• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /* Copyright 2020 The TensorFlow Authors. All Rights Reserved.
2 
3 Licensed under the Apache License, Version 2.0 (the "License");
4 you may not use this file except in compliance with the License.
5 You may obtain a copy of the License at
6 
7     http://www.apache.org/licenses/LICENSE-2.0
8 
9 Unless required by applicable law or agreed to in writing, software
10 distributed under the License is distributed on an "AS IS" BASIS,
11 WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12 See the License for the specific language governing permissions and
13 limitations under the License.
14 ==============================================================================*/
15 
16 #ifndef TENSORFLOW_LITE_DELEGATES_XNNPACK_POOL_2D_TESTER_H_
17 #define TENSORFLOW_LITE_DELEGATES_XNNPACK_POOL_2D_TESTER_H_
18 
19 #include <cstdint>
20 #include <vector>
21 
22 #include <gtest/gtest.h>
23 #include "tensorflow/lite/c/common.h"
24 #include "tensorflow/lite/schema/schema_generated.h"
25 
26 namespace tflite {
27 namespace xnnpack {
28 
29 class Pool2DTester {
30  public:
31   Pool2DTester() = default;
32   Pool2DTester(const Pool2DTester&) = delete;
33   Pool2DTester& operator=(const Pool2DTester&) = delete;
34 
BatchSize(int32_t batch_size)35   inline Pool2DTester& BatchSize(int32_t batch_size) {
36     EXPECT_GT(batch_size, 0);
37     batch_size_ = batch_size;
38     return *this;
39   }
40 
BatchSize()41   inline int32_t BatchSize() const { return batch_size_; }
42 
Channels(int32_t channels)43   inline Pool2DTester& Channels(int32_t channels) {
44     EXPECT_GT(channels, 0);
45     channels_ = channels;
46     return *this;
47   }
48 
Channels()49   inline int32_t Channels() const { return channels_; }
50 
InputHeight(int32_t input_height)51   inline Pool2DTester& InputHeight(int32_t input_height) {
52     EXPECT_GT(input_height, 0);
53     input_height_ = input_height;
54     return *this;
55   }
56 
InputHeight()57   inline int32_t InputHeight() const { return input_height_; }
58 
InputWidth(int32_t input_width)59   inline Pool2DTester& InputWidth(int32_t input_width) {
60     EXPECT_GT(input_width, 0);
61     input_width_ = input_width;
62     return *this;
63   }
64 
InputWidth()65   inline int32_t InputWidth() const { return input_width_; }
66 
OutputWidth()67   inline int32_t OutputWidth() const {
68     if (Padding() == ::tflite::Padding_SAME) {
69       return (InputWidth() - 1) / StrideWidth() + 1;
70     } else {
71       return (InputWidth() - PoolingWidth()) / StrideWidth() + 1;
72     }
73   }
74 
OutputHeight()75   inline int32_t OutputHeight() const {
76     if (Padding() == ::tflite::Padding_SAME) {
77       return (InputHeight() - 1) / StrideHeight() + 1;
78     } else {
79       return (InputHeight() - PoolingHeight()) / StrideHeight() + 1;
80     }
81   }
82 
PoolingHeight(int32_t pooling_height)83   inline Pool2DTester& PoolingHeight(int32_t pooling_height) {
84     EXPECT_GT(pooling_height, 0);
85     pooling_height_ = pooling_height;
86     return *this;
87   }
88 
PoolingHeight()89   inline int32_t PoolingHeight() const { return pooling_height_; }
90 
PoolingWidth(int32_t pooling_width)91   inline Pool2DTester& PoolingWidth(int32_t pooling_width) {
92     EXPECT_GT(pooling_width, 0);
93     pooling_width_ = pooling_width;
94     return *this;
95   }
96 
PoolingWidth()97   inline int32_t PoolingWidth() const { return pooling_width_; }
98 
StrideHeight(int32_t stride_height)99   inline Pool2DTester& StrideHeight(int32_t stride_height) {
100     EXPECT_GT(stride_height, 0);
101     stride_height_ = stride_height;
102     return *this;
103   }
104 
StrideHeight()105   inline int32_t StrideHeight() const { return stride_height_; }
106 
StrideWidth(int32_t stride_width)107   inline Pool2DTester& StrideWidth(int32_t stride_width) {
108     EXPECT_GT(stride_width, 0);
109     stride_width_ = stride_width;
110     return *this;
111   }
112 
StrideWidth()113   inline int32_t StrideWidth() const { return stride_width_; }
114 
SamePadding()115   inline Pool2DTester& SamePadding() {
116     padding_ = ::tflite::Padding_SAME;
117     return *this;
118   }
119 
ValidPadding()120   inline Pool2DTester& ValidPadding() {
121     padding_ = ::tflite::Padding_VALID;
122     return *this;
123   }
124 
ReluActivation()125   inline Pool2DTester& ReluActivation() {
126     activation_ = ::tflite::ActivationFunctionType_RELU;
127     return *this;
128   }
129 
Relu6Activation()130   inline Pool2DTester& Relu6Activation() {
131     activation_ = ::tflite::ActivationFunctionType_RELU6;
132     return *this;
133   }
134 
ReluMinus1To1Activation()135   inline Pool2DTester& ReluMinus1To1Activation() {
136     activation_ = ::tflite::ActivationFunctionType_RELU_N1_TO_1;
137     return *this;
138   }
139 
TanhActivation()140   inline Pool2DTester& TanhActivation() {
141     activation_ = ::tflite::ActivationFunctionType_TANH;
142     return *this;
143   }
144 
SignBitActivation()145   inline Pool2DTester& SignBitActivation() {
146     activation_ = ::tflite::ActivationFunctionType_SIGN_BIT;
147     return *this;
148   }
149 
150   void Test(tflite::BuiltinOperator pool_op, TfLiteDelegate* delegate) const;
151 
152  private:
153   std::vector<char> CreateTfLiteModel(tflite::BuiltinOperator pool_op) const;
154 
Padding()155   inline ::tflite::Padding Padding() const { return padding_; }
156 
Activation()157   inline ::tflite::ActivationFunctionType Activation() const {
158     return activation_;
159   }
160 
161   int32_t batch_size_ = 1;
162   int32_t channels_ = 1;
163   int32_t input_height_ = 1;
164   int32_t input_width_ = 1;
165   int32_t pooling_height_ = 1;
166   int32_t pooling_width_ = 1;
167   int32_t stride_height_ = 1;
168   int32_t stride_width_ = 1;
169   ::tflite::Padding padding_ = ::tflite::Padding_VALID;
170   ::tflite::ActivationFunctionType activation_ =
171       ::tflite::ActivationFunctionType_NONE;
172 };
173 
174 }  // namespace xnnpack
175 }  // namespace tflite
176 
177 #endif  // TENSORFLOW_LITE_DELEGATES_XNNPACK_POOL_2D_TESTER_H_
178