1 // Copyright 2012 Google Inc. All Rights Reserved.
2 //
3 // Use of this source code is governed by a BSD-style license
4 // that can be found in the COPYING file in the root of the source
5 // tree. An additional intellectual property rights grant can be found
6 // in the file PATENTS. All contributing project authors may
7 // be found in the AUTHORS file in the root of the source tree.
8 // -----------------------------------------------------------------------------
9 //
10 // Image transforms and color space conversion methods for lossless decoder.
11 //
12 // Authors: Vikas Arora (vikaas.arora@gmail.com)
13 // Jyrki Alakuijala (jyrki@google.com)
14 // Urvang Joshi (urvang@google.com)
15
16 #include "src/dsp/dsp.h"
17
18 #include <assert.h>
19 #include <math.h>
20 #include <stdlib.h>
21 #include "src/dec/vp8li_dec.h"
22 #include "src/utils/endian_inl_utils.h"
23 #include "src/dsp/lossless.h"
24 #include "src/dsp/lossless_common.h"
25
26 //------------------------------------------------------------------------------
27 // Image transforms.
28
Average2(uint32_t a0,uint32_t a1)29 static WEBP_INLINE uint32_t Average2(uint32_t a0, uint32_t a1) {
30 return (((a0 ^ a1) & 0xfefefefeu) >> 1) + (a0 & a1);
31 }
32
Average3(uint32_t a0,uint32_t a1,uint32_t a2)33 static WEBP_INLINE uint32_t Average3(uint32_t a0, uint32_t a1, uint32_t a2) {
34 return Average2(Average2(a0, a2), a1);
35 }
36
Average4(uint32_t a0,uint32_t a1,uint32_t a2,uint32_t a3)37 static WEBP_INLINE uint32_t Average4(uint32_t a0, uint32_t a1,
38 uint32_t a2, uint32_t a3) {
39 return Average2(Average2(a0, a1), Average2(a2, a3));
40 }
41
Clip255(uint32_t a)42 static WEBP_INLINE uint32_t Clip255(uint32_t a) {
43 if (a < 256) {
44 return a;
45 }
46 // return 0, when a is a negative integer.
47 // return 255, when a is positive.
48 return ~a >> 24;
49 }
50
AddSubtractComponentFull(int a,int b,int c)51 static WEBP_INLINE int AddSubtractComponentFull(int a, int b, int c) {
52 return Clip255((uint32_t)(a + b - c));
53 }
54
ClampedAddSubtractFull(uint32_t c0,uint32_t c1,uint32_t c2)55 static WEBP_INLINE uint32_t ClampedAddSubtractFull(uint32_t c0, uint32_t c1,
56 uint32_t c2) {
57 const int a = AddSubtractComponentFull(c0 >> 24, c1 >> 24, c2 >> 24);
58 const int r = AddSubtractComponentFull((c0 >> 16) & 0xff,
59 (c1 >> 16) & 0xff,
60 (c2 >> 16) & 0xff);
61 const int g = AddSubtractComponentFull((c0 >> 8) & 0xff,
62 (c1 >> 8) & 0xff,
63 (c2 >> 8) & 0xff);
64 const int b = AddSubtractComponentFull(c0 & 0xff, c1 & 0xff, c2 & 0xff);
65 return ((uint32_t)a << 24) | (r << 16) | (g << 8) | b;
66 }
67
AddSubtractComponentHalf(int a,int b)68 static WEBP_INLINE int AddSubtractComponentHalf(int a, int b) {
69 return Clip255((uint32_t)(a + (a - b) / 2));
70 }
71
ClampedAddSubtractHalf(uint32_t c0,uint32_t c1,uint32_t c2)72 static WEBP_INLINE uint32_t ClampedAddSubtractHalf(uint32_t c0, uint32_t c1,
73 uint32_t c2) {
74 const uint32_t ave = Average2(c0, c1);
75 const int a = AddSubtractComponentHalf(ave >> 24, c2 >> 24);
76 const int r = AddSubtractComponentHalf((ave >> 16) & 0xff, (c2 >> 16) & 0xff);
77 const int g = AddSubtractComponentHalf((ave >> 8) & 0xff, (c2 >> 8) & 0xff);
78 const int b = AddSubtractComponentHalf((ave >> 0) & 0xff, (c2 >> 0) & 0xff);
79 return ((uint32_t)a << 24) | (r << 16) | (g << 8) | b;
80 }
81
82 // gcc <= 4.9 on ARM generates incorrect code in Select() when Sub3() is
83 // inlined.
84 #if defined(__arm__) && defined(__GNUC__) && LOCAL_GCC_VERSION <= 0x409
85 # define LOCAL_INLINE __attribute__ ((noinline))
86 #else
87 # define LOCAL_INLINE WEBP_INLINE
88 #endif
89
Sub3(int a,int b,int c)90 static LOCAL_INLINE int Sub3(int a, int b, int c) {
91 const int pb = b - c;
92 const int pa = a - c;
93 return abs(pb) - abs(pa);
94 }
95
96 #undef LOCAL_INLINE
97
Select(uint32_t a,uint32_t b,uint32_t c)98 static WEBP_INLINE uint32_t Select(uint32_t a, uint32_t b, uint32_t c) {
99 const int pa_minus_pb =
100 Sub3((a >> 24) , (b >> 24) , (c >> 24) ) +
101 Sub3((a >> 16) & 0xff, (b >> 16) & 0xff, (c >> 16) & 0xff) +
102 Sub3((a >> 8) & 0xff, (b >> 8) & 0xff, (c >> 8) & 0xff) +
103 Sub3((a ) & 0xff, (b ) & 0xff, (c ) & 0xff);
104 return (pa_minus_pb <= 0) ? a : b;
105 }
106
107 //------------------------------------------------------------------------------
108 // Predictors
109
VP8LPredictor0_C(const uint32_t * const left,const uint32_t * const top)110 uint32_t VP8LPredictor0_C(const uint32_t* const left,
111 const uint32_t* const top) {
112 (void)top;
113 (void)left;
114 return ARGB_BLACK;
115 }
VP8LPredictor1_C(const uint32_t * const left,const uint32_t * const top)116 uint32_t VP8LPredictor1_C(const uint32_t* const left,
117 const uint32_t* const top) {
118 (void)top;
119 return *left;
120 }
VP8LPredictor2_C(const uint32_t * const left,const uint32_t * const top)121 uint32_t VP8LPredictor2_C(const uint32_t* const left,
122 const uint32_t* const top) {
123 (void)left;
124 return top[0];
125 }
VP8LPredictor3_C(const uint32_t * const left,const uint32_t * const top)126 uint32_t VP8LPredictor3_C(const uint32_t* const left,
127 const uint32_t* const top) {
128 (void)left;
129 return top[1];
130 }
VP8LPredictor4_C(const uint32_t * const left,const uint32_t * const top)131 uint32_t VP8LPredictor4_C(const uint32_t* const left,
132 const uint32_t* const top) {
133 (void)left;
134 return top[-1];
135 }
VP8LPredictor5_C(const uint32_t * const left,const uint32_t * const top)136 uint32_t VP8LPredictor5_C(const uint32_t* const left,
137 const uint32_t* const top) {
138 const uint32_t pred = Average3(*left, top[0], top[1]);
139 return pred;
140 }
VP8LPredictor6_C(const uint32_t * const left,const uint32_t * const top)141 uint32_t VP8LPredictor6_C(const uint32_t* const left,
142 const uint32_t* const top) {
143 const uint32_t pred = Average2(*left, top[-1]);
144 return pred;
145 }
VP8LPredictor7_C(const uint32_t * const left,const uint32_t * const top)146 uint32_t VP8LPredictor7_C(const uint32_t* const left,
147 const uint32_t* const top) {
148 const uint32_t pred = Average2(*left, top[0]);
149 return pred;
150 }
VP8LPredictor8_C(const uint32_t * const left,const uint32_t * const top)151 uint32_t VP8LPredictor8_C(const uint32_t* const left,
152 const uint32_t* const top) {
153 const uint32_t pred = Average2(top[-1], top[0]);
154 (void)left;
155 return pred;
156 }
VP8LPredictor9_C(const uint32_t * const left,const uint32_t * const top)157 uint32_t VP8LPredictor9_C(const uint32_t* const left,
158 const uint32_t* const top) {
159 const uint32_t pred = Average2(top[0], top[1]);
160 (void)left;
161 return pred;
162 }
VP8LPredictor10_C(const uint32_t * const left,const uint32_t * const top)163 uint32_t VP8LPredictor10_C(const uint32_t* const left,
164 const uint32_t* const top) {
165 const uint32_t pred = Average4(*left, top[-1], top[0], top[1]);
166 return pred;
167 }
VP8LPredictor11_C(const uint32_t * const left,const uint32_t * const top)168 uint32_t VP8LPredictor11_C(const uint32_t* const left,
169 const uint32_t* const top) {
170 const uint32_t pred = Select(top[0], *left, top[-1]);
171 return pred;
172 }
VP8LPredictor12_C(const uint32_t * const left,const uint32_t * const top)173 uint32_t VP8LPredictor12_C(const uint32_t* const left,
174 const uint32_t* const top) {
175 const uint32_t pred = ClampedAddSubtractFull(*left, top[0], top[-1]);
176 return pred;
177 }
VP8LPredictor13_C(const uint32_t * const left,const uint32_t * const top)178 uint32_t VP8LPredictor13_C(const uint32_t* const left,
179 const uint32_t* const top) {
180 const uint32_t pred = ClampedAddSubtractHalf(*left, top[0], top[-1]);
181 return pred;
182 }
183
PredictorAdd0_C(const uint32_t * in,const uint32_t * upper,int num_pixels,uint32_t * out)184 static void PredictorAdd0_C(const uint32_t* in, const uint32_t* upper,
185 int num_pixels, uint32_t* out) {
186 int x;
187 (void)upper;
188 for (x = 0; x < num_pixels; ++x) out[x] = VP8LAddPixels(in[x], ARGB_BLACK);
189 }
PredictorAdd1_C(const uint32_t * in,const uint32_t * upper,int num_pixels,uint32_t * out)190 static void PredictorAdd1_C(const uint32_t* in, const uint32_t* upper,
191 int num_pixels, uint32_t* out) {
192 int i;
193 uint32_t left = out[-1];
194 (void)upper;
195 for (i = 0; i < num_pixels; ++i) {
196 out[i] = left = VP8LAddPixels(in[i], left);
197 }
198 }
GENERATE_PREDICTOR_ADD(VP8LPredictor2_C,PredictorAdd2_C)199 GENERATE_PREDICTOR_ADD(VP8LPredictor2_C, PredictorAdd2_C)
200 GENERATE_PREDICTOR_ADD(VP8LPredictor3_C, PredictorAdd3_C)
201 GENERATE_PREDICTOR_ADD(VP8LPredictor4_C, PredictorAdd4_C)
202 GENERATE_PREDICTOR_ADD(VP8LPredictor5_C, PredictorAdd5_C)
203 GENERATE_PREDICTOR_ADD(VP8LPredictor6_C, PredictorAdd6_C)
204 GENERATE_PREDICTOR_ADD(VP8LPredictor7_C, PredictorAdd7_C)
205 GENERATE_PREDICTOR_ADD(VP8LPredictor8_C, PredictorAdd8_C)
206 GENERATE_PREDICTOR_ADD(VP8LPredictor9_C, PredictorAdd9_C)
207 GENERATE_PREDICTOR_ADD(VP8LPredictor10_C, PredictorAdd10_C)
208 GENERATE_PREDICTOR_ADD(VP8LPredictor11_C, PredictorAdd11_C)
209 GENERATE_PREDICTOR_ADD(VP8LPredictor12_C, PredictorAdd12_C)
210 GENERATE_PREDICTOR_ADD(VP8LPredictor13_C, PredictorAdd13_C)
211
212 //------------------------------------------------------------------------------
213
214 // Inverse prediction.
215 static void PredictorInverseTransform_C(const VP8LTransform* const transform,
216 int y_start, int y_end,
217 const uint32_t* in, uint32_t* out) {
218 const int width = transform->xsize_;
219 if (y_start == 0) { // First Row follows the L (mode=1) mode.
220 PredictorAdd0_C(in, NULL, 1, out);
221 PredictorAdd1_C(in + 1, NULL, width - 1, out + 1);
222 in += width;
223 out += width;
224 ++y_start;
225 }
226
227 {
228 int y = y_start;
229 const int tile_width = 1 << transform->bits_;
230 const int mask = tile_width - 1;
231 const int tiles_per_row = VP8LSubSampleSize(width, transform->bits_);
232 const uint32_t* pred_mode_base =
233 transform->data_ + (y >> transform->bits_) * tiles_per_row;
234
235 while (y < y_end) {
236 const uint32_t* pred_mode_src = pred_mode_base;
237 int x = 1;
238 // First pixel follows the T (mode=2) mode.
239 PredictorAdd2_C(in, out - width, 1, out);
240 // .. the rest:
241 while (x < width) {
242 const VP8LPredictorAddSubFunc pred_func =
243 VP8LPredictorsAdd[((*pred_mode_src++) >> 8) & 0xf];
244 int x_end = (x & ~mask) + tile_width;
245 if (x_end > width) x_end = width;
246 pred_func(in + x, out + x - width, x_end - x, out + x);
247 x = x_end;
248 }
249 in += width;
250 out += width;
251 ++y;
252 if ((y & mask) == 0) { // Use the same mask, since tiles are squares.
253 pred_mode_base += tiles_per_row;
254 }
255 }
256 }
257 }
258
259 // Add green to blue and red channels (i.e. perform the inverse transform of
260 // 'subtract green').
VP8LAddGreenToBlueAndRed_C(const uint32_t * src,int num_pixels,uint32_t * dst)261 void VP8LAddGreenToBlueAndRed_C(const uint32_t* src, int num_pixels,
262 uint32_t* dst) {
263 int i;
264 for (i = 0; i < num_pixels; ++i) {
265 const uint32_t argb = src[i];
266 const uint32_t green = ((argb >> 8) & 0xff);
267 uint32_t red_blue = (argb & 0x00ff00ffu);
268 red_blue += (green << 16) | green;
269 red_blue &= 0x00ff00ffu;
270 dst[i] = (argb & 0xff00ff00u) | red_blue;
271 }
272 }
273
ColorTransformDelta(int8_t color_pred,int8_t color)274 static WEBP_INLINE int ColorTransformDelta(int8_t color_pred,
275 int8_t color) {
276 return ((int)color_pred * color) >> 5;
277 }
278
ColorCodeToMultipliers(uint32_t color_code,VP8LMultipliers * const m)279 static WEBP_INLINE void ColorCodeToMultipliers(uint32_t color_code,
280 VP8LMultipliers* const m) {
281 m->green_to_red_ = (color_code >> 0) & 0xff;
282 m->green_to_blue_ = (color_code >> 8) & 0xff;
283 m->red_to_blue_ = (color_code >> 16) & 0xff;
284 }
285
VP8LTransformColorInverse_C(const VP8LMultipliers * const m,const uint32_t * src,int num_pixels,uint32_t * dst)286 void VP8LTransformColorInverse_C(const VP8LMultipliers* const m,
287 const uint32_t* src, int num_pixels,
288 uint32_t* dst) {
289 int i;
290 for (i = 0; i < num_pixels; ++i) {
291 const uint32_t argb = src[i];
292 const int8_t green = (int8_t)(argb >> 8);
293 const uint32_t red = argb >> 16;
294 int new_red = red & 0xff;
295 int new_blue = argb & 0xff;
296 new_red += ColorTransformDelta((int8_t)m->green_to_red_, green);
297 new_red &= 0xff;
298 new_blue += ColorTransformDelta((int8_t)m->green_to_blue_, green);
299 new_blue += ColorTransformDelta((int8_t)m->red_to_blue_, (int8_t)new_red);
300 new_blue &= 0xff;
301 dst[i] = (argb & 0xff00ff00u) | (new_red << 16) | (new_blue);
302 }
303 }
304
305 // Color space inverse transform.
ColorSpaceInverseTransform_C(const VP8LTransform * const transform,int y_start,int y_end,const uint32_t * src,uint32_t * dst)306 static void ColorSpaceInverseTransform_C(const VP8LTransform* const transform,
307 int y_start, int y_end,
308 const uint32_t* src, uint32_t* dst) {
309 const int width = transform->xsize_;
310 const int tile_width = 1 << transform->bits_;
311 const int mask = tile_width - 1;
312 const int safe_width = width & ~mask;
313 const int remaining_width = width - safe_width;
314 const int tiles_per_row = VP8LSubSampleSize(width, transform->bits_);
315 int y = y_start;
316 const uint32_t* pred_row =
317 transform->data_ + (y >> transform->bits_) * tiles_per_row;
318
319 while (y < y_end) {
320 const uint32_t* pred = pred_row;
321 VP8LMultipliers m = { 0, 0, 0 };
322 const uint32_t* const src_safe_end = src + safe_width;
323 const uint32_t* const src_end = src + width;
324 while (src < src_safe_end) {
325 ColorCodeToMultipliers(*pred++, &m);
326 VP8LTransformColorInverse(&m, src, tile_width, dst);
327 src += tile_width;
328 dst += tile_width;
329 }
330 if (src < src_end) { // Left-overs using C-version.
331 ColorCodeToMultipliers(*pred++, &m);
332 VP8LTransformColorInverse(&m, src, remaining_width, dst);
333 src += remaining_width;
334 dst += remaining_width;
335 }
336 ++y;
337 if ((y & mask) == 0) pred_row += tiles_per_row;
338 }
339 }
340
341 // Separate out pixels packed together using pixel-bundling.
342 // We define two methods for ARGB data (uint32_t) and alpha-only data (uint8_t).
343 #define COLOR_INDEX_INVERSE(FUNC_NAME, F_NAME, STATIC_DECL, TYPE, BIT_SUFFIX, \
344 GET_INDEX, GET_VALUE) \
345 static void F_NAME(const TYPE* src, const uint32_t* const color_map, \
346 TYPE* dst, int y_start, int y_end, int width) { \
347 int y; \
348 for (y = y_start; y < y_end; ++y) { \
349 int x; \
350 for (x = 0; x < width; ++x) { \
351 *dst++ = GET_VALUE(color_map[GET_INDEX(*src++)]); \
352 } \
353 } \
354 } \
355 STATIC_DECL void FUNC_NAME(const VP8LTransform* const transform, \
356 int y_start, int y_end, const TYPE* src, \
357 TYPE* dst) { \
358 int y; \
359 const int bits_per_pixel = 8 >> transform->bits_; \
360 const int width = transform->xsize_; \
361 const uint32_t* const color_map = transform->data_; \
362 if (bits_per_pixel < 8) { \
363 const int pixels_per_byte = 1 << transform->bits_; \
364 const int count_mask = pixels_per_byte - 1; \
365 const uint32_t bit_mask = (1 << bits_per_pixel) - 1; \
366 for (y = y_start; y < y_end; ++y) { \
367 uint32_t packed_pixels = 0; \
368 int x; \
369 for (x = 0; x < width; ++x) { \
370 /* We need to load fresh 'packed_pixels' once every */ \
371 /* 'pixels_per_byte' increments of x. Fortunately, pixels_per_byte */ \
372 /* is a power of 2, so can just use a mask for that, instead of */ \
373 /* decrementing a counter. */ \
374 if ((x & count_mask) == 0) packed_pixels = GET_INDEX(*src++); \
375 *dst++ = GET_VALUE(color_map[packed_pixels & bit_mask]); \
376 packed_pixels >>= bits_per_pixel; \
377 } \
378 } \
379 } else { \
380 VP8LMapColor##BIT_SUFFIX(src, color_map, dst, y_start, y_end, width); \
381 } \
382 }
383
384 COLOR_INDEX_INVERSE(ColorIndexInverseTransform_C, MapARGB_C, static,
385 uint32_t, 32b, VP8GetARGBIndex, VP8GetARGBValue)
386 COLOR_INDEX_INVERSE(VP8LColorIndexInverseTransformAlpha, MapAlpha_C, ,
387 uint8_t, 8b, VP8GetAlphaIndex, VP8GetAlphaValue)
388
389 #undef COLOR_INDEX_INVERSE
390
VP8LInverseTransform(const VP8LTransform * const transform,int row_start,int row_end,const uint32_t * const in,uint32_t * const out)391 void VP8LInverseTransform(const VP8LTransform* const transform,
392 int row_start, int row_end,
393 const uint32_t* const in, uint32_t* const out) {
394 const int width = transform->xsize_;
395 assert(row_start < row_end);
396 assert(row_end <= transform->ysize_);
397 switch (transform->type_) {
398 case SUBTRACT_GREEN_TRANSFORM:
399 VP8LAddGreenToBlueAndRed(in, (row_end - row_start) * width, out);
400 break;
401 case PREDICTOR_TRANSFORM:
402 PredictorInverseTransform_C(transform, row_start, row_end, in, out);
403 if (row_end != transform->ysize_) {
404 // The last predicted row in this iteration will be the top-pred row
405 // for the first row in next iteration.
406 memcpy(out - width, out + (row_end - row_start - 1) * width,
407 width * sizeof(*out));
408 }
409 break;
410 case CROSS_COLOR_TRANSFORM:
411 ColorSpaceInverseTransform_C(transform, row_start, row_end, in, out);
412 break;
413 case COLOR_INDEXING_TRANSFORM:
414 if (in == out && transform->bits_ > 0) {
415 // Move packed pixels to the end of unpacked region, so that unpacking
416 // can occur seamlessly.
417 // Also, note that this is the only transform that applies on
418 // the effective width of VP8LSubSampleSize(xsize_, bits_). All other
419 // transforms work on effective width of xsize_.
420 const int out_stride = (row_end - row_start) * width;
421 const int in_stride = (row_end - row_start) *
422 VP8LSubSampleSize(transform->xsize_, transform->bits_);
423 uint32_t* const src = out + out_stride - in_stride;
424 memmove(src, out, in_stride * sizeof(*src));
425 ColorIndexInverseTransform_C(transform, row_start, row_end, src, out);
426 } else {
427 ColorIndexInverseTransform_C(transform, row_start, row_end, in, out);
428 }
429 break;
430 }
431 }
432
433 //------------------------------------------------------------------------------
434 // Color space conversion.
435
is_big_endian(void)436 static int is_big_endian(void) {
437 static const union {
438 uint16_t w;
439 uint8_t b[2];
440 } tmp = { 1 };
441 return (tmp.b[0] != 1);
442 }
443
VP8LConvertBGRAToRGB_C(const uint32_t * src,int num_pixels,uint8_t * dst)444 void VP8LConvertBGRAToRGB_C(const uint32_t* src,
445 int num_pixels, uint8_t* dst) {
446 const uint32_t* const src_end = src + num_pixels;
447 while (src < src_end) {
448 const uint32_t argb = *src++;
449 *dst++ = (argb >> 16) & 0xff;
450 *dst++ = (argb >> 8) & 0xff;
451 *dst++ = (argb >> 0) & 0xff;
452 }
453 }
454
VP8LConvertBGRAToRGBA_C(const uint32_t * src,int num_pixels,uint8_t * dst)455 void VP8LConvertBGRAToRGBA_C(const uint32_t* src,
456 int num_pixels, uint8_t* dst) {
457 const uint32_t* const src_end = src + num_pixels;
458 while (src < src_end) {
459 const uint32_t argb = *src++;
460 *dst++ = (argb >> 16) & 0xff;
461 *dst++ = (argb >> 8) & 0xff;
462 *dst++ = (argb >> 0) & 0xff;
463 *dst++ = (argb >> 24) & 0xff;
464 }
465 }
466
VP8LConvertBGRAToRGBA4444_C(const uint32_t * src,int num_pixels,uint8_t * dst)467 void VP8LConvertBGRAToRGBA4444_C(const uint32_t* src,
468 int num_pixels, uint8_t* dst) {
469 const uint32_t* const src_end = src + num_pixels;
470 while (src < src_end) {
471 const uint32_t argb = *src++;
472 const uint8_t rg = ((argb >> 16) & 0xf0) | ((argb >> 12) & 0xf);
473 const uint8_t ba = ((argb >> 0) & 0xf0) | ((argb >> 28) & 0xf);
474 #if (WEBP_SWAP_16BIT_CSP == 1)
475 *dst++ = ba;
476 *dst++ = rg;
477 #else
478 *dst++ = rg;
479 *dst++ = ba;
480 #endif
481 }
482 }
483
VP8LConvertBGRAToRGB565_C(const uint32_t * src,int num_pixels,uint8_t * dst)484 void VP8LConvertBGRAToRGB565_C(const uint32_t* src,
485 int num_pixels, uint8_t* dst) {
486 const uint32_t* const src_end = src + num_pixels;
487 while (src < src_end) {
488 const uint32_t argb = *src++;
489 const uint8_t rg = ((argb >> 16) & 0xf8) | ((argb >> 13) & 0x7);
490 const uint8_t gb = ((argb >> 5) & 0xe0) | ((argb >> 3) & 0x1f);
491 #if (WEBP_SWAP_16BIT_CSP == 1)
492 *dst++ = gb;
493 *dst++ = rg;
494 #else
495 *dst++ = rg;
496 *dst++ = gb;
497 #endif
498 }
499 }
500
VP8LConvertBGRAToBGR_C(const uint32_t * src,int num_pixels,uint8_t * dst)501 void VP8LConvertBGRAToBGR_C(const uint32_t* src,
502 int num_pixels, uint8_t* dst) {
503 const uint32_t* const src_end = src + num_pixels;
504 while (src < src_end) {
505 const uint32_t argb = *src++;
506 *dst++ = (argb >> 0) & 0xff;
507 *dst++ = (argb >> 8) & 0xff;
508 *dst++ = (argb >> 16) & 0xff;
509 }
510 }
511
CopyOrSwap(const uint32_t * src,int num_pixels,uint8_t * dst,int swap_on_big_endian)512 static void CopyOrSwap(const uint32_t* src, int num_pixels, uint8_t* dst,
513 int swap_on_big_endian) {
514 if (is_big_endian() == swap_on_big_endian) {
515 const uint32_t* const src_end = src + num_pixels;
516 while (src < src_end) {
517 const uint32_t argb = *src++;
518 WebPUint32ToMem(dst, BSwap32(argb));
519 dst += sizeof(argb);
520 }
521 } else {
522 memcpy(dst, src, num_pixels * sizeof(*src));
523 }
524 }
525
VP8LConvertFromBGRA(const uint32_t * const in_data,int num_pixels,WEBP_CSP_MODE out_colorspace,uint8_t * const rgba)526 void VP8LConvertFromBGRA(const uint32_t* const in_data, int num_pixels,
527 WEBP_CSP_MODE out_colorspace, uint8_t* const rgba) {
528 switch (out_colorspace) {
529 case MODE_RGB:
530 VP8LConvertBGRAToRGB(in_data, num_pixels, rgba);
531 break;
532 case MODE_RGBA:
533 VP8LConvertBGRAToRGBA(in_data, num_pixels, rgba);
534 break;
535 case MODE_rgbA:
536 VP8LConvertBGRAToRGBA(in_data, num_pixels, rgba);
537 WebPApplyAlphaMultiply(rgba, 0, num_pixels, 1, 0);
538 break;
539 case MODE_BGR:
540 VP8LConvertBGRAToBGR(in_data, num_pixels, rgba);
541 break;
542 case MODE_BGRA:
543 CopyOrSwap(in_data, num_pixels, rgba, 1);
544 break;
545 case MODE_bgrA:
546 CopyOrSwap(in_data, num_pixels, rgba, 1);
547 WebPApplyAlphaMultiply(rgba, 0, num_pixels, 1, 0);
548 break;
549 case MODE_ARGB:
550 CopyOrSwap(in_data, num_pixels, rgba, 0);
551 break;
552 case MODE_Argb:
553 CopyOrSwap(in_data, num_pixels, rgba, 0);
554 WebPApplyAlphaMultiply(rgba, 1, num_pixels, 1, 0);
555 break;
556 case MODE_RGBA_4444:
557 VP8LConvertBGRAToRGBA4444(in_data, num_pixels, rgba);
558 break;
559 case MODE_rgbA_4444:
560 VP8LConvertBGRAToRGBA4444(in_data, num_pixels, rgba);
561 WebPApplyAlphaMultiply4444(rgba, num_pixels, 1, 0);
562 break;
563 case MODE_RGB_565:
564 VP8LConvertBGRAToRGB565(in_data, num_pixels, rgba);
565 break;
566 default:
567 assert(0); // Code flow should not reach here.
568 }
569 }
570
571 //------------------------------------------------------------------------------
572
573 VP8LProcessDecBlueAndRedFunc VP8LAddGreenToBlueAndRed;
574 VP8LPredictorAddSubFunc VP8LPredictorsAdd[16];
575 VP8LPredictorFunc VP8LPredictors[16];
576
577 // exposed plain-C implementations
578 VP8LPredictorAddSubFunc VP8LPredictorsAdd_C[16];
579
580 VP8LTransformColorInverseFunc VP8LTransformColorInverse;
581
582 VP8LConvertFunc VP8LConvertBGRAToRGB;
583 VP8LConvertFunc VP8LConvertBGRAToRGBA;
584 VP8LConvertFunc VP8LConvertBGRAToRGBA4444;
585 VP8LConvertFunc VP8LConvertBGRAToRGB565;
586 VP8LConvertFunc VP8LConvertBGRAToBGR;
587
588 VP8LMapARGBFunc VP8LMapColor32b;
589 VP8LMapAlphaFunc VP8LMapColor8b;
590
591 extern void VP8LDspInitSSE2(void);
592 extern void VP8LDspInitSSE41(void);
593 extern void VP8LDspInitNEON(void);
594 extern void VP8LDspInitMIPSdspR2(void);
595 extern void VP8LDspInitMSA(void);
596
597 #define COPY_PREDICTOR_ARRAY(IN, OUT) do { \
598 (OUT)[0] = IN##0_C; \
599 (OUT)[1] = IN##1_C; \
600 (OUT)[2] = IN##2_C; \
601 (OUT)[3] = IN##3_C; \
602 (OUT)[4] = IN##4_C; \
603 (OUT)[5] = IN##5_C; \
604 (OUT)[6] = IN##6_C; \
605 (OUT)[7] = IN##7_C; \
606 (OUT)[8] = IN##8_C; \
607 (OUT)[9] = IN##9_C; \
608 (OUT)[10] = IN##10_C; \
609 (OUT)[11] = IN##11_C; \
610 (OUT)[12] = IN##12_C; \
611 (OUT)[13] = IN##13_C; \
612 (OUT)[14] = IN##0_C; /* <- padding security sentinels*/ \
613 (OUT)[15] = IN##0_C; \
614 } while (0);
615
WEBP_DSP_INIT_FUNC(VP8LDspInit)616 WEBP_DSP_INIT_FUNC(VP8LDspInit) {
617 COPY_PREDICTOR_ARRAY(VP8LPredictor, VP8LPredictors)
618 COPY_PREDICTOR_ARRAY(PredictorAdd, VP8LPredictorsAdd)
619 COPY_PREDICTOR_ARRAY(PredictorAdd, VP8LPredictorsAdd_C)
620
621 #if !WEBP_NEON_OMIT_C_CODE
622 VP8LAddGreenToBlueAndRed = VP8LAddGreenToBlueAndRed_C;
623
624 VP8LTransformColorInverse = VP8LTransformColorInverse_C;
625
626 VP8LConvertBGRAToRGBA = VP8LConvertBGRAToRGBA_C;
627 VP8LConvertBGRAToRGB = VP8LConvertBGRAToRGB_C;
628 VP8LConvertBGRAToBGR = VP8LConvertBGRAToBGR_C;
629 #endif
630
631 VP8LConvertBGRAToRGBA4444 = VP8LConvertBGRAToRGBA4444_C;
632 VP8LConvertBGRAToRGB565 = VP8LConvertBGRAToRGB565_C;
633
634 VP8LMapColor32b = MapARGB_C;
635 VP8LMapColor8b = MapAlpha_C;
636
637 // If defined, use CPUInfo() to overwrite some pointers with faster versions.
638 if (VP8GetCPUInfo != NULL) {
639 #if defined(WEBP_HAVE_SSE2)
640 if (VP8GetCPUInfo(kSSE2)) {
641 VP8LDspInitSSE2();
642 #if defined(WEBP_HAVE_SSE41)
643 if (VP8GetCPUInfo(kSSE4_1)) {
644 VP8LDspInitSSE41();
645 }
646 #endif
647 }
648 #endif
649 #if defined(WEBP_USE_MIPS_DSP_R2)
650 if (VP8GetCPUInfo(kMIPSdspR2)) {
651 VP8LDspInitMIPSdspR2();
652 }
653 #endif
654 #if defined(WEBP_USE_MSA)
655 if (VP8GetCPUInfo(kMSA)) {
656 VP8LDspInitMSA();
657 }
658 #endif
659 }
660
661 #if defined(WEBP_HAVE_NEON)
662 if (WEBP_NEON_OMIT_C_CODE ||
663 (VP8GetCPUInfo != NULL && VP8GetCPUInfo(kNEON))) {
664 VP8LDspInitNEON();
665 }
666 #endif
667
668 assert(VP8LAddGreenToBlueAndRed != NULL);
669 assert(VP8LTransformColorInverse != NULL);
670 assert(VP8LConvertBGRAToRGBA != NULL);
671 assert(VP8LConvertBGRAToRGB != NULL);
672 assert(VP8LConvertBGRAToBGR != NULL);
673 assert(VP8LConvertBGRAToRGBA4444 != NULL);
674 assert(VP8LConvertBGRAToRGB565 != NULL);
675 assert(VP8LMapColor32b != NULL);
676 assert(VP8LMapColor8b != NULL);
677 }
678 #undef COPY_PREDICTOR_ARRAY
679
680 //------------------------------------------------------------------------------
681