• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  *  Copyright (c) 2012 The WebRTC project authors. All Rights Reserved.
3  *
4  *  Use of this source code is governed by a BSD-style license
5  *  that can be found in the LICENSE file in the root of the source
6  *  tree. An additional intellectual property rights grant can be found
7  *  in the file PATENTS.  All contributing project authors may
8  *  be found in the AUTHORS file in the root of the source tree.
9  */
10 
11 #ifndef MODULES_AUDIO_CODING_NETEQ_DSP_HELPER_H_
12 #define MODULES_AUDIO_CODING_NETEQ_DSP_HELPER_H_
13 
14 #include <stdint.h>
15 #include <string.h>
16 
17 #include "modules/audio_coding/neteq/audio_multi_vector.h"
18 #include "modules/audio_coding/neteq/audio_vector.h"
19 
20 namespace webrtc {
21 
22 // This class contains various signal processing functions, all implemented as
23 // static methods.
24 class DspHelper {
25  public:
26   // Filter coefficients used when downsampling from the indicated sample rates
27   // (8, 16, 32, 48 kHz) to 4 kHz. Coefficients are in Q12.
28   static const int16_t kDownsample8kHzTbl[3];
29   static const int16_t kDownsample16kHzTbl[5];
30   static const int16_t kDownsample32kHzTbl[7];
31   static const int16_t kDownsample48kHzTbl[7];
32 
33   // Constants used to mute and unmute over 5 samples. The coefficients are
34   // in Q15.
35   static const int kMuteFactorStart8kHz = 27307;
36   static const int kMuteFactorIncrement8kHz = -5461;
37   static const int kUnmuteFactorStart8kHz = 5461;
38   static const int kUnmuteFactorIncrement8kHz = 5461;
39   static const int kMuteFactorStart16kHz = 29789;
40   static const int kMuteFactorIncrement16kHz = -2979;
41   static const int kUnmuteFactorStart16kHz = 2979;
42   static const int kUnmuteFactorIncrement16kHz = 2979;
43   static const int kMuteFactorStart32kHz = 31208;
44   static const int kMuteFactorIncrement32kHz = -1560;
45   static const int kUnmuteFactorStart32kHz = 1560;
46   static const int kUnmuteFactorIncrement32kHz = 1560;
47   static const int kMuteFactorStart48kHz = 31711;
48   static const int kMuteFactorIncrement48kHz = -1057;
49   static const int kUnmuteFactorStart48kHz = 1057;
50   static const int kUnmuteFactorIncrement48kHz = 1057;
51 
52   // Multiplies the signal with a gradually changing factor.
53   // The first sample is multiplied with `factor` (in Q14). For each sample,
54   // `factor` is increased (additive) by the `increment` (in Q20), which can
55   // be negative. Returns the scale factor after the last increment.
56   static int RampSignal(const int16_t* input,
57                         size_t length,
58                         int factor,
59                         int increment,
60                         int16_t* output);
61 
62   // Same as above, but with the samples of `signal` being modified in-place.
63   static int RampSignal(int16_t* signal,
64                         size_t length,
65                         int factor,
66                         int increment);
67 
68   // Same as above, but processes `length` samples from `signal`, starting at
69   // `start_index`.
70   static int RampSignal(AudioVector* signal,
71                         size_t start_index,
72                         size_t length,
73                         int factor,
74                         int increment);
75 
76   // Same as above, but for an AudioMultiVector.
77   static int RampSignal(AudioMultiVector* signal,
78                         size_t start_index,
79                         size_t length,
80                         int factor,
81                         int increment);
82 
83   // Peak detection with parabolic fit. Looks for `num_peaks` maxima in `data`,
84   // having length `data_length` and sample rate multiplier `fs_mult`. The peak
85   // locations and values are written to the arrays `peak_index` and
86   // `peak_value`, respectively. Both arrays must hold at least `num_peaks`
87   // elements.
88   static void PeakDetection(int16_t* data,
89                             size_t data_length,
90                             size_t num_peaks,
91                             int fs_mult,
92                             size_t* peak_index,
93                             int16_t* peak_value);
94 
95   // Estimates the height and location of a maximum. The three values in the
96   // array `signal_points` are used as basis for a parabolic fit, which is then
97   // used to find the maximum in an interpolated signal. The `signal_points` are
98   // assumed to be from a 4 kHz signal, while the maximum, written to
99   // `peak_index` and `peak_value` is given in the full sample rate, as
100   // indicated by the sample rate multiplier `fs_mult`.
101   static void ParabolicFit(int16_t* signal_points,
102                            int fs_mult,
103                            size_t* peak_index,
104                            int16_t* peak_value);
105 
106   // Calculates the sum-abs-diff for `signal` when compared to a displaced
107   // version of itself. Returns the displacement lag that results in the minimum
108   // distortion. The resulting distortion is written to `distortion_value`.
109   // The values of `min_lag` and `max_lag` are boundaries for the search.
110   static size_t MinDistortion(const int16_t* signal,
111                               size_t min_lag,
112                               size_t max_lag,
113                               size_t length,
114                               int32_t* distortion_value);
115 
116   // Mixes `length` samples from `input1` and `input2` together and writes the
117   // result to `output`. The gain for `input1` starts at `mix_factor` (Q14) and
118   // is decreased by `factor_decrement` (Q14) for each sample. The gain for
119   // `input2` is the complement 16384 - mix_factor.
120   static void CrossFade(const int16_t* input1,
121                         const int16_t* input2,
122                         size_t length,
123                         int16_t* mix_factor,
124                         int16_t factor_decrement,
125                         int16_t* output);
126 
127   // Scales `input` with an increasing gain. Applies `factor` (Q14) to the first
128   // sample and increases the gain by `increment` (Q20) for each sample. The
129   // result is written to `output`. `length` samples are processed.
130   static void UnmuteSignal(const int16_t* input,
131                            size_t length,
132                            int16_t* factor,
133                            int increment,
134                            int16_t* output);
135 
136   // Starts at unity gain and gradually fades out `signal`. For each sample,
137   // the gain is reduced by `mute_slope` (Q14). `length` samples are processed.
138   static void MuteSignal(int16_t* signal, int mute_slope, size_t length);
139 
140   // Downsamples `input` from `sample_rate_hz` to 4 kHz sample rate. The input
141   // has `input_length` samples, and the method will write `output_length`
142   // samples to `output`. Compensates for the phase delay of the downsampling
143   // filters if `compensate_delay` is true. Returns -1 if the input is too short
144   // to produce `output_length` samples, otherwise 0.
145   static int DownsampleTo4kHz(const int16_t* input,
146                               size_t input_length,
147                               size_t output_length,
148                               int input_rate_hz,
149                               bool compensate_delay,
150                               int16_t* output);
151 
152   DspHelper(const DspHelper&) = delete;
153   DspHelper& operator=(const DspHelper&) = delete;
154 
155  private:
156   // Table of constants used in method DspHelper::ParabolicFit().
157   static const int16_t kParabolaCoefficients[17][3];
158 };
159 
160 }  // namespace webrtc
161 #endif  // MODULES_AUDIO_CODING_NETEQ_DSP_HELPER_H_
162