - A "poll" is an explicit check in the generated code to determine if the
20 // runtime needs the generated code to cooperate by calling a helper routine
21 // and thus suspending its execution at a known state. The call to the helper
22 // routine will be parseable. The (gc & runtime specific) logic of a poll is
23 // assumed to be provided in a function of the name "gc.safepoint_poll".
24 //
25 // We aim to insert polls such that running code can quickly be brought to a
26 // well defined state for inspection by the collector. In the current
27 // implementation, this is done via the insertion of poll sites at method entry
28 // and the backedge of most loops. We try to avoid inserting more polls than
29 // are necessary to ensure a finite period between poll sites. This is not
30 // because the poll itself is expensive in the generated code; it's not. Polls
31 // do tend to impact the optimizer itself in negative ways; we'd like to avoid
32 // perturbing the optimization of the method as much as we can.
33 //
34 // We also need to make most call sites parseable. The callee might execute a
35 // poll (or otherwise be inspected by the GC). If so, the entire stack
36 // (including the suspended frame of the current method) must be parseable.
37 //
38 // This pass will insert:
39 // - Call parse points ("call safepoints") for any call which may need to
40 // reach a safepoint during the execution of the callee function.
41 // - Backedge safepoint polls and entry safepoint polls to ensure that
42 // executing code reaches a safepoint poll in a finite amount of time.
43 //
44 // We do not currently support return statepoints, but adding them would not
45 // be hard. They are not required for correctness - entry safepoints are an
46 // alternative - but some GCs may prefer them. Patches welcome.
47 //
48 //===----------------------------------------------------------------------===//
49
50 #include "llvm/InitializePasses.h"
51 #include "llvm/Pass.h"
52
53 #include "llvm/ADT/SetVector.h"
54 #include "llvm/ADT/Statistic.h"
55 #include "llvm/Analysis/CFG.h"
56 #include "llvm/Analysis/ScalarEvolution.h"
57 #include "llvm/Analysis/TargetLibraryInfo.h"
58 #include "llvm/Transforms/Utils/Local.h"
59 #include "llvm/IR/Dominators.h"
60 #include "llvm/IR/IntrinsicInst.h"
61 #include "llvm/IR/LegacyPassManager.h"
62 #include "llvm/IR/Statepoint.h"
63 #include "llvm/Support/CommandLine.h"
64 #include "llvm/Support/Debug.h"
65 #include "llvm/Transforms/Scalar.h"
66 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
67 #include "llvm/Transforms/Utils/Cloning.h"
68
69 #define DEBUG_TYPE "safepoint-placement"
70
71 STATISTIC(NumEntrySafepoints, "Number of entry safepoints inserted");
72 STATISTIC(NumBackedgeSafepoints, "Number of backedge safepoints inserted");
73
74 STATISTIC(CallInLoop,
75 "Number of loops without safepoints due to calls in loop");
76 STATISTIC(FiniteExecution,
77 "Number of loops without safepoints finite execution");
78
79 using namespace llvm;
80
81 // Ignore opportunities to avoid placing safepoints on backedges, useful for
82 // validation
83 static cl::opt<bool> AllBackedges("spp-all-backedges", cl::Hidden,
84 cl::init(false));
85
86 /// How narrow does the trip count of a loop have to be to have to be considered
87 /// "counted"? Counted loops do not get safepoints at backedges.
88 static cl::opt<int> CountedLoopTripWidth("spp-counted-loop-trip-width",
89 cl::Hidden, cl::init(32));
90
91 // If true, split the backedge of a loop when placing the safepoint, otherwise
92 // split the latch block itself. Both are useful to support for
93 // experimentation, but in practice, it looks like splitting the backedge
94 // optimizes better.
95 static cl::opt<bool> SplitBackedge("spp-split-backedge", cl::Hidden,
96 cl::init(false));
97
98 namespace {
99
100 /// An analysis pass whose purpose is to identify each of the backedges in
101 /// the function which require a safepoint poll to be inserted.
102 struct PlaceBackedgeSafepointsImpl : public FunctionPass {
103 static char ID;
104
105 /// The output of the pass - gives a list of each backedge (described by
106 /// pointing at the branch) which need a poll inserted.
107 std::vector<Instruction *> PollLocations;
108
109 /// True unless we're running spp-no-calls in which case we need to disable
110 /// the call-dependent placement opts.
111 bool CallSafepointsEnabled;
112
113 ScalarEvolution *SE = nullptr;
114 DominatorTree *DT = nullptr;
115 LoopInfo *LI = nullptr;
116 TargetLibraryInfo *TLI = nullptr;
117
PlaceBackedgeSafepointsImpl__anon275136dd0111::PlaceBackedgeSafepointsImpl118 PlaceBackedgeSafepointsImpl(bool CallSafepoints = false)
119 : FunctionPass(ID), CallSafepointsEnabled(CallSafepoints) {
120 initializePlaceBackedgeSafepointsImplPass(*PassRegistry::getPassRegistry());
121 }
122
123 bool runOnLoop(Loop *);
runOnLoopAndSubLoops__anon275136dd0111::PlaceBackedgeSafepointsImpl124 void runOnLoopAndSubLoops(Loop *L) {
125 // Visit all the subloops
126 for (Loop *I : *L)
127 runOnLoopAndSubLoops(I);
128 runOnLoop(L);
129 }
130
runOnFunction__anon275136dd0111::PlaceBackedgeSafepointsImpl131 bool runOnFunction(Function &F) override {
132 SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE();
133 DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
134 LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
135 TLI = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F);
136 for (Loop *I : *LI) {
137 runOnLoopAndSubLoops(I);
138 }
139 return false;
140 }
141
getAnalysisUsage__anon275136dd0111::PlaceBackedgeSafepointsImpl142 void getAnalysisUsage(AnalysisUsage &AU) const override {
143 AU.addRequired<DominatorTreeWrapperPass>();
144 AU.addRequired<ScalarEvolutionWrapperPass>();
145 AU.addRequired<LoopInfoWrapperPass>();
146 AU.addRequired<TargetLibraryInfoWrapperPass>();
147 // We no longer modify the IR at all in this pass. Thus all
148 // analysis are preserved.
149 AU.setPreservesAll();
150 }
151 };
152 }
153
154 static cl::opt<bool> NoEntry("spp-no-entry", cl::Hidden, cl::init(false));
155 static cl::opt<bool> NoCall("spp-no-call", cl::Hidden, cl::init(false));
156 static cl::opt<bool> NoBackedge("spp-no-backedge", cl::Hidden, cl::init(false));
157
158 namespace {
159 struct PlaceSafepoints : public FunctionPass {
160 static char ID; // Pass identification, replacement for typeid
161
PlaceSafepoints__anon275136dd0211::PlaceSafepoints162 PlaceSafepoints() : FunctionPass(ID) {
163 initializePlaceSafepointsPass(*PassRegistry::getPassRegistry());
164 }
165 bool runOnFunction(Function &F) override;
166
getAnalysisUsage__anon275136dd0211::PlaceSafepoints167 void getAnalysisUsage(AnalysisUsage &AU) const override {
168 // We modify the graph wholesale (inlining, block insertion, etc). We
169 // preserve nothing at the moment. We could potentially preserve dom tree
170 // if that was worth doing
171 AU.addRequired<TargetLibraryInfoWrapperPass>();
172 }
173 };
174 }
175
176 // Insert a safepoint poll immediately before the given instruction. Does
177 // not handle the parsability of state at the runtime call, that's the
178 // callers job.
179 static void
180 InsertSafepointPoll(Instruction *InsertBefore,
181 std::vector<CallBase *> &ParsePointsNeeded /*rval*/,
182 const TargetLibraryInfo &TLI);
183
needsStatepoint(CallBase * Call,const TargetLibraryInfo & TLI)184 static bool needsStatepoint(CallBase *Call, const TargetLibraryInfo &TLI) {
185 if (callsGCLeafFunction(Call, TLI))
186 return false;
187 if (auto *CI = dyn_cast<CallInst>(Call)) {
188 if (CI->isInlineAsm())
189 return false;
190 }
191
192 return !(isStatepoint(Call) || isGCRelocate(Call) || isGCResult(Call));
193 }
194
195 /// Returns true if this loop is known to contain a call safepoint which
196 /// must unconditionally execute on any iteration of the loop which returns
197 /// to the loop header via an edge from Pred. Returns a conservative correct
198 /// answer; i.e. false is always valid.
containsUnconditionalCallSafepoint(Loop * L,BasicBlock * Header,BasicBlock * Pred,DominatorTree & DT,const TargetLibraryInfo & TLI)199 static bool containsUnconditionalCallSafepoint(Loop *L, BasicBlock *Header,
200 BasicBlock *Pred,
201 DominatorTree &DT,
202 const TargetLibraryInfo &TLI) {
203 // In general, we're looking for any cut of the graph which ensures
204 // there's a call safepoint along every edge between Header and Pred.
205 // For the moment, we look only for the 'cuts' that consist of a single call
206 // instruction in a block which is dominated by the Header and dominates the
207 // loop latch (Pred) block. Somewhat surprisingly, walking the entire chain
208 // of such dominating blocks gets substantially more occurrences than just
209 // checking the Pred and Header blocks themselves. This may be due to the
210 // density of loop exit conditions caused by range and null checks.
211 // TODO: structure this as an analysis pass, cache the result for subloops,
212 // avoid dom tree recalculations
213 assert(DT.dominates(Header, Pred) && "loop latch not dominated by header?");
214
215 BasicBlock *Current = Pred;
216 while (true) {
217 for (Instruction &I : *Current) {
218 if (auto *Call = dyn_cast<CallBase>(&I))
219 // Note: Technically, needing a safepoint isn't quite the right
220 // condition here. We should instead be checking if the target method
221 // has an
222 // unconditional poll. In practice, this is only a theoretical concern
223 // since we don't have any methods with conditional-only safepoint
224 // polls.
225 if (needsStatepoint(Call, TLI))
226 return true;
227 }
228
229 if (Current == Header)
230 break;
231 Current = DT.getNode(Current)->getIDom()->getBlock();
232 }
233
234 return false;
235 }
236
237 /// Returns true if this loop is known to terminate in a finite number of
238 /// iterations. Note that this function may return false for a loop which
239 /// does actual terminate in a finite constant number of iterations due to
240 /// conservatism in the analysis.
mustBeFiniteCountedLoop(Loop * L,ScalarEvolution * SE,BasicBlock * Pred)241 static bool mustBeFiniteCountedLoop(Loop *L, ScalarEvolution *SE,
242 BasicBlock *Pred) {
243 // A conservative bound on the loop as a whole.
244 const SCEV *MaxTrips = SE->getConstantMaxBackedgeTakenCount(L);
245 if (MaxTrips != SE->getCouldNotCompute() &&
246 SE->getUnsignedRange(MaxTrips).getUnsignedMax().isIntN(
247 CountedLoopTripWidth))
248 return true;
249
250 // If this is a conditional branch to the header with the alternate path
251 // being outside the loop, we can ask questions about the execution frequency
252 // of the exit block.
253 if (L->isLoopExiting(Pred)) {
254 // This returns an exact expression only. TODO: We really only need an
255 // upper bound here, but SE doesn't expose that.
256 const SCEV *MaxExec = SE->getExitCount(L, Pred);
257 if (MaxExec != SE->getCouldNotCompute() &&
258 SE->getUnsignedRange(MaxExec).getUnsignedMax().isIntN(
259 CountedLoopTripWidth))
260 return true;
261 }
262
263 return /* not finite */ false;
264 }
265
scanOneBB(Instruction * Start,Instruction * End,std::vector<CallInst * > & Calls,DenseSet<BasicBlock * > & Seen,std::vector<BasicBlock * > & Worklist)266 static void scanOneBB(Instruction *Start, Instruction *End,
267 std::vector<CallInst *> &Calls,
268 DenseSet<BasicBlock *> &Seen,
269 std::vector<BasicBlock *> &Worklist) {
270 for (BasicBlock::iterator BBI(Start), BBE0 = Start->getParent()->end(),
271 BBE1 = BasicBlock::iterator(End);
272 BBI != BBE0 && BBI != BBE1; BBI++) {
273 if (CallInst *CI = dyn_cast<CallInst>(&*BBI))
274 Calls.push_back(CI);
275
276 // FIXME: This code does not handle invokes
277 assert(!isa<InvokeInst>(&*BBI) &&
278 "support for invokes in poll code needed");
279
280 // Only add the successor blocks if we reach the terminator instruction
281 // without encountering end first
282 if (BBI->isTerminator()) {
283 BasicBlock *BB = BBI->getParent();
284 for (BasicBlock *Succ : successors(BB)) {
285 if (Seen.insert(Succ).second) {
286 Worklist.push_back(Succ);
287 }
288 }
289 }
290 }
291 }
292
scanInlinedCode(Instruction * Start,Instruction * End,std::vector<CallInst * > & Calls,DenseSet<BasicBlock * > & Seen)293 static void scanInlinedCode(Instruction *Start, Instruction *End,
294 std::vector<CallInst *> &Calls,
295 DenseSet<BasicBlock *> &Seen) {
296 Calls.clear();
297 std::vector<BasicBlock *> Worklist;
298 Seen.insert(Start->getParent());
299 scanOneBB(Start, End, Calls, Seen, Worklist);
300 while (!Worklist.empty()) {
301 BasicBlock *BB = Worklist.back();
302 Worklist.pop_back();
303 scanOneBB(&*BB->begin(), End, Calls, Seen, Worklist);
304 }
305 }
306
runOnLoop(Loop * L)307 bool PlaceBackedgeSafepointsImpl::runOnLoop(Loop *L) {
308 // Loop through all loop latches (branches controlling backedges). We need
309 // to place a safepoint on every backedge (potentially).
310 // Note: In common usage, there will be only one edge due to LoopSimplify
311 // having run sometime earlier in the pipeline, but this code must be correct
312 // w.r.t. loops with multiple backedges.
313 BasicBlock *Header = L->getHeader();
314 SmallVector<BasicBlock*, 16> LoopLatches;
315 L->getLoopLatches(LoopLatches);
316 for (BasicBlock *Pred : LoopLatches) {
317 assert(L->contains(Pred));
318
319 // Make a policy decision about whether this loop needs a safepoint or
320 // not. Note that this is about unburdening the optimizer in loops, not
321 // avoiding the runtime cost of the actual safepoint.
322 if (!AllBackedges) {
323 if (mustBeFiniteCountedLoop(L, SE, Pred)) {
324 LLVM_DEBUG(dbgs() << "skipping safepoint placement in finite loop\n");
325 FiniteExecution++;
326 continue;
327 }
328 if (CallSafepointsEnabled &&
329 containsUnconditionalCallSafepoint(L, Header, Pred, *DT, *TLI)) {
330 // Note: This is only semantically legal since we won't do any further
331 // IPO or inlining before the actual call insertion.. If we hadn't, we
332 // might latter loose this call safepoint.
333 LLVM_DEBUG(
334 dbgs()
335 << "skipping safepoint placement due to unconditional call\n");
336 CallInLoop++;
337 continue;
338 }
339 }
340
341 // TODO: We can create an inner loop which runs a finite number of
342 // iterations with an outer loop which contains a safepoint. This would
343 // not help runtime performance that much, but it might help our ability to
344 // optimize the inner loop.
345
346 // Safepoint insertion would involve creating a new basic block (as the
347 // target of the current backedge) which does the safepoint (of all live
348 // variables) and branches to the true header
349 Instruction *Term = Pred->getTerminator();
350
351 LLVM_DEBUG(dbgs() << "[LSP] terminator instruction: " << *Term);
352
353 PollLocations.push_back(Term);
354 }
355
356 return false;
357 }
358
359 /// Returns true if an entry safepoint is not required before this callsite in
360 /// the caller function.
doesNotRequireEntrySafepointBefore(CallBase * Call)361 static bool doesNotRequireEntrySafepointBefore(CallBase *Call) {
362 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Call)) {
363 switch (II->getIntrinsicID()) {
364 case Intrinsic::experimental_gc_statepoint:
365 case Intrinsic::experimental_patchpoint_void:
366 case Intrinsic::experimental_patchpoint_i64:
367 // The can wrap an actual call which may grow the stack by an unbounded
368 // amount or run forever.
369 return false;
370 default:
371 // Most LLVM intrinsics are things which do not expand to actual calls, or
372 // at least if they do, are leaf functions that cause only finite stack
373 // growth. In particular, the optimizer likes to form things like memsets
374 // out of stores in the original IR. Another important example is
375 // llvm.localescape which must occur in the entry block. Inserting a
376 // safepoint before it is not legal since it could push the localescape
377 // out of the entry block.
378 return true;
379 }
380 }
381 return false;
382 }
383
findLocationForEntrySafepoint(Function & F,DominatorTree & DT)384 static Instruction *findLocationForEntrySafepoint(Function &F,
385 DominatorTree &DT) {
386
387 // Conceptually, this poll needs to be on method entry, but in
388 // practice, we place it as late in the entry block as possible. We
389 // can place it as late as we want as long as it dominates all calls
390 // that can grow the stack. This, combined with backedge polls,
391 // give us all the progress guarantees we need.
392
393 // hasNextInstruction and nextInstruction are used to iterate
394 // through a "straight line" execution sequence.
395
396 auto HasNextInstruction = [](Instruction *I) {
397 if (!I->isTerminator())
398 return true;
399
400 BasicBlock *nextBB = I->getParent()->getUniqueSuccessor();
401 return nextBB && (nextBB->getUniquePredecessor() != nullptr);
402 };
403
404 auto NextInstruction = [&](Instruction *I) {
405 assert(HasNextInstruction(I) &&
406 "first check if there is a next instruction!");
407
408 if (I->isTerminator())
409 return &I->getParent()->getUniqueSuccessor()->front();
410 return &*++I->getIterator();
411 };
412
413 Instruction *Cursor = nullptr;
414 for (Cursor = &F.getEntryBlock().front(); HasNextInstruction(Cursor);
415 Cursor = NextInstruction(Cursor)) {
416
417 // We need to ensure a safepoint poll occurs before any 'real' call. The
418 // easiest way to ensure finite execution between safepoints in the face of
419 // recursive and mutually recursive functions is to enforce that each take
420 // a safepoint. Additionally, we need to ensure a poll before any call
421 // which can grow the stack by an unbounded amount. This isn't required
422 // for GC semantics per se, but is a common requirement for languages
423 // which detect stack overflow via guard pages and then throw exceptions.
424 if (auto *Call = dyn_cast<CallBase>(Cursor)) {
425 if (doesNotRequireEntrySafepointBefore(Call))
426 continue;
427 break;
428 }
429 }
430
431 assert((HasNextInstruction(Cursor) || Cursor->isTerminator()) &&
432 "either we stopped because of a call, or because of terminator");
433
434 return Cursor;
435 }
436
437 static const char *const GCSafepointPollName = "gc.safepoint_poll";
438
isGCSafepointPoll(Function & F)439 static bool isGCSafepointPoll(Function &F) {
440 return F.getName().equals(GCSafepointPollName);
441 }
442
443 /// Returns true if this function should be rewritten to include safepoint
444 /// polls and parseable call sites. The main point of this function is to be
445 /// an extension point for custom logic.
shouldRewriteFunction(Function & F)446 static bool shouldRewriteFunction(Function &F) {
447 // TODO: This should check the GCStrategy
448 if (F.hasGC()) {
449 const auto &FunctionGCName = F.getGC();
450 const StringRef StatepointExampleName("statepoint-example");
451 const StringRef CoreCLRName("coreclr");
452 return (StatepointExampleName == FunctionGCName) ||
453 (CoreCLRName == FunctionGCName);
454 } else
455 return false;
456 }
457
458 // TODO: These should become properties of the GCStrategy, possibly with
459 // command line overrides.
enableEntrySafepoints(Function & F)460 static bool enableEntrySafepoints(Function &F) { return !NoEntry; }
enableBackedgeSafepoints(Function & F)461 static bool enableBackedgeSafepoints(Function &F) { return !NoBackedge; }
enableCallSafepoints(Function & F)462 static bool enableCallSafepoints(Function &F) { return !NoCall; }
463
runOnFunction(Function & F)464 bool PlaceSafepoints::runOnFunction(Function &F) {
465 if (F.isDeclaration() || F.empty()) {
466 // This is a declaration, nothing to do. Must exit early to avoid crash in
467 // dom tree calculation
468 return false;
469 }
470
471 if (isGCSafepointPoll(F)) {
472 // Given we're inlining this inside of safepoint poll insertion, this
473 // doesn't make any sense. Note that we do make any contained calls
474 // parseable after we inline a poll.
475 return false;
476 }
477
478 if (!shouldRewriteFunction(F))
479 return false;
480
481 const TargetLibraryInfo &TLI =
482 getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F);
483
484 bool Modified = false;
485
486 // In various bits below, we rely on the fact that uses are reachable from
487 // defs. When there are basic blocks unreachable from the entry, dominance
488 // and reachablity queries return non-sensical results. Thus, we preprocess
489 // the function to ensure these properties hold.
490 Modified |= removeUnreachableBlocks(F);
491
492 // STEP 1 - Insert the safepoint polling locations. We do not need to
493 // actually insert parse points yet. That will be done for all polls and
494 // calls in a single pass.
495
496 DominatorTree DT;
497 DT.recalculate(F);
498
499 SmallVector<Instruction *, 16> PollsNeeded;
500 std::vector<CallBase *> ParsePointNeeded;
501
502 if (enableBackedgeSafepoints(F)) {
503 // Construct a pass manager to run the LoopPass backedge logic. We
504 // need the pass manager to handle scheduling all the loop passes
505 // appropriately. Doing this by hand is painful and just not worth messing
506 // with for the moment.
507 legacy::FunctionPassManager FPM(F.getParent());
508 bool CanAssumeCallSafepoints = enableCallSafepoints(F);
509 auto *PBS = new PlaceBackedgeSafepointsImpl(CanAssumeCallSafepoints);
510 FPM.add(PBS);
511 FPM.run(F);
512
513 // We preserve dominance information when inserting the poll, otherwise
514 // we'd have to recalculate this on every insert
515 DT.recalculate(F);
516
517 auto &PollLocations = PBS->PollLocations;
518
519 auto OrderByBBName = [](Instruction *a, Instruction *b) {
520 return a->getParent()->getName() < b->getParent()->getName();
521 };
522 // We need the order of list to be stable so that naming ends up stable
523 // when we split edges. This makes test cases much easier to write.
524 llvm::sort(PollLocations, OrderByBBName);
525
526 // We can sometimes end up with duplicate poll locations. This happens if
527 // a single loop is visited more than once. The fact this happens seems
528 // wrong, but it does happen for the split-backedge.ll test case.
529 PollLocations.erase(std::unique(PollLocations.begin(),
530 PollLocations.end()),
531 PollLocations.end());
532
533 // Insert a poll at each point the analysis pass identified
534 // The poll location must be the terminator of a loop latch block.
535 for (Instruction *Term : PollLocations) {
536 // We are inserting a poll, the function is modified
537 Modified = true;
538
539 if (SplitBackedge) {
540 // Split the backedge of the loop and insert the poll within that new
541 // basic block. This creates a loop with two latches per original
542 // latch (which is non-ideal), but this appears to be easier to
543 // optimize in practice than inserting the poll immediately before the
544 // latch test.
545
546 // Since this is a latch, at least one of the successors must dominate
547 // it. Its possible that we have a) duplicate edges to the same header
548 // and b) edges to distinct loop headers. We need to insert pools on
549 // each.
550 SetVector<BasicBlock *> Headers;
551 for (unsigned i = 0; i < Term->getNumSuccessors(); i++) {
552 BasicBlock *Succ = Term->getSuccessor(i);
553 if (DT.dominates(Succ, Term->getParent())) {
554 Headers.insert(Succ);
555 }
556 }
557 assert(!Headers.empty() && "poll location is not a loop latch?");
558
559 // The split loop structure here is so that we only need to recalculate
560 // the dominator tree once. Alternatively, we could just keep it up to
561 // date and use a more natural merged loop.
562 SetVector<BasicBlock *> SplitBackedges;
563 for (BasicBlock *Header : Headers) {
564 BasicBlock *NewBB = SplitEdge(Term->getParent(), Header, &DT);
565 PollsNeeded.push_back(NewBB->getTerminator());
566 NumBackedgeSafepoints++;
567 }
568 } else {
569 // Split the latch block itself, right before the terminator.
570 PollsNeeded.push_back(Term);
571 NumBackedgeSafepoints++;
572 }
573 }
574 }
575
576 if (enableEntrySafepoints(F)) {
577 if (Instruction *Location = findLocationForEntrySafepoint(F, DT)) {
578 PollsNeeded.push_back(Location);
579 Modified = true;
580 NumEntrySafepoints++;
581 }
582 // TODO: else we should assert that there was, in fact, a policy choice to
583 // not insert a entry safepoint poll.
584 }
585
586 // Now that we've identified all the needed safepoint poll locations, insert
587 // safepoint polls themselves.
588 for (Instruction *PollLocation : PollsNeeded) {
589 std::vector<CallBase *> RuntimeCalls;
590 InsertSafepointPoll(PollLocation, RuntimeCalls, TLI);
591 ParsePointNeeded.insert(ParsePointNeeded.end(), RuntimeCalls.begin(),
592 RuntimeCalls.end());
593 }
594
595 return Modified;
596 }
597
598 char PlaceBackedgeSafepointsImpl::ID = 0;
599 char PlaceSafepoints::ID = 0;
600
createPlaceSafepointsPass()601 FunctionPass *llvm::createPlaceSafepointsPass() {
602 return new PlaceSafepoints();
603 }
604
605 INITIALIZE_PASS_BEGIN(PlaceBackedgeSafepointsImpl,
606 "place-backedge-safepoints-impl",
607 "Place Backedge Safepoints", false, false)
INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass)608 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass)
609 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
610 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
611 INITIALIZE_PASS_END(PlaceBackedgeSafepointsImpl,
612 "place-backedge-safepoints-impl",
613 "Place Backedge Safepoints", false, false)
614
615 INITIALIZE_PASS_BEGIN(PlaceSafepoints, "place-safepoints", "Place Safepoints",
616 false, false)
617 INITIALIZE_PASS_END(PlaceSafepoints, "place-safepoints", "Place Safepoints",
618 false, false)
619
620 static void
621 InsertSafepointPoll(Instruction *InsertBefore,
622 std::vector<CallBase *> &ParsePointsNeeded /*rval*/,
623 const TargetLibraryInfo &TLI) {
624 BasicBlock *OrigBB = InsertBefore->getParent();
625 Module *M = InsertBefore->getModule();
626 assert(M && "must be part of a module");
627
628 // Inline the safepoint poll implementation - this will get all the branch,
629 // control flow, etc.. Most importantly, it will introduce the actual slow
630 // path call - where we need to insert a safepoint (parsepoint).
631
632 auto *F = M->getFunction(GCSafepointPollName);
633 assert(F && "gc.safepoint_poll function is missing");
634 assert(F->getValueType() ==
635 FunctionType::get(Type::getVoidTy(M->getContext()), false) &&
636 "gc.safepoint_poll declared with wrong type");
637 assert(!F->empty() && "gc.safepoint_poll must be a non-empty function");
638 CallInst *PollCall = CallInst::Create(F, "", InsertBefore);
639
640 // Record some information about the call site we're replacing
641 BasicBlock::iterator Before(PollCall), After(PollCall);
642 bool IsBegin = false;
643 if (Before == OrigBB->begin())
644 IsBegin = true;
645 else
646 Before--;
647
648 After++;
649 assert(After != OrigBB->end() && "must have successor");
650
651 // Do the actual inlining
652 InlineFunctionInfo IFI;
653 bool InlineStatus = InlineFunction(PollCall, IFI);
654 assert(InlineStatus && "inline must succeed");
655 (void)InlineStatus; // suppress warning in release-asserts
656
657 // Check post-conditions
658 assert(IFI.StaticAllocas.empty() && "can't have allocs");
659
660 std::vector<CallInst *> Calls; // new calls
661 DenseSet<BasicBlock *> BBs; // new BBs + insertee
662
663 // Include only the newly inserted instructions, Note: begin may not be valid
664 // if we inserted to the beginning of the basic block
665 BasicBlock::iterator Start = IsBegin ? OrigBB->begin() : std::next(Before);
666
667 // If your poll function includes an unreachable at the end, that's not
668 // valid. Bugpoint likes to create this, so check for it.
669 assert(isPotentiallyReachable(&*Start, &*After) &&
670 "malformed poll function");
671
672 scanInlinedCode(&*Start, &*After, Calls, BBs);
673 assert(!Calls.empty() && "slow path not found for safepoint poll");
674
675 // Record the fact we need a parsable state at the runtime call contained in
676 // the poll function. This is required so that the runtime knows how to
677 // parse the last frame when we actually take the safepoint (i.e. execute
678 // the slow path)
679 assert(ParsePointsNeeded.empty());
680 for (auto *CI : Calls) {
681 // No safepoint needed or wanted
682 if (!needsStatepoint(CI, TLI))
683 continue;
684
685 // These are likely runtime calls. Should we assert that via calling
686 // convention or something?
687 ParsePointsNeeded.push_back(CI);
688 }
689 assert(ParsePointsNeeded.size() <= Calls.size());
690 }
691