• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  *  Copyright (c) 2012 The WebRTC project authors. All Rights Reserved.
3  *
4  *  Use of this source code is governed by a BSD-style license
5  *  that can be found in the LICENSE file in the root of the source
6  *  tree. An additional intellectual property rights grant can be found
7  *  in the file PATENTS.  All contributing project authors may
8  *  be found in the AUTHORS file in the root of the source tree.
9  */
10 
11 #include "common_audio/vad/vad_core.h"
12 
13 #include "rtc_base/sanitizer.h"
14 #include "common_audio/signal_processing/include/signal_processing_library.h"
15 #include "common_audio/vad/vad_filterbank.h"
16 #include "common_audio/vad/vad_gmm.h"
17 #include "common_audio/vad/vad_sp.h"
18 
19 // Spectrum Weighting
20 static const int16_t kSpectrumWeight[kNumChannels] = { 6, 8, 10, 12, 14, 16 };
21 static const int16_t kNoiseUpdateConst = 655; // Q15
22 static const int16_t kSpeechUpdateConst = 6554; // Q15
23 static const int16_t kBackEta = 154; // Q8
24 // Minimum difference between the two models, Q5
25 static const int16_t kMinimumDifference[kNumChannels] = {
26     544, 544, 576, 576, 576, 576 };
27 // Upper limit of mean value for speech model, Q7
28 static const int16_t kMaximumSpeech[kNumChannels] = {
29     11392, 11392, 11520, 11520, 11520, 11520 };
30 // Minimum value for mean value
31 static const int16_t kMinimumMean[kNumGaussians] = { 640, 768 };
32 // Upper limit of mean value for noise model, Q7
33 static const int16_t kMaximumNoise[kNumChannels] = {
34     9216, 9088, 8960, 8832, 8704, 8576 };
35 // Start values for the Gaussian models, Q7
36 // Weights for the two Gaussians for the six channels (noise)
37 static const int16_t kNoiseDataWeights[kTableSize] = {
38     34, 62, 72, 66, 53, 25, 94, 66, 56, 62, 75, 103 };
39 // Weights for the two Gaussians for the six channels (speech)
40 static const int16_t kSpeechDataWeights[kTableSize] = {
41     48, 82, 45, 87, 50, 47, 80, 46, 83, 41, 78, 81 };
42 // Means for the two Gaussians for the six channels (noise)
43 static const int16_t kNoiseDataMeans[kTableSize] = {
44     6738, 4892, 7065, 6715, 6771, 3369, 7646, 3863, 7820, 7266, 5020, 4362 };
45 // Means for the two Gaussians for the six channels (speech)
46 static const int16_t kSpeechDataMeans[kTableSize] = {
47     8306, 10085, 10078, 11823, 11843, 6309, 9473, 9571, 10879, 7581, 8180, 7483
48 };
49 // Stds for the two Gaussians for the six channels (noise)
50 static const int16_t kNoiseDataStds[kTableSize] = {
51     378, 1064, 493, 582, 688, 593, 474, 697, 475, 688, 421, 455 };
52 // Stds for the two Gaussians for the six channels (speech)
53 static const int16_t kSpeechDataStds[kTableSize] = {
54     555, 505, 567, 524, 585, 1231, 509, 828, 492, 1540, 1079, 850 };
55 
56 // Constants used in GmmProbability().
57 //
58 // Maximum number of counted speech (VAD = 1) frames in a row.
59 static const int16_t kMaxSpeechFrames = 6;
60 // Minimum standard deviation for both speech and noise.
61 static const int16_t kMinStd = 384;
62 
63 // Constants in WebRtcVad_InitCore().
64 // Default aggressiveness mode.
65 static const short kDefaultMode = 0;
66 static const int kInitCheck = 42;
67 
68 // Constants used in WebRtcVad_set_mode_core().
69 //
70 // Thresholds for different frame lengths (10 ms, 20 ms and 30 ms).
71 //
72 // Mode 0, Quality.
73 static const int16_t kOverHangMax1Q[3] = { 8, 4, 3 };
74 static const int16_t kOverHangMax2Q[3] = { 14, 7, 5 };
75 static const int16_t kLocalThresholdQ[3] = { 24, 21, 24 };
76 static const int16_t kGlobalThresholdQ[3] = { 57, 48, 57 };
77 // Mode 1, Low bitrate.
78 static const int16_t kOverHangMax1LBR[3] = { 8, 4, 3 };
79 static const int16_t kOverHangMax2LBR[3] = { 14, 7, 5 };
80 static const int16_t kLocalThresholdLBR[3] = { 37, 32, 37 };
81 static const int16_t kGlobalThresholdLBR[3] = { 100, 80, 100 };
82 // Mode 2, Aggressive.
83 static const int16_t kOverHangMax1AGG[3] = { 6, 3, 2 };
84 static const int16_t kOverHangMax2AGG[3] = { 9, 5, 3 };
85 static const int16_t kLocalThresholdAGG[3] = { 82, 78, 82 };
86 static const int16_t kGlobalThresholdAGG[3] = { 285, 260, 285 };
87 // Mode 3, Very aggressive.
88 static const int16_t kOverHangMax1VAG[3] = { 6, 3, 2 };
89 static const int16_t kOverHangMax2VAG[3] = { 9, 5, 3 };
90 static const int16_t kLocalThresholdVAG[3] = { 94, 94, 94 };
91 static const int16_t kGlobalThresholdVAG[3] = { 1100, 1050, 1100 };
92 
93 // Calculates the weighted average w.r.t. number of Gaussians. The `data` are
94 // updated with an `offset` before averaging.
95 //
96 // - data     [i/o] : Data to average.
97 // - offset   [i]   : An offset added to `data`.
98 // - weights  [i]   : Weights used for averaging.
99 //
100 // returns          : The weighted average.
WeightedAverage(int16_t * data,int16_t offset,const int16_t * weights)101 static int32_t WeightedAverage(int16_t* data, int16_t offset,
102                                const int16_t* weights) {
103   int k;
104   int32_t weighted_average = 0;
105 
106   for (k = 0; k < kNumGaussians; k++) {
107     data[k * kNumChannels] += offset;
108     weighted_average += data[k * kNumChannels] * weights[k * kNumChannels];
109   }
110   return weighted_average;
111 }
112 
113 // An s16 x s32 -> s32 multiplication that's allowed to overflow. (It's still
114 // undefined behavior, so not a good idea; this just makes UBSan ignore the
115 // violation, so that our old code can continue to do what it's always been
116 // doing.)
117 static inline int32_t RTC_NO_SANITIZE("signed-integer-overflow")
OverflowingMulS16ByS32ToS32(int16_t a,int32_t b)118     OverflowingMulS16ByS32ToS32(int16_t a, int32_t b) {
119   return a * b;
120 }
121 
122 // Calculates the probabilities for both speech and background noise using
123 // Gaussian Mixture Models (GMM). A hypothesis-test is performed to decide which
124 // type of signal is most probable.
125 //
126 // - self           [i/o] : Pointer to VAD instance
127 // - features       [i]   : Feature vector of length `kNumChannels`
128 //                          = log10(energy in frequency band)
129 // - total_power    [i]   : Total power in audio frame.
130 // - frame_length   [i]   : Number of input samples
131 //
132 // - returns              : the VAD decision (0 - noise, 1 - speech).
GmmProbability(VadInstT * self,int16_t * features,int16_t total_power,size_t frame_length)133 static int16_t GmmProbability(VadInstT* self, int16_t* features,
134                               int16_t total_power, size_t frame_length) {
135   int channel, k;
136   int16_t feature_minimum;
137   int16_t h0, h1;
138   int16_t log_likelihood_ratio;
139   int16_t vadflag = 0;
140   int16_t shifts_h0, shifts_h1;
141   int16_t tmp_s16, tmp1_s16, tmp2_s16;
142   int16_t diff;
143   int gaussian;
144   int16_t nmk, nmk2, nmk3, smk, smk2, nsk, ssk;
145   int16_t delt, ndelt;
146   int16_t maxspe, maxmu;
147   int16_t deltaN[kTableSize], deltaS[kTableSize];
148   int16_t ngprvec[kTableSize] = { 0 };  // Conditional probability = 0.
149   int16_t sgprvec[kTableSize] = { 0 };  // Conditional probability = 0.
150   int32_t h0_test, h1_test;
151   int32_t tmp1_s32, tmp2_s32;
152   int32_t sum_log_likelihood_ratios = 0;
153   int32_t noise_global_mean, speech_global_mean;
154   int32_t noise_probability[kNumGaussians], speech_probability[kNumGaussians];
155   int16_t overhead1, overhead2, individualTest, totalTest;
156 
157   // Set various thresholds based on frame lengths (80, 160 or 240 samples).
158   if (frame_length == 80) {
159     overhead1 = self->over_hang_max_1[0];
160     overhead2 = self->over_hang_max_2[0];
161     individualTest = self->individual[0];
162     totalTest = self->total[0];
163   } else if (frame_length == 160) {
164     overhead1 = self->over_hang_max_1[1];
165     overhead2 = self->over_hang_max_2[1];
166     individualTest = self->individual[1];
167     totalTest = self->total[1];
168   } else {
169     overhead1 = self->over_hang_max_1[2];
170     overhead2 = self->over_hang_max_2[2];
171     individualTest = self->individual[2];
172     totalTest = self->total[2];
173   }
174 
175   if (total_power > kMinEnergy) {
176     // The signal power of current frame is large enough for processing. The
177     // processing consists of two parts:
178     // 1) Calculating the likelihood of speech and thereby a VAD decision.
179     // 2) Updating the underlying model, w.r.t., the decision made.
180 
181     // The detection scheme is an LRT with hypothesis
182     // H0: Noise
183     // H1: Speech
184     //
185     // We combine a global LRT with local tests, for each frequency sub-band,
186     // here defined as `channel`.
187     for (channel = 0; channel < kNumChannels; channel++) {
188       // For each channel we model the probability with a GMM consisting of
189       // `kNumGaussians`, with different means and standard deviations depending
190       // on H0 or H1.
191       h0_test = 0;
192       h1_test = 0;
193       for (k = 0; k < kNumGaussians; k++) {
194         gaussian = channel + k * kNumChannels;
195         // Probability under H0, that is, probability of frame being noise.
196         // Value given in Q27 = Q7 * Q20.
197         tmp1_s32 = WebRtcVad_GaussianProbability(features[channel],
198                                                  self->noise_means[gaussian],
199                                                  self->noise_stds[gaussian],
200                                                  &deltaN[gaussian]);
201         noise_probability[k] = kNoiseDataWeights[gaussian] * tmp1_s32;
202         h0_test += noise_probability[k];  // Q27
203 
204         // Probability under H1, that is, probability of frame being speech.
205         // Value given in Q27 = Q7 * Q20.
206         tmp1_s32 = WebRtcVad_GaussianProbability(features[channel],
207                                                  self->speech_means[gaussian],
208                                                  self->speech_stds[gaussian],
209                                                  &deltaS[gaussian]);
210         speech_probability[k] = kSpeechDataWeights[gaussian] * tmp1_s32;
211         h1_test += speech_probability[k];  // Q27
212       }
213 
214       // Calculate the log likelihood ratio: log2(Pr{X|H1} / Pr{X|H1}).
215       // Approximation:
216       // log2(Pr{X|H1} / Pr{X|H1}) = log2(Pr{X|H1}*2^Q) - log2(Pr{X|H1}*2^Q)
217       //                           = log2(h1_test) - log2(h0_test)
218       //                           = log2(2^(31-shifts_h1)*(1+b1))
219       //                             - log2(2^(31-shifts_h0)*(1+b0))
220       //                           = shifts_h0 - shifts_h1
221       //                             + log2(1+b1) - log2(1+b0)
222       //                          ~= shifts_h0 - shifts_h1
223       //
224       // Note that b0 and b1 are values less than 1, hence, 0 <= log2(1+b0) < 1.
225       // Further, b0 and b1 are independent and on the average the two terms
226       // cancel.
227       shifts_h0 = WebRtcSpl_NormW32(h0_test);
228       shifts_h1 = WebRtcSpl_NormW32(h1_test);
229       if (h0_test == 0) {
230         shifts_h0 = 31;
231       }
232       if (h1_test == 0) {
233         shifts_h1 = 31;
234       }
235       log_likelihood_ratio = shifts_h0 - shifts_h1;
236 
237       // Update `sum_log_likelihood_ratios` with spectrum weighting. This is
238       // used for the global VAD decision.
239       sum_log_likelihood_ratios +=
240           (int32_t) (log_likelihood_ratio * kSpectrumWeight[channel]);
241 
242       // Local VAD decision.
243       if ((log_likelihood_ratio * 4) > individualTest) {
244         vadflag = 1;
245       }
246 
247       // TODO(bjornv): The conditional probabilities below are applied on the
248       // hard coded number of Gaussians set to two. Find a way to generalize.
249       // Calculate local noise probabilities used later when updating the GMM.
250       h0 = (int16_t) (h0_test >> 12);  // Q15
251       if (h0 > 0) {
252         // High probability of noise. Assign conditional probabilities for each
253         // Gaussian in the GMM.
254         tmp1_s32 = (noise_probability[0] & 0xFFFFF000) << 2;  // Q29
255         ngprvec[channel] = (int16_t) WebRtcSpl_DivW32W16(tmp1_s32, h0);  // Q14
256         ngprvec[channel + kNumChannels] = 16384 - ngprvec[channel];
257       } else {
258         // Low noise probability. Assign conditional probability 1 to the first
259         // Gaussian and 0 to the rest (which is already set at initialization).
260         ngprvec[channel] = 16384;
261       }
262 
263       // Calculate local speech probabilities used later when updating the GMM.
264       h1 = (int16_t) (h1_test >> 12);  // Q15
265       if (h1 > 0) {
266         // High probability of speech. Assign conditional probabilities for each
267         // Gaussian in the GMM. Otherwise use the initialized values, i.e., 0.
268         tmp1_s32 = (speech_probability[0] & 0xFFFFF000) << 2;  // Q29
269         sgprvec[channel] = (int16_t) WebRtcSpl_DivW32W16(tmp1_s32, h1);  // Q14
270         sgprvec[channel + kNumChannels] = 16384 - sgprvec[channel];
271       }
272     }
273 
274     // Make a global VAD decision.
275     vadflag |= (sum_log_likelihood_ratios >= totalTest);
276 
277     // Update the model parameters.
278     maxspe = 12800;
279     for (channel = 0; channel < kNumChannels; channel++) {
280 
281       // Get minimum value in past which is used for long term correction in Q4.
282       feature_minimum = WebRtcVad_FindMinimum(self, features[channel], channel);
283 
284       // Compute the "global" mean, that is the sum of the two means weighted.
285       noise_global_mean = WeightedAverage(&self->noise_means[channel], 0,
286                                           &kNoiseDataWeights[channel]);
287       tmp1_s16 = (int16_t) (noise_global_mean >> 6);  // Q8
288 
289       for (k = 0; k < kNumGaussians; k++) {
290         gaussian = channel + k * kNumChannels;
291 
292         nmk = self->noise_means[gaussian];
293         smk = self->speech_means[gaussian];
294         nsk = self->noise_stds[gaussian];
295         ssk = self->speech_stds[gaussian];
296 
297         // Update noise mean vector if the frame consists of noise only.
298         nmk2 = nmk;
299         if (!vadflag) {
300           // deltaN = (x-mu)/sigma^2
301           // ngprvec[k] = `noise_probability[k]` /
302           //   (`noise_probability[0]` + `noise_probability[1]`)
303 
304           // (Q14 * Q11 >> 11) = Q14.
305           delt = (int16_t)((ngprvec[gaussian] * deltaN[gaussian]) >> 11);
306           // Q7 + (Q14 * Q15 >> 22) = Q7.
307           nmk2 = nmk + (int16_t)((delt * kNoiseUpdateConst) >> 22);
308         }
309 
310         // Long term correction of the noise mean.
311         // Q8 - Q8 = Q8.
312         ndelt = (feature_minimum << 4) - tmp1_s16;
313         // Q7 + (Q8 * Q8) >> 9 = Q7.
314         nmk3 = nmk2 + (int16_t)((ndelt * kBackEta) >> 9);
315 
316         // Control that the noise mean does not drift to much.
317         tmp_s16 = (int16_t) ((k + 5) << 7);
318         if (nmk3 < tmp_s16) {
319           nmk3 = tmp_s16;
320         }
321         tmp_s16 = (int16_t) ((72 + k - channel) << 7);
322         if (nmk3 > tmp_s16) {
323           nmk3 = tmp_s16;
324         }
325         self->noise_means[gaussian] = nmk3;
326 
327         if (vadflag) {
328           // Update speech mean vector:
329           // `deltaS` = (x-mu)/sigma^2
330           // sgprvec[k] = `speech_probability[k]` /
331           //   (`speech_probability[0]` + `speech_probability[1]`)
332 
333           // (Q14 * Q11) >> 11 = Q14.
334           delt = (int16_t)((sgprvec[gaussian] * deltaS[gaussian]) >> 11);
335           // Q14 * Q15 >> 21 = Q8.
336           tmp_s16 = (int16_t)((delt * kSpeechUpdateConst) >> 21);
337           // Q7 + (Q8 >> 1) = Q7. With rounding.
338           smk2 = smk + ((tmp_s16 + 1) >> 1);
339 
340           // Control that the speech mean does not drift to much.
341           maxmu = maxspe + 640;
342           if (smk2 < kMinimumMean[k]) {
343             smk2 = kMinimumMean[k];
344           }
345           if (smk2 > maxmu) {
346             smk2 = maxmu;
347           }
348           self->speech_means[gaussian] = smk2;  // Q7.
349 
350           // (Q7 >> 3) = Q4. With rounding.
351           tmp_s16 = ((smk + 4) >> 3);
352 
353           tmp_s16 = features[channel] - tmp_s16;  // Q4
354           // (Q11 * Q4 >> 3) = Q12.
355           tmp1_s32 = (deltaS[gaussian] * tmp_s16) >> 3;
356           tmp2_s32 = tmp1_s32 - 4096;
357           tmp_s16 = sgprvec[gaussian] >> 2;
358           // (Q14 >> 2) * Q12 = Q24.
359           tmp1_s32 = tmp_s16 * tmp2_s32;
360 
361           tmp2_s32 = tmp1_s32 >> 4;  // Q20
362 
363           // 0.1 * Q20 / Q7 = Q13.
364           if (tmp2_s32 > 0) {
365             tmp_s16 = (int16_t) WebRtcSpl_DivW32W16(tmp2_s32, ssk * 10);
366           } else {
367             tmp_s16 = (int16_t) WebRtcSpl_DivW32W16(-tmp2_s32, ssk * 10);
368             tmp_s16 = -tmp_s16;
369           }
370           // Divide by 4 giving an update factor of 0.025 (= 0.1 / 4).
371           // Note that division by 4 equals shift by 2, hence,
372           // (Q13 >> 8) = (Q13 >> 6) / 4 = Q7.
373           tmp_s16 += 128;  // Rounding.
374           ssk += (tmp_s16 >> 8);
375           if (ssk < kMinStd) {
376             ssk = kMinStd;
377           }
378           self->speech_stds[gaussian] = ssk;
379         } else {
380           // Update GMM variance vectors.
381           // deltaN * (features[channel] - nmk) - 1
382           // Q4 - (Q7 >> 3) = Q4.
383           tmp_s16 = features[channel] - (nmk >> 3);
384           // (Q11 * Q4 >> 3) = Q12.
385           tmp1_s32 = (deltaN[gaussian] * tmp_s16) >> 3;
386           tmp1_s32 -= 4096;
387 
388           // (Q14 >> 2) * Q12 = Q24.
389           tmp_s16 = (ngprvec[gaussian] + 2) >> 2;
390           tmp2_s32 = OverflowingMulS16ByS32ToS32(tmp_s16, tmp1_s32);
391           // Q20  * approx 0.001 (2^-10=0.0009766), hence,
392           // (Q24 >> 14) = (Q24 >> 4) / 2^10 = Q20.
393           tmp1_s32 = tmp2_s32 >> 14;
394 
395           // Q20 / Q7 = Q13.
396           if (tmp1_s32 > 0) {
397             tmp_s16 = (int16_t) WebRtcSpl_DivW32W16(tmp1_s32, nsk);
398           } else {
399             tmp_s16 = (int16_t) WebRtcSpl_DivW32W16(-tmp1_s32, nsk);
400             tmp_s16 = -tmp_s16;
401           }
402           tmp_s16 += 32;  // Rounding
403           nsk += tmp_s16 >> 6;  // Q13 >> 6 = Q7.
404           if (nsk < kMinStd) {
405             nsk = kMinStd;
406           }
407           self->noise_stds[gaussian] = nsk;
408         }
409       }
410 
411       // Separate models if they are too close.
412       // `noise_global_mean` in Q14 (= Q7 * Q7).
413       noise_global_mean = WeightedAverage(&self->noise_means[channel], 0,
414                                           &kNoiseDataWeights[channel]);
415 
416       // `speech_global_mean` in Q14 (= Q7 * Q7).
417       speech_global_mean = WeightedAverage(&self->speech_means[channel], 0,
418                                            &kSpeechDataWeights[channel]);
419 
420       // `diff` = "global" speech mean - "global" noise mean.
421       // (Q14 >> 9) - (Q14 >> 9) = Q5.
422       diff = (int16_t) (speech_global_mean >> 9) -
423           (int16_t) (noise_global_mean >> 9);
424       if (diff < kMinimumDifference[channel]) {
425         tmp_s16 = kMinimumDifference[channel] - diff;
426 
427         // `tmp1_s16` = ~0.8 * (kMinimumDifference - diff) in Q7.
428         // `tmp2_s16` = ~0.2 * (kMinimumDifference - diff) in Q7.
429         tmp1_s16 = (int16_t)((13 * tmp_s16) >> 2);
430         tmp2_s16 = (int16_t)((3 * tmp_s16) >> 2);
431 
432         // Move Gaussian means for speech model by `tmp1_s16` and update
433         // `speech_global_mean`. Note that `self->speech_means[channel]` is
434         // changed after the call.
435         speech_global_mean = WeightedAverage(&self->speech_means[channel],
436                                              tmp1_s16,
437                                              &kSpeechDataWeights[channel]);
438 
439         // Move Gaussian means for noise model by -`tmp2_s16` and update
440         // `noise_global_mean`. Note that `self->noise_means[channel]` is
441         // changed after the call.
442         noise_global_mean = WeightedAverage(&self->noise_means[channel],
443                                             -tmp2_s16,
444                                             &kNoiseDataWeights[channel]);
445       }
446 
447       // Control that the speech & noise means do not drift to much.
448       maxspe = kMaximumSpeech[channel];
449       tmp2_s16 = (int16_t) (speech_global_mean >> 7);
450       if (tmp2_s16 > maxspe) {
451         // Upper limit of speech model.
452         tmp2_s16 -= maxspe;
453 
454         for (k = 0; k < kNumGaussians; k++) {
455           self->speech_means[channel + k * kNumChannels] -= tmp2_s16;
456         }
457       }
458 
459       tmp2_s16 = (int16_t) (noise_global_mean >> 7);
460       if (tmp2_s16 > kMaximumNoise[channel]) {
461         tmp2_s16 -= kMaximumNoise[channel];
462 
463         for (k = 0; k < kNumGaussians; k++) {
464           self->noise_means[channel + k * kNumChannels] -= tmp2_s16;
465         }
466       }
467     }
468     self->frame_counter++;
469   }
470 
471   // Smooth with respect to transition hysteresis.
472   if (!vadflag) {
473     if (self->over_hang > 0) {
474       vadflag = 2 + self->over_hang;
475       self->over_hang--;
476     }
477     self->num_of_speech = 0;
478   } else {
479     self->num_of_speech++;
480     if (self->num_of_speech > kMaxSpeechFrames) {
481       self->num_of_speech = kMaxSpeechFrames;
482       self->over_hang = overhead2;
483     } else {
484       self->over_hang = overhead1;
485     }
486   }
487   return vadflag;
488 }
489 
490 // Initialize the VAD. Set aggressiveness mode to default value.
WebRtcVad_InitCore(VadInstT * self)491 int WebRtcVad_InitCore(VadInstT* self) {
492   int i;
493 
494   if (self == NULL) {
495     return -1;
496   }
497 
498   // Initialization of general struct variables.
499   self->vad = 1;  // Speech active (=1).
500   self->frame_counter = 0;
501   self->over_hang = 0;
502   self->num_of_speech = 0;
503 
504   // Initialization of downsampling filter state.
505   memset(self->downsampling_filter_states, 0,
506          sizeof(self->downsampling_filter_states));
507 
508   // Initialization of 48 to 8 kHz downsampling.
509   WebRtcSpl_ResetResample48khzTo8khz(&self->state_48_to_8);
510 
511   // Read initial PDF parameters.
512   for (i = 0; i < kTableSize; i++) {
513     self->noise_means[i] = kNoiseDataMeans[i];
514     self->speech_means[i] = kSpeechDataMeans[i];
515     self->noise_stds[i] = kNoiseDataStds[i];
516     self->speech_stds[i] = kSpeechDataStds[i];
517   }
518 
519   // Initialize Index and Minimum value vectors.
520   for (i = 0; i < 16 * kNumChannels; i++) {
521     self->low_value_vector[i] = 10000;
522     self->index_vector[i] = 0;
523   }
524 
525   // Initialize splitting filter states.
526   memset(self->upper_state, 0, sizeof(self->upper_state));
527   memset(self->lower_state, 0, sizeof(self->lower_state));
528 
529   // Initialize high pass filter states.
530   memset(self->hp_filter_state, 0, sizeof(self->hp_filter_state));
531 
532   // Initialize mean value memory, for WebRtcVad_FindMinimum().
533   for (i = 0; i < kNumChannels; i++) {
534     self->mean_value[i] = 1600;
535   }
536 
537   // Set aggressiveness mode to default (=`kDefaultMode`).
538   if (WebRtcVad_set_mode_core(self, kDefaultMode) != 0) {
539     return -1;
540   }
541 
542   self->init_flag = kInitCheck;
543 
544   return 0;
545 }
546 
547 // Set aggressiveness mode
WebRtcVad_set_mode_core(VadInstT * self,int mode)548 int WebRtcVad_set_mode_core(VadInstT* self, int mode) {
549   int return_value = 0;
550 
551   switch (mode) {
552     case 0:
553       // Quality mode.
554       memcpy(self->over_hang_max_1, kOverHangMax1Q,
555              sizeof(self->over_hang_max_1));
556       memcpy(self->over_hang_max_2, kOverHangMax2Q,
557              sizeof(self->over_hang_max_2));
558       memcpy(self->individual, kLocalThresholdQ,
559              sizeof(self->individual));
560       memcpy(self->total, kGlobalThresholdQ,
561              sizeof(self->total));
562       break;
563     case 1:
564       // Low bitrate mode.
565       memcpy(self->over_hang_max_1, kOverHangMax1LBR,
566              sizeof(self->over_hang_max_1));
567       memcpy(self->over_hang_max_2, kOverHangMax2LBR,
568              sizeof(self->over_hang_max_2));
569       memcpy(self->individual, kLocalThresholdLBR,
570              sizeof(self->individual));
571       memcpy(self->total, kGlobalThresholdLBR,
572              sizeof(self->total));
573       break;
574     case 2:
575       // Aggressive mode.
576       memcpy(self->over_hang_max_1, kOverHangMax1AGG,
577              sizeof(self->over_hang_max_1));
578       memcpy(self->over_hang_max_2, kOverHangMax2AGG,
579              sizeof(self->over_hang_max_2));
580       memcpy(self->individual, kLocalThresholdAGG,
581              sizeof(self->individual));
582       memcpy(self->total, kGlobalThresholdAGG,
583              sizeof(self->total));
584       break;
585     case 3:
586       // Very aggressive mode.
587       memcpy(self->over_hang_max_1, kOverHangMax1VAG,
588              sizeof(self->over_hang_max_1));
589       memcpy(self->over_hang_max_2, kOverHangMax2VAG,
590              sizeof(self->over_hang_max_2));
591       memcpy(self->individual, kLocalThresholdVAG,
592              sizeof(self->individual));
593       memcpy(self->total, kGlobalThresholdVAG,
594              sizeof(self->total));
595       break;
596     default:
597       return_value = -1;
598       break;
599   }
600 
601   return return_value;
602 }
603 
604 // Calculate VAD decision by first extracting feature values and then calculate
605 // probability for both speech and background noise.
606 
WebRtcVad_CalcVad48khz(VadInstT * inst,const int16_t * speech_frame,size_t frame_length)607 int WebRtcVad_CalcVad48khz(VadInstT* inst, const int16_t* speech_frame,
608                            size_t frame_length) {
609   int vad;
610   size_t i;
611   int16_t speech_nb[240];  // 30 ms in 8 kHz.
612   // `tmp_mem` is a temporary memory used by resample function, length is
613   // frame length in 10 ms (480 samples) + 256 extra.
614   int32_t tmp_mem[480 + 256] = { 0 };
615   const size_t kFrameLen10ms48khz = 480;
616   const size_t kFrameLen10ms8khz = 80;
617   size_t num_10ms_frames = frame_length / kFrameLen10ms48khz;
618 
619   for (i = 0; i < num_10ms_frames; i++) {
620     WebRtcSpl_Resample48khzTo8khz(speech_frame,
621                                   &speech_nb[i * kFrameLen10ms8khz],
622                                   &inst->state_48_to_8,
623                                   tmp_mem);
624   }
625 
626   // Do VAD on an 8 kHz signal
627   vad = WebRtcVad_CalcVad8khz(inst, speech_nb, frame_length / 6);
628 
629   return vad;
630 }
631 
WebRtcVad_CalcVad32khz(VadInstT * inst,const int16_t * speech_frame,size_t frame_length)632 int WebRtcVad_CalcVad32khz(VadInstT* inst, const int16_t* speech_frame,
633                            size_t frame_length)
634 {
635     size_t len;
636     int vad;
637     int16_t speechWB[480]; // Downsampled speech frame: 960 samples (30ms in SWB)
638     int16_t speechNB[240]; // Downsampled speech frame: 480 samples (30ms in WB)
639 
640 
641     // Downsample signal 32->16->8 before doing VAD
642     WebRtcVad_Downsampling(speech_frame, speechWB, &(inst->downsampling_filter_states[2]),
643                            frame_length);
644     len = frame_length / 2;
645 
646     WebRtcVad_Downsampling(speechWB, speechNB, inst->downsampling_filter_states, len);
647     len /= 2;
648 
649     // Do VAD on an 8 kHz signal
650     vad = WebRtcVad_CalcVad8khz(inst, speechNB, len);
651 
652     return vad;
653 }
654 
WebRtcVad_CalcVad16khz(VadInstT * inst,const int16_t * speech_frame,size_t frame_length)655 int WebRtcVad_CalcVad16khz(VadInstT* inst, const int16_t* speech_frame,
656                            size_t frame_length)
657 {
658     size_t len;
659     int vad;
660     int16_t speechNB[240]; // Downsampled speech frame: 480 samples (30ms in WB)
661 
662     // Wideband: Downsample signal before doing VAD
663     WebRtcVad_Downsampling(speech_frame, speechNB, inst->downsampling_filter_states,
664                            frame_length);
665 
666     len = frame_length / 2;
667     vad = WebRtcVad_CalcVad8khz(inst, speechNB, len);
668 
669     return vad;
670 }
671 
WebRtcVad_CalcVad8khz(VadInstT * inst,const int16_t * speech_frame,size_t frame_length)672 int WebRtcVad_CalcVad8khz(VadInstT* inst, const int16_t* speech_frame,
673                           size_t frame_length)
674 {
675     int16_t feature_vector[kNumChannels], total_power;
676 
677     // Get power in the bands
678     total_power = WebRtcVad_CalculateFeatures(inst, speech_frame, frame_length,
679                                               feature_vector);
680 
681     // Make a VAD
682     inst->vad = GmmProbability(inst, feature_vector, total_power, frame_length);
683 
684     return inst->vad;
685 }
686