• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Copyright 2012 Google Inc. All Rights Reserved.
2 //
3 // Use of this source code is governed by a BSD-style license
4 // that can be found in the COPYING file in the root of the source
5 // tree. An additional intellectual property rights grant can be found
6 // in the file PATENTS. All contributing project authors may
7 // be found in the AUTHORS file in the root of the source tree.
8 // -----------------------------------------------------------------------------
9 //
10 // Image transforms and color space conversion methods for lossless decoder.
11 //
12 // Authors: Vikas Arora (vikaas.arora@gmail.com)
13 //          Jyrki Alakuijala (jyrki@google.com)
14 //          Urvang Joshi (urvang@google.com)
15 
16 #include "src/dsp/dsp.h"
17 
18 #include <assert.h>
19 #include <math.h>
20 #include <stdlib.h>
21 #include "src/dec/vp8li_dec.h"
22 #include "src/utils/endian_inl_utils.h"
23 #include "src/dsp/lossless.h"
24 #include "src/dsp/lossless_common.h"
25 
26 //------------------------------------------------------------------------------
27 // Image transforms.
28 
Average2(uint32_t a0,uint32_t a1)29 static WEBP_INLINE uint32_t Average2(uint32_t a0, uint32_t a1) {
30   return (((a0 ^ a1) & 0xfefefefeu) >> 1) + (a0 & a1);
31 }
32 
Average3(uint32_t a0,uint32_t a1,uint32_t a2)33 static WEBP_INLINE uint32_t Average3(uint32_t a0, uint32_t a1, uint32_t a2) {
34   return Average2(Average2(a0, a2), a1);
35 }
36 
Average4(uint32_t a0,uint32_t a1,uint32_t a2,uint32_t a3)37 static WEBP_INLINE uint32_t Average4(uint32_t a0, uint32_t a1,
38                                      uint32_t a2, uint32_t a3) {
39   return Average2(Average2(a0, a1), Average2(a2, a3));
40 }
41 
Clip255(uint32_t a)42 static WEBP_INLINE uint32_t Clip255(uint32_t a) {
43   if (a < 256) {
44     return a;
45   }
46   // return 0, when a is a negative integer.
47   // return 255, when a is positive.
48   return ~a >> 24;
49 }
50 
AddSubtractComponentFull(int a,int b,int c)51 static WEBP_INLINE int AddSubtractComponentFull(int a, int b, int c) {
52   return Clip255((uint32_t)(a + b - c));
53 }
54 
ClampedAddSubtractFull(uint32_t c0,uint32_t c1,uint32_t c2)55 static WEBP_INLINE uint32_t ClampedAddSubtractFull(uint32_t c0, uint32_t c1,
56                                                    uint32_t c2) {
57   const int a = AddSubtractComponentFull(c0 >> 24, c1 >> 24, c2 >> 24);
58   const int r = AddSubtractComponentFull((c0 >> 16) & 0xff,
59                                          (c1 >> 16) & 0xff,
60                                          (c2 >> 16) & 0xff);
61   const int g = AddSubtractComponentFull((c0 >> 8) & 0xff,
62                                          (c1 >> 8) & 0xff,
63                                          (c2 >> 8) & 0xff);
64   const int b = AddSubtractComponentFull(c0 & 0xff, c1 & 0xff, c2 & 0xff);
65   return ((uint32_t)a << 24) | (r << 16) | (g << 8) | b;
66 }
67 
AddSubtractComponentHalf(int a,int b)68 static WEBP_INLINE int AddSubtractComponentHalf(int a, int b) {
69   return Clip255((uint32_t)(a + (a - b) / 2));
70 }
71 
ClampedAddSubtractHalf(uint32_t c0,uint32_t c1,uint32_t c2)72 static WEBP_INLINE uint32_t ClampedAddSubtractHalf(uint32_t c0, uint32_t c1,
73                                                    uint32_t c2) {
74   const uint32_t ave = Average2(c0, c1);
75   const int a = AddSubtractComponentHalf(ave >> 24, c2 >> 24);
76   const int r = AddSubtractComponentHalf((ave >> 16) & 0xff, (c2 >> 16) & 0xff);
77   const int g = AddSubtractComponentHalf((ave >> 8) & 0xff, (c2 >> 8) & 0xff);
78   const int b = AddSubtractComponentHalf((ave >> 0) & 0xff, (c2 >> 0) & 0xff);
79   return ((uint32_t)a << 24) | (r << 16) | (g << 8) | b;
80 }
81 
82 // gcc <= 4.9 on ARM generates incorrect code in Select() when Sub3() is
83 // inlined.
84 #if defined(__arm__) && defined(__GNUC__) && LOCAL_GCC_VERSION <= 0x409
85 # define LOCAL_INLINE __attribute__ ((noinline))
86 #else
87 # define LOCAL_INLINE WEBP_INLINE
88 #endif
89 
Sub3(int a,int b,int c)90 static LOCAL_INLINE int Sub3(int a, int b, int c) {
91   const int pb = b - c;
92   const int pa = a - c;
93   return abs(pb) - abs(pa);
94 }
95 
96 #undef LOCAL_INLINE
97 
Select(uint32_t a,uint32_t b,uint32_t c)98 static WEBP_INLINE uint32_t Select(uint32_t a, uint32_t b, uint32_t c) {
99   const int pa_minus_pb =
100       Sub3((a >> 24)       , (b >> 24)       , (c >> 24)       ) +
101       Sub3((a >> 16) & 0xff, (b >> 16) & 0xff, (c >> 16) & 0xff) +
102       Sub3((a >>  8) & 0xff, (b >>  8) & 0xff, (c >>  8) & 0xff) +
103       Sub3((a      ) & 0xff, (b      ) & 0xff, (c      ) & 0xff);
104   return (pa_minus_pb <= 0) ? a : b;
105 }
106 
107 //------------------------------------------------------------------------------
108 // Predictors
109 
VP8LPredictor0_C(const uint32_t * const left,const uint32_t * const top)110 uint32_t VP8LPredictor0_C(const uint32_t* const left,
111                           const uint32_t* const top) {
112   (void)top;
113   (void)left;
114   return ARGB_BLACK;
115 }
VP8LPredictor1_C(const uint32_t * const left,const uint32_t * const top)116 uint32_t VP8LPredictor1_C(const uint32_t* const left,
117                           const uint32_t* const top) {
118   (void)top;
119   return *left;
120 }
VP8LPredictor2_C(const uint32_t * const left,const uint32_t * const top)121 uint32_t VP8LPredictor2_C(const uint32_t* const left,
122                           const uint32_t* const top) {
123   (void)left;
124   return top[0];
125 }
VP8LPredictor3_C(const uint32_t * const left,const uint32_t * const top)126 uint32_t VP8LPredictor3_C(const uint32_t* const left,
127                           const uint32_t* const top) {
128   (void)left;
129   return top[1];
130 }
VP8LPredictor4_C(const uint32_t * const left,const uint32_t * const top)131 uint32_t VP8LPredictor4_C(const uint32_t* const left,
132                           const uint32_t* const top) {
133   (void)left;
134   return top[-1];
135 }
VP8LPredictor5_C(const uint32_t * const left,const uint32_t * const top)136 uint32_t VP8LPredictor5_C(const uint32_t* const left,
137                           const uint32_t* const top) {
138   const uint32_t pred = Average3(*left, top[0], top[1]);
139   return pred;
140 }
VP8LPredictor6_C(const uint32_t * const left,const uint32_t * const top)141 uint32_t VP8LPredictor6_C(const uint32_t* const left,
142                           const uint32_t* const top) {
143   const uint32_t pred = Average2(*left, top[-1]);
144   return pred;
145 }
VP8LPredictor7_C(const uint32_t * const left,const uint32_t * const top)146 uint32_t VP8LPredictor7_C(const uint32_t* const left,
147                           const uint32_t* const top) {
148   const uint32_t pred = Average2(*left, top[0]);
149   return pred;
150 }
VP8LPredictor8_C(const uint32_t * const left,const uint32_t * const top)151 uint32_t VP8LPredictor8_C(const uint32_t* const left,
152                           const uint32_t* const top) {
153   const uint32_t pred = Average2(top[-1], top[0]);
154   (void)left;
155   return pred;
156 }
VP8LPredictor9_C(const uint32_t * const left,const uint32_t * const top)157 uint32_t VP8LPredictor9_C(const uint32_t* const left,
158                           const uint32_t* const top) {
159   const uint32_t pred = Average2(top[0], top[1]);
160   (void)left;
161   return pred;
162 }
VP8LPredictor10_C(const uint32_t * const left,const uint32_t * const top)163 uint32_t VP8LPredictor10_C(const uint32_t* const left,
164                            const uint32_t* const top) {
165   const uint32_t pred = Average4(*left, top[-1], top[0], top[1]);
166   return pred;
167 }
VP8LPredictor11_C(const uint32_t * const left,const uint32_t * const top)168 uint32_t VP8LPredictor11_C(const uint32_t* const left,
169                            const uint32_t* const top) {
170   const uint32_t pred = Select(top[0], *left, top[-1]);
171   return pred;
172 }
VP8LPredictor12_C(const uint32_t * const left,const uint32_t * const top)173 uint32_t VP8LPredictor12_C(const uint32_t* const left,
174                            const uint32_t* const top) {
175   const uint32_t pred = ClampedAddSubtractFull(*left, top[0], top[-1]);
176   return pred;
177 }
VP8LPredictor13_C(const uint32_t * const left,const uint32_t * const top)178 uint32_t VP8LPredictor13_C(const uint32_t* const left,
179                            const uint32_t* const top) {
180   const uint32_t pred = ClampedAddSubtractHalf(*left, top[0], top[-1]);
181   return pred;
182 }
183 
PredictorAdd0_C(const uint32_t * in,const uint32_t * upper,int num_pixels,uint32_t * out)184 static void PredictorAdd0_C(const uint32_t* in, const uint32_t* upper,
185                             int num_pixels, uint32_t* out) {
186   int x;
187   (void)upper;
188   for (x = 0; x < num_pixels; ++x) out[x] = VP8LAddPixels(in[x], ARGB_BLACK);
189 }
PredictorAdd1_C(const uint32_t * in,const uint32_t * upper,int num_pixels,uint32_t * out)190 static void PredictorAdd1_C(const uint32_t* in, const uint32_t* upper,
191                             int num_pixels, uint32_t* out) {
192   int i;
193   uint32_t left = out[-1];
194   (void)upper;
195   for (i = 0; i < num_pixels; ++i) {
196     out[i] = left = VP8LAddPixels(in[i], left);
197   }
198 }
GENERATE_PREDICTOR_ADD(VP8LPredictor2_C,PredictorAdd2_C)199 GENERATE_PREDICTOR_ADD(VP8LPredictor2_C, PredictorAdd2_C)
200 GENERATE_PREDICTOR_ADD(VP8LPredictor3_C, PredictorAdd3_C)
201 GENERATE_PREDICTOR_ADD(VP8LPredictor4_C, PredictorAdd4_C)
202 GENERATE_PREDICTOR_ADD(VP8LPredictor5_C, PredictorAdd5_C)
203 GENERATE_PREDICTOR_ADD(VP8LPredictor6_C, PredictorAdd6_C)
204 GENERATE_PREDICTOR_ADD(VP8LPredictor7_C, PredictorAdd7_C)
205 GENERATE_PREDICTOR_ADD(VP8LPredictor8_C, PredictorAdd8_C)
206 GENERATE_PREDICTOR_ADD(VP8LPredictor9_C, PredictorAdd9_C)
207 GENERATE_PREDICTOR_ADD(VP8LPredictor10_C, PredictorAdd10_C)
208 GENERATE_PREDICTOR_ADD(VP8LPredictor11_C, PredictorAdd11_C)
209 GENERATE_PREDICTOR_ADD(VP8LPredictor12_C, PredictorAdd12_C)
210 GENERATE_PREDICTOR_ADD(VP8LPredictor13_C, PredictorAdd13_C)
211 
212 //------------------------------------------------------------------------------
213 
214 // Inverse prediction.
215 static void PredictorInverseTransform_C(const VP8LTransform* const transform,
216                                         int y_start, int y_end,
217                                         const uint32_t* in, uint32_t* out) {
218   const int width = transform->xsize_;
219   if (y_start == 0) {  // First Row follows the L (mode=1) mode.
220     PredictorAdd0_C(in, NULL, 1, out);
221     PredictorAdd1_C(in + 1, NULL, width - 1, out + 1);
222     in += width;
223     out += width;
224     ++y_start;
225   }
226 
227   {
228     int y = y_start;
229     const int tile_width = 1 << transform->bits_;
230     const int mask = tile_width - 1;
231     const int tiles_per_row = VP8LSubSampleSize(width, transform->bits_);
232     const uint32_t* pred_mode_base =
233         transform->data_ + (y >> transform->bits_) * tiles_per_row;
234 
235     while (y < y_end) {
236       const uint32_t* pred_mode_src = pred_mode_base;
237       int x = 1;
238       // First pixel follows the T (mode=2) mode.
239       PredictorAdd2_C(in, out - width, 1, out);
240       // .. the rest:
241       while (x < width) {
242         const VP8LPredictorAddSubFunc pred_func =
243             VP8LPredictorsAdd[((*pred_mode_src++) >> 8) & 0xf];
244         int x_end = (x & ~mask) + tile_width;
245         if (x_end > width) x_end = width;
246         pred_func(in + x, out + x - width, x_end - x, out + x);
247         x = x_end;
248       }
249       in += width;
250       out += width;
251       ++y;
252       if ((y & mask) == 0) {   // Use the same mask, since tiles are squares.
253         pred_mode_base += tiles_per_row;
254       }
255     }
256   }
257 }
258 
259 // Add green to blue and red channels (i.e. perform the inverse transform of
260 // 'subtract green').
VP8LAddGreenToBlueAndRed_C(const uint32_t * src,int num_pixels,uint32_t * dst)261 void VP8LAddGreenToBlueAndRed_C(const uint32_t* src, int num_pixels,
262                                 uint32_t* dst) {
263   int i;
264   for (i = 0; i < num_pixels; ++i) {
265     const uint32_t argb = src[i];
266     const uint32_t green = ((argb >> 8) & 0xff);
267     uint32_t red_blue = (argb & 0x00ff00ffu);
268     red_blue += (green << 16) | green;
269     red_blue &= 0x00ff00ffu;
270     dst[i] = (argb & 0xff00ff00u) | red_blue;
271   }
272 }
273 
ColorTransformDelta(int8_t color_pred,int8_t color)274 static WEBP_INLINE int ColorTransformDelta(int8_t color_pred,
275                                            int8_t color) {
276   return ((int)color_pred * color) >> 5;
277 }
278 
ColorCodeToMultipliers(uint32_t color_code,VP8LMultipliers * const m)279 static WEBP_INLINE void ColorCodeToMultipliers(uint32_t color_code,
280                                                VP8LMultipliers* const m) {
281   m->green_to_red_  = (color_code >>  0) & 0xff;
282   m->green_to_blue_ = (color_code >>  8) & 0xff;
283   m->red_to_blue_   = (color_code >> 16) & 0xff;
284 }
285 
VP8LTransformColorInverse_C(const VP8LMultipliers * const m,const uint32_t * src,int num_pixels,uint32_t * dst)286 void VP8LTransformColorInverse_C(const VP8LMultipliers* const m,
287                                  const uint32_t* src, int num_pixels,
288                                  uint32_t* dst) {
289   int i;
290   for (i = 0; i < num_pixels; ++i) {
291     const uint32_t argb = src[i];
292     const int8_t green = (int8_t)(argb >> 8);
293     const uint32_t red = argb >> 16;
294     int new_red = red & 0xff;
295     int new_blue = argb & 0xff;
296     new_red += ColorTransformDelta((int8_t)m->green_to_red_, green);
297     new_red &= 0xff;
298     new_blue += ColorTransformDelta((int8_t)m->green_to_blue_, green);
299     new_blue += ColorTransformDelta((int8_t)m->red_to_blue_, (int8_t)new_red);
300     new_blue &= 0xff;
301     dst[i] = (argb & 0xff00ff00u) | (new_red << 16) | (new_blue);
302   }
303 }
304 
305 // Color space inverse transform.
ColorSpaceInverseTransform_C(const VP8LTransform * const transform,int y_start,int y_end,const uint32_t * src,uint32_t * dst)306 static void ColorSpaceInverseTransform_C(const VP8LTransform* const transform,
307                                          int y_start, int y_end,
308                                          const uint32_t* src, uint32_t* dst) {
309   const int width = transform->xsize_;
310   const int tile_width = 1 << transform->bits_;
311   const int mask = tile_width - 1;
312   const int safe_width = width & ~mask;
313   const int remaining_width = width - safe_width;
314   const int tiles_per_row = VP8LSubSampleSize(width, transform->bits_);
315   int y = y_start;
316   const uint32_t* pred_row =
317       transform->data_ + (y >> transform->bits_) * tiles_per_row;
318 
319   while (y < y_end) {
320     const uint32_t* pred = pred_row;
321     VP8LMultipliers m = { 0, 0, 0 };
322     const uint32_t* const src_safe_end = src + safe_width;
323     const uint32_t* const src_end = src + width;
324     while (src < src_safe_end) {
325       ColorCodeToMultipliers(*pred++, &m);
326       VP8LTransformColorInverse(&m, src, tile_width, dst);
327       src += tile_width;
328       dst += tile_width;
329     }
330     if (src < src_end) {  // Left-overs using C-version.
331       ColorCodeToMultipliers(*pred++, &m);
332       VP8LTransformColorInverse(&m, src, remaining_width, dst);
333       src += remaining_width;
334       dst += remaining_width;
335     }
336     ++y;
337     if ((y & mask) == 0) pred_row += tiles_per_row;
338   }
339 }
340 
341 // Separate out pixels packed together using pixel-bundling.
342 // We define two methods for ARGB data (uint32_t) and alpha-only data (uint8_t).
343 #define COLOR_INDEX_INVERSE(FUNC_NAME, F_NAME, STATIC_DECL, TYPE, BIT_SUFFIX,  \
344                             GET_INDEX, GET_VALUE)                              \
345 static void F_NAME(const TYPE* src, const uint32_t* const color_map,           \
346                    TYPE* dst, int y_start, int y_end, int width) {             \
347   int y;                                                                       \
348   for (y = y_start; y < y_end; ++y) {                                          \
349     int x;                                                                     \
350     for (x = 0; x < width; ++x) {                                              \
351       *dst++ = GET_VALUE(color_map[GET_INDEX(*src++)]);                        \
352     }                                                                          \
353   }                                                                            \
354 }                                                                              \
355 STATIC_DECL void FUNC_NAME(const VP8LTransform* const transform,               \
356                            int y_start, int y_end, const TYPE* src,            \
357                            TYPE* dst) {                                        \
358   int y;                                                                       \
359   const int bits_per_pixel = 8 >> transform->bits_;                            \
360   const int width = transform->xsize_;                                         \
361   const uint32_t* const color_map = transform->data_;                          \
362   if (bits_per_pixel < 8) {                                                    \
363     const int pixels_per_byte = 1 << transform->bits_;                         \
364     const int count_mask = pixels_per_byte - 1;                                \
365     const uint32_t bit_mask = (1 << bits_per_pixel) - 1;                       \
366     for (y = y_start; y < y_end; ++y) {                                        \
367       uint32_t packed_pixels = 0;                                              \
368       int x;                                                                   \
369       for (x = 0; x < width; ++x) {                                            \
370         /* We need to load fresh 'packed_pixels' once every                */  \
371         /* 'pixels_per_byte' increments of x. Fortunately, pixels_per_byte */  \
372         /* is a power of 2, so can just use a mask for that, instead of    */  \
373         /* decrementing a counter.                                         */  \
374         if ((x & count_mask) == 0) packed_pixels = GET_INDEX(*src++);          \
375         *dst++ = GET_VALUE(color_map[packed_pixels & bit_mask]);               \
376         packed_pixels >>= bits_per_pixel;                                      \
377       }                                                                        \
378     }                                                                          \
379   } else {                                                                     \
380     VP8LMapColor##BIT_SUFFIX(src, color_map, dst, y_start, y_end, width);      \
381   }                                                                            \
382 }
383 
384 COLOR_INDEX_INVERSE(ColorIndexInverseTransform_C, MapARGB_C, static,
385                     uint32_t, 32b, VP8GetARGBIndex, VP8GetARGBValue)
386 COLOR_INDEX_INVERSE(VP8LColorIndexInverseTransformAlpha, MapAlpha_C, ,
387                     uint8_t, 8b, VP8GetAlphaIndex, VP8GetAlphaValue)
388 
389 #undef COLOR_INDEX_INVERSE
390 
VP8LInverseTransform(const VP8LTransform * const transform,int row_start,int row_end,const uint32_t * const in,uint32_t * const out)391 void VP8LInverseTransform(const VP8LTransform* const transform,
392                           int row_start, int row_end,
393                           const uint32_t* const in, uint32_t* const out) {
394   const int width = transform->xsize_;
395   assert(row_start < row_end);
396   assert(row_end <= transform->ysize_);
397   switch (transform->type_) {
398     case SUBTRACT_GREEN_TRANSFORM:
399       VP8LAddGreenToBlueAndRed(in, (row_end - row_start) * width, out);
400       break;
401     case PREDICTOR_TRANSFORM:
402       PredictorInverseTransform_C(transform, row_start, row_end, in, out);
403       if (row_end != transform->ysize_) {
404         // The last predicted row in this iteration will be the top-pred row
405         // for the first row in next iteration.
406         memcpy(out - width, out + (row_end - row_start - 1) * width,
407                width * sizeof(*out));
408       }
409       break;
410     case CROSS_COLOR_TRANSFORM:
411       ColorSpaceInverseTransform_C(transform, row_start, row_end, in, out);
412       break;
413     case COLOR_INDEXING_TRANSFORM:
414       if (in == out && transform->bits_ > 0) {
415         // Move packed pixels to the end of unpacked region, so that unpacking
416         // can occur seamlessly.
417         // Also, note that this is the only transform that applies on
418         // the effective width of VP8LSubSampleSize(xsize_, bits_). All other
419         // transforms work on effective width of xsize_.
420         const int out_stride = (row_end - row_start) * width;
421         const int in_stride = (row_end - row_start) *
422             VP8LSubSampleSize(transform->xsize_, transform->bits_);
423         uint32_t* const src = out + out_stride - in_stride;
424         memmove(src, out, in_stride * sizeof(*src));
425         ColorIndexInverseTransform_C(transform, row_start, row_end, src, out);
426       } else {
427         ColorIndexInverseTransform_C(transform, row_start, row_end, in, out);
428       }
429       break;
430   }
431 }
432 
433 //------------------------------------------------------------------------------
434 // Color space conversion.
435 
is_big_endian(void)436 static int is_big_endian(void) {
437   static const union {
438     uint16_t w;
439     uint8_t b[2];
440   } tmp = { 1 };
441   return (tmp.b[0] != 1);
442 }
443 
VP8LConvertBGRAToRGB_C(const uint32_t * src,int num_pixels,uint8_t * dst)444 void VP8LConvertBGRAToRGB_C(const uint32_t* src,
445                             int num_pixels, uint8_t* dst) {
446   const uint32_t* const src_end = src + num_pixels;
447   while (src < src_end) {
448     const uint32_t argb = *src++;
449     *dst++ = (argb >> 16) & 0xff;
450     *dst++ = (argb >>  8) & 0xff;
451     *dst++ = (argb >>  0) & 0xff;
452   }
453 }
454 
VP8LConvertBGRAToRGBA_C(const uint32_t * src,int num_pixels,uint8_t * dst)455 void VP8LConvertBGRAToRGBA_C(const uint32_t* src,
456                              int num_pixels, uint8_t* dst) {
457   const uint32_t* const src_end = src + num_pixels;
458   while (src < src_end) {
459     const uint32_t argb = *src++;
460     *dst++ = (argb >> 16) & 0xff;
461     *dst++ = (argb >>  8) & 0xff;
462     *dst++ = (argb >>  0) & 0xff;
463     *dst++ = (argb >> 24) & 0xff;
464   }
465 }
466 
VP8LConvertBGRAToRGBA4444_C(const uint32_t * src,int num_pixels,uint8_t * dst)467 void VP8LConvertBGRAToRGBA4444_C(const uint32_t* src,
468                                  int num_pixels, uint8_t* dst) {
469   const uint32_t* const src_end = src + num_pixels;
470   while (src < src_end) {
471     const uint32_t argb = *src++;
472     const uint8_t rg = ((argb >> 16) & 0xf0) | ((argb >> 12) & 0xf);
473     const uint8_t ba = ((argb >>  0) & 0xf0) | ((argb >> 28) & 0xf);
474 #if (WEBP_SWAP_16BIT_CSP == 1)
475     *dst++ = ba;
476     *dst++ = rg;
477 #else
478     *dst++ = rg;
479     *dst++ = ba;
480 #endif
481   }
482 }
483 
VP8LConvertBGRAToRGB565_C(const uint32_t * src,int num_pixels,uint8_t * dst)484 void VP8LConvertBGRAToRGB565_C(const uint32_t* src,
485                                int num_pixels, uint8_t* dst) {
486   const uint32_t* const src_end = src + num_pixels;
487   while (src < src_end) {
488     const uint32_t argb = *src++;
489     const uint8_t rg = ((argb >> 16) & 0xf8) | ((argb >> 13) & 0x7);
490     const uint8_t gb = ((argb >>  5) & 0xe0) | ((argb >>  3) & 0x1f);
491 #if (WEBP_SWAP_16BIT_CSP == 1)
492     *dst++ = gb;
493     *dst++ = rg;
494 #else
495     *dst++ = rg;
496     *dst++ = gb;
497 #endif
498   }
499 }
500 
VP8LConvertBGRAToBGR_C(const uint32_t * src,int num_pixels,uint8_t * dst)501 void VP8LConvertBGRAToBGR_C(const uint32_t* src,
502                             int num_pixels, uint8_t* dst) {
503   const uint32_t* const src_end = src + num_pixels;
504   while (src < src_end) {
505     const uint32_t argb = *src++;
506     *dst++ = (argb >>  0) & 0xff;
507     *dst++ = (argb >>  8) & 0xff;
508     *dst++ = (argb >> 16) & 0xff;
509   }
510 }
511 
CopyOrSwap(const uint32_t * src,int num_pixels,uint8_t * dst,int swap_on_big_endian)512 static void CopyOrSwap(const uint32_t* src, int num_pixels, uint8_t* dst,
513                        int swap_on_big_endian) {
514   if (is_big_endian() == swap_on_big_endian) {
515     const uint32_t* const src_end = src + num_pixels;
516     while (src < src_end) {
517       const uint32_t argb = *src++;
518       WebPUint32ToMem(dst, BSwap32(argb));
519       dst += sizeof(argb);
520     }
521   } else {
522     memcpy(dst, src, num_pixels * sizeof(*src));
523   }
524 }
525 
VP8LConvertFromBGRA(const uint32_t * const in_data,int num_pixels,WEBP_CSP_MODE out_colorspace,uint8_t * const rgba)526 void VP8LConvertFromBGRA(const uint32_t* const in_data, int num_pixels,
527                          WEBP_CSP_MODE out_colorspace, uint8_t* const rgba) {
528   switch (out_colorspace) {
529     case MODE_RGB:
530       VP8LConvertBGRAToRGB(in_data, num_pixels, rgba);
531       break;
532     case MODE_RGBA:
533       VP8LConvertBGRAToRGBA(in_data, num_pixels, rgba);
534       break;
535     case MODE_rgbA:
536       VP8LConvertBGRAToRGBA(in_data, num_pixels, rgba);
537       WebPApplyAlphaMultiply(rgba, 0, num_pixels, 1, 0);
538       break;
539     case MODE_BGR:
540       VP8LConvertBGRAToBGR(in_data, num_pixels, rgba);
541       break;
542     case MODE_BGRA:
543       CopyOrSwap(in_data, num_pixels, rgba, 1);
544       break;
545     case MODE_bgrA:
546       CopyOrSwap(in_data, num_pixels, rgba, 1);
547       WebPApplyAlphaMultiply(rgba, 0, num_pixels, 1, 0);
548       break;
549     case MODE_ARGB:
550       CopyOrSwap(in_data, num_pixels, rgba, 0);
551       break;
552     case MODE_Argb:
553       CopyOrSwap(in_data, num_pixels, rgba, 0);
554       WebPApplyAlphaMultiply(rgba, 1, num_pixels, 1, 0);
555       break;
556     case MODE_RGBA_4444:
557       VP8LConvertBGRAToRGBA4444(in_data, num_pixels, rgba);
558       break;
559     case MODE_rgbA_4444:
560       VP8LConvertBGRAToRGBA4444(in_data, num_pixels, rgba);
561       WebPApplyAlphaMultiply4444(rgba, num_pixels, 1, 0);
562       break;
563     case MODE_RGB_565:
564       VP8LConvertBGRAToRGB565(in_data, num_pixels, rgba);
565       break;
566     default:
567       assert(0);          // Code flow should not reach here.
568   }
569 }
570 
571 //------------------------------------------------------------------------------
572 
573 VP8LProcessDecBlueAndRedFunc VP8LAddGreenToBlueAndRed;
574 VP8LPredictorAddSubFunc VP8LPredictorsAdd[16];
575 VP8LPredictorFunc VP8LPredictors[16];
576 
577 // exposed plain-C implementations
578 VP8LPredictorAddSubFunc VP8LPredictorsAdd_C[16];
579 
580 VP8LTransformColorInverseFunc VP8LTransformColorInverse;
581 
582 VP8LConvertFunc VP8LConvertBGRAToRGB;
583 VP8LConvertFunc VP8LConvertBGRAToRGBA;
584 VP8LConvertFunc VP8LConvertBGRAToRGBA4444;
585 VP8LConvertFunc VP8LConvertBGRAToRGB565;
586 VP8LConvertFunc VP8LConvertBGRAToBGR;
587 
588 VP8LMapARGBFunc VP8LMapColor32b;
589 VP8LMapAlphaFunc VP8LMapColor8b;
590 
591 extern void VP8LDspInitSSE2(void);
592 extern void VP8LDspInitSSE41(void);
593 extern void VP8LDspInitNEON(void);
594 extern void VP8LDspInitMIPSdspR2(void);
595 extern void VP8LDspInitMSA(void);
596 
597 #define COPY_PREDICTOR_ARRAY(IN, OUT) do {                \
598   (OUT)[0] = IN##0_C;                                     \
599   (OUT)[1] = IN##1_C;                                     \
600   (OUT)[2] = IN##2_C;                                     \
601   (OUT)[3] = IN##3_C;                                     \
602   (OUT)[4] = IN##4_C;                                     \
603   (OUT)[5] = IN##5_C;                                     \
604   (OUT)[6] = IN##6_C;                                     \
605   (OUT)[7] = IN##7_C;                                     \
606   (OUT)[8] = IN##8_C;                                     \
607   (OUT)[9] = IN##9_C;                                     \
608   (OUT)[10] = IN##10_C;                                   \
609   (OUT)[11] = IN##11_C;                                   \
610   (OUT)[12] = IN##12_C;                                   \
611   (OUT)[13] = IN##13_C;                                   \
612   (OUT)[14] = IN##0_C; /* <- padding security sentinels*/ \
613   (OUT)[15] = IN##0_C;                                    \
614 } while (0);
615 
WEBP_DSP_INIT_FUNC(VP8LDspInit)616 WEBP_DSP_INIT_FUNC(VP8LDspInit) {
617   COPY_PREDICTOR_ARRAY(VP8LPredictor, VP8LPredictors)
618   COPY_PREDICTOR_ARRAY(PredictorAdd, VP8LPredictorsAdd)
619   COPY_PREDICTOR_ARRAY(PredictorAdd, VP8LPredictorsAdd_C)
620 
621 #if !WEBP_NEON_OMIT_C_CODE
622   VP8LAddGreenToBlueAndRed = VP8LAddGreenToBlueAndRed_C;
623 
624   VP8LTransformColorInverse = VP8LTransformColorInverse_C;
625 
626   VP8LConvertBGRAToRGBA = VP8LConvertBGRAToRGBA_C;
627   VP8LConvertBGRAToRGB = VP8LConvertBGRAToRGB_C;
628   VP8LConvertBGRAToBGR = VP8LConvertBGRAToBGR_C;
629 #endif
630 
631   VP8LConvertBGRAToRGBA4444 = VP8LConvertBGRAToRGBA4444_C;
632   VP8LConvertBGRAToRGB565 = VP8LConvertBGRAToRGB565_C;
633 
634   VP8LMapColor32b = MapARGB_C;
635   VP8LMapColor8b = MapAlpha_C;
636 
637   // If defined, use CPUInfo() to overwrite some pointers with faster versions.
638   if (VP8GetCPUInfo != NULL) {
639 #if defined(WEBP_HAVE_SSE2)
640     if (VP8GetCPUInfo(kSSE2)) {
641       VP8LDspInitSSE2();
642 #if defined(WEBP_HAVE_SSE41)
643       if (VP8GetCPUInfo(kSSE4_1)) {
644         VP8LDspInitSSE41();
645       }
646 #endif
647     }
648 #endif
649 #if defined(WEBP_USE_MIPS_DSP_R2)
650     if (VP8GetCPUInfo(kMIPSdspR2)) {
651       VP8LDspInitMIPSdspR2();
652     }
653 #endif
654 #if defined(WEBP_USE_MSA)
655     if (VP8GetCPUInfo(kMSA)) {
656       VP8LDspInitMSA();
657     }
658 #endif
659   }
660 
661 #if defined(WEBP_HAVE_NEON)
662   if (WEBP_NEON_OMIT_C_CODE ||
663       (VP8GetCPUInfo != NULL && VP8GetCPUInfo(kNEON))) {
664     VP8LDspInitNEON();
665   }
666 #endif
667 
668   assert(VP8LAddGreenToBlueAndRed != NULL);
669   assert(VP8LTransformColorInverse != NULL);
670   assert(VP8LConvertBGRAToRGBA != NULL);
671   assert(VP8LConvertBGRAToRGB != NULL);
672   assert(VP8LConvertBGRAToBGR != NULL);
673   assert(VP8LConvertBGRAToRGBA4444 != NULL);
674   assert(VP8LConvertBGRAToRGB565 != NULL);
675   assert(VP8LMapColor32b != NULL);
676   assert(VP8LMapColor8b != NULL);
677 }
678 #undef COPY_PREDICTOR_ARRAY
679 
680 //------------------------------------------------------------------------------
681