• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1# Copyright 2019 The TensorFlow Authors. All Rights Reserved.
2#
3# Licensed under the Apache License, Version 2.0 (the "License");
4# you may not use this file except in compliance with the License.
5# You may obtain a copy of the License at
6#
7#     http://www.apache.org/licenses/LICENSE-2.0
8#
9# Unless required by applicable law or agreed to in writing, software
10# distributed under the License is distributed on an "AS IS" BASIS,
11# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12# See the License for the specific language governing permissions and
13# limitations under the License.
14# ==============================================================================
15"""Test configs for where."""
16import tensorflow.compat.v1 as tf
17from tensorflow.lite.testing.zip_test_utils import create_tensor_data
18from tensorflow.lite.testing.zip_test_utils import make_zip_of_tests
19from tensorflow.lite.testing.zip_test_utils import register_make_test_function
20
21
22@register_make_test_function()
23def make_where_tests(options):
24  """Make a set of tests to do where."""
25
26  test_parameters = [
27      {
28          "input_dtype": [tf.float32, tf.int32],
29          "input_shape_set": [([1, 2, 3, 4], [1, 2, 3, 4]),],
30          "use_where_v2": [False, True],
31          "fully_quantize": [False],
32      },
33      {
34          "input_dtype": [tf.float32, tf.int32],
35          "input_shape_set": [([], []),],
36          "use_where_v2": [],
37          "fully_quantize": [False],
38      },
39      {
40          "input_dtype": [tf.float32],
41          "input_shape_set": [
42              ([1, 2, 3, 4], [1, 2, 3, 4]),
43              ([], []),
44          ],
45          "use_where_v2": [False, True],
46          "fully_quantize": [True],
47      },
48      # High dimension broadcasting support in MLIR converter.
49      {
50          "input_dtype": [tf.float32, tf.int32],
51          "input_shape_set": [([8, 7, 6, 5, 4, 3, 2, 1], [4, 3, 2, 1]),
52                              ([8, 7, 6, 5, 4, 3, 2, 1], [None, 3, 2, 1]),
53                              ([8, 7, 6, 5, None, 3, 2, 1], [None, 3, 2, 1])],
54          "use_where_v2": [True],
55          "fully_quantize": [False],
56          "dynamic_size_value": [4, 1],
57      },
58      {
59          "input_dtype": [tf.float32],
60          "input_shape_set": [([8, 7, 6, 5, 4, 3, 2, 1], [4, 3, 2, 1])],
61          "use_where_v2": [True],
62          "fully_quantize": [True],
63          "dynamic_size_value": [4],
64      },
65      {
66          "input_dtype": [tf.float32, tf.int32],
67          "input_shape_set": [([], []), ([1], []), ([], [1])],
68          "use_where_v2": [False, True],
69          "fully_quantize": [False],
70      },
71  ]
72
73  def populate_dynamic_shape(parameters, input_shape):
74    return [
75        parameters["dynamic_size_value"] if x is None else x
76        for x in input_shape
77    ]
78
79  def build_graph(parameters):
80    """Build the where op testing graph."""
81    input_value1 = tf.compat.v1.placeholder(
82        dtype=parameters["input_dtype"],
83        name="input2",
84        shape=parameters["input_shape_set"][0])
85    input_value2 = tf.compat.v1.placeholder(
86        dtype=parameters["input_dtype"],
87        name="input3",
88        shape=parameters["input_shape_set"][1])
89    less = tf.less(input_value1, input_value2)
90    where = tf.where_v2 if parameters["use_where_v2"] else tf.where
91    out = where(less, input_value1, input_value2)
92    return [input_value1, input_value2], [out]
93
94  def build_inputs(parameters, sess, inputs, outputs):
95    input_shape_1 = populate_dynamic_shape(parameters,
96                                           parameters["input_shape_set"][0])
97    input_shape_2 = populate_dynamic_shape(parameters,
98                                           parameters["input_shape_set"][1])
99
100    input_value1 = create_tensor_data(
101        parameters["input_dtype"], input_shape_1, min_value=-1, max_value=1)
102    input_value2 = create_tensor_data(
103        parameters["input_dtype"], input_shape_2, min_value=-1, max_value=1)
104    return [input_value1, input_value2], sess.run(
105        outputs, feed_dict=dict(zip(inputs, [input_value1, input_value2])))
106
107  make_zip_of_tests(
108      options,
109      test_parameters,
110      build_graph,
111      build_inputs,
112      expected_tf_failures=4)
113