• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Copyright 2018 The Abseil Authors.
2 //
3 // Licensed under the Apache License, Version 2.0 (the "License");
4 // you may not use this file except in compliance with the License.
5 // You may obtain a copy of the License at
6 //
7 //      https://www.apache.org/licenses/LICENSE-2.0
8 //
9 // Unless required by applicable law or agreed to in writing, software
10 // distributed under the License is distributed on an "AS IS" BASIS,
11 // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12 // See the License for the specific language governing permissions and
13 // limitations under the License.
14 //
15 // -----------------------------------------------------------------------------
16 // File: btree_map.h
17 // -----------------------------------------------------------------------------
18 //
19 // This header file defines B-tree maps: sorted associative containers mapping
20 // keys to values.
21 //
22 //     * `absl::btree_map<>`
23 //     * `absl::btree_multimap<>`
24 //
25 // These B-tree types are similar to the corresponding types in the STL
26 // (`std::map` and `std::multimap`) and generally conform to the STL interfaces
27 // of those types. However, because they are implemented using B-trees, they
28 // are more efficient in most situations.
29 //
30 // Unlike `std::map` and `std::multimap`, which are commonly implemented using
31 // red-black tree nodes, B-tree maps use more generic B-tree nodes able to hold
32 // multiple values per node. Holding multiple values per node often makes
33 // B-tree maps perform better than their `std::map` counterparts, because
34 // multiple entries can be checked within the same cache hit.
35 //
36 // However, these types should not be considered drop-in replacements for
37 // `std::map` and `std::multimap` as there are some API differences, which are
38 // noted in this header file. The most consequential differences with respect to
39 // migrating to b-tree from the STL types are listed in the next paragraph.
40 // Other API differences are minor.
41 //
42 // Importantly, insertions and deletions may invalidate outstanding iterators,
43 // pointers, and references to elements. Such invalidations are typically only
44 // an issue if insertion and deletion operations are interleaved with the use of
45 // more than one iterator, pointer, or reference simultaneously. For this
46 // reason, `insert()` and `erase()` return a valid iterator at the current
47 // position (and `extract()` cannot be used in this way). Another important
48 // difference is that key-types must be copy-constructible.
49 //
50 // Another API difference is that btree iterators can be subtracted, and this
51 // is faster than using std::distance.
52 
53 #ifndef ABSL_CONTAINER_BTREE_MAP_H_
54 #define ABSL_CONTAINER_BTREE_MAP_H_
55 
56 #include "absl/container/internal/btree.h"  // IWYU pragma: export
57 #include "absl/container/internal/btree_container.h"  // IWYU pragma: export
58 
59 namespace absl {
60 ABSL_NAMESPACE_BEGIN
61 
62 namespace container_internal {
63 
64 template <typename Key, typename Data, typename Compare, typename Alloc,
65           int TargetNodeSize, bool IsMulti>
66 struct map_params;
67 
68 }  // namespace container_internal
69 
70 // absl::btree_map<>
71 //
72 // An `absl::btree_map<K, V>` is an ordered associative container of
73 // unique keys and associated values designed to be a more efficient replacement
74 // for `std::map` (in most cases).
75 //
76 // Keys are sorted using an (optional) comparison function, which defaults to
77 // `std::less<K>`.
78 //
79 // An `absl::btree_map<K, V>` uses a default allocator of
80 // `std::allocator<std::pair<const K, V>>` to allocate (and deallocate)
81 // nodes, and construct and destruct values within those nodes. You may
82 // instead specify a custom allocator `A` (which in turn requires specifying a
83 // custom comparator `C`) as in `absl::btree_map<K, V, C, A>`.
84 //
85 template <typename Key, typename Value, typename Compare = std::less<Key>,
86           typename Alloc = std::allocator<std::pair<const Key, Value>>>
87 class btree_map
88     : public container_internal::btree_map_container<
89           container_internal::btree<container_internal::map_params<
90               Key, Value, Compare, Alloc, /*TargetNodeSize=*/256,
91               /*IsMulti=*/false>>> {
92   using Base = typename btree_map::btree_map_container;
93 
94  public:
95   // Constructors and Assignment Operators
96   //
97   // A `btree_map` supports the same overload set as `std::map`
98   // for construction and assignment:
99   //
100   // * Default constructor
101   //
102   //   absl::btree_map<int, std::string> map1;
103   //
104   // * Initializer List constructor
105   //
106   //   absl::btree_map<int, std::string> map2 =
107   //       {{1, "huey"}, {2, "dewey"}, {3, "louie"},};
108   //
109   // * Copy constructor
110   //
111   //   absl::btree_map<int, std::string> map3(map2);
112   //
113   // * Copy assignment operator
114   //
115   //  absl::btree_map<int, std::string> map4;
116   //  map4 = map3;
117   //
118   // * Move constructor
119   //
120   //   // Move is guaranteed efficient
121   //   absl::btree_map<int, std::string> map5(std::move(map4));
122   //
123   // * Move assignment operator
124   //
125   //   // May be efficient if allocators are compatible
126   //   absl::btree_map<int, std::string> map6;
127   //   map6 = std::move(map5);
128   //
129   // * Range constructor
130   //
131   //   std::vector<std::pair<int, std::string>> v = {{1, "a"}, {2, "b"}};
132   //   absl::btree_map<int, std::string> map7(v.begin(), v.end());
btree_map()133   btree_map() {}
134   using Base::Base;
135 
136   // btree_map::begin()
137   //
138   // Returns an iterator to the beginning of the `btree_map`.
139   using Base::begin;
140 
141   // btree_map::cbegin()
142   //
143   // Returns a const iterator to the beginning of the `btree_map`.
144   using Base::cbegin;
145 
146   // btree_map::end()
147   //
148   // Returns an iterator to the end of the `btree_map`.
149   using Base::end;
150 
151   // btree_map::cend()
152   //
153   // Returns a const iterator to the end of the `btree_map`.
154   using Base::cend;
155 
156   // btree_map::empty()
157   //
158   // Returns whether or not the `btree_map` is empty.
159   using Base::empty;
160 
161   // btree_map::max_size()
162   //
163   // Returns the largest theoretical possible number of elements within a
164   // `btree_map` under current memory constraints. This value can be thought
165   // of as the largest value of `std::distance(begin(), end())` for a
166   // `btree_map<Key, T>`.
167   using Base::max_size;
168 
169   // btree_map::size()
170   //
171   // Returns the number of elements currently within the `btree_map`.
172   using Base::size;
173 
174   // btree_map::clear()
175   //
176   // Removes all elements from the `btree_map`. Invalidates any references,
177   // pointers, or iterators referring to contained elements.
178   using Base::clear;
179 
180   // btree_map::erase()
181   //
182   // Erases elements within the `btree_map`. If an erase occurs, any references,
183   // pointers, or iterators are invalidated.
184   // Overloads are listed below.
185   //
186   // iterator erase(iterator position):
187   // iterator erase(const_iterator position):
188   //
189   //   Erases the element at `position` of the `btree_map`, returning
190   //   the iterator pointing to the element after the one that was erased
191   //   (or end() if none exists).
192   //
193   // iterator erase(const_iterator first, const_iterator last):
194   //
195   //   Erases the elements in the open interval [`first`, `last`), returning
196   //   the iterator pointing to the element after the interval that was erased
197   //   (or end() if none exists).
198   //
199   // template <typename K> size_type erase(const K& key):
200   //
201   //   Erases the element with the matching key, if it exists, returning the
202   //   number of elements erased (0 or 1).
203   using Base::erase;
204 
205   // btree_map::insert()
206   //
207   // Inserts an element of the specified value into the `btree_map`,
208   // returning an iterator pointing to the newly inserted element, provided that
209   // an element with the given key does not already exist. If an insertion
210   // occurs, any references, pointers, or iterators are invalidated.
211   // Overloads are listed below.
212   //
213   // std::pair<iterator,bool> insert(const value_type& value):
214   //
215   //   Inserts a value into the `btree_map`. Returns a pair consisting of an
216   //   iterator to the inserted element (or to the element that prevented the
217   //   insertion) and a bool denoting whether the insertion took place.
218   //
219   // std::pair<iterator,bool> insert(value_type&& value):
220   //
221   //   Inserts a moveable value into the `btree_map`. Returns a pair
222   //   consisting of an iterator to the inserted element (or to the element that
223   //   prevented the insertion) and a bool denoting whether the insertion took
224   //   place.
225   //
226   // iterator insert(const_iterator hint, const value_type& value):
227   // iterator insert(const_iterator hint, value_type&& value):
228   //
229   //   Inserts a value, using the position of `hint` as a non-binding suggestion
230   //   for where to begin the insertion search. Returns an iterator to the
231   //   inserted element, or to the existing element that prevented the
232   //   insertion.
233   //
234   // void insert(InputIterator first, InputIterator last):
235   //
236   //   Inserts a range of values [`first`, `last`).
237   //
238   // void insert(std::initializer_list<init_type> ilist):
239   //
240   //   Inserts the elements within the initializer list `ilist`.
241   using Base::insert;
242 
243   // btree_map::insert_or_assign()
244   //
245   // Inserts an element of the specified value into the `btree_map` provided
246   // that a value with the given key does not already exist, or replaces the
247   // corresponding mapped type with the forwarded `obj` argument if a key for
248   // that value already exists, returning an iterator pointing to the newly
249   // inserted element. Overloads are listed below.
250   //
251   // pair<iterator, bool> insert_or_assign(const key_type& k, M&& obj):
252   // pair<iterator, bool> insert_or_assign(key_type&& k, M&& obj):
253   //
254   //   Inserts/Assigns (or moves) the element of the specified key into the
255   //   `btree_map`. If the returned bool is true, insertion took place, and if
256   //   it's false, assignment took place.
257   //
258   // iterator insert_or_assign(const_iterator hint,
259   //                           const key_type& k, M&& obj):
260   // iterator insert_or_assign(const_iterator hint, key_type&& k, M&& obj):
261   //
262   //   Inserts/Assigns (or moves) the element of the specified key into the
263   //   `btree_map` using the position of `hint` as a non-binding suggestion
264   //   for where to begin the insertion search.
265   using Base::insert_or_assign;
266 
267   // btree_map::emplace()
268   //
269   // Inserts an element of the specified value by constructing it in-place
270   // within the `btree_map`, provided that no element with the given key
271   // already exists.
272   //
273   // The element may be constructed even if there already is an element with the
274   // key in the container, in which case the newly constructed element will be
275   // destroyed immediately. Prefer `try_emplace()` unless your key is not
276   // copyable or moveable.
277   //
278   // If an insertion occurs, any references, pointers, or iterators are
279   // invalidated.
280   using Base::emplace;
281 
282   // btree_map::emplace_hint()
283   //
284   // Inserts an element of the specified value by constructing it in-place
285   // within the `btree_map`, using the position of `hint` as a non-binding
286   // suggestion for where to begin the insertion search, and only inserts
287   // provided that no element with the given key already exists.
288   //
289   // The element may be constructed even if there already is an element with the
290   // key in the container, in which case the newly constructed element will be
291   // destroyed immediately. Prefer `try_emplace()` unless your key is not
292   // copyable or moveable.
293   //
294   // If an insertion occurs, any references, pointers, or iterators are
295   // invalidated.
296   using Base::emplace_hint;
297 
298   // btree_map::try_emplace()
299   //
300   // Inserts an element of the specified value by constructing it in-place
301   // within the `btree_map`, provided that no element with the given key
302   // already exists. Unlike `emplace()`, if an element with the given key
303   // already exists, we guarantee that no element is constructed.
304   //
305   // If an insertion occurs, any references, pointers, or iterators are
306   // invalidated.
307   //
308   // Overloads are listed below.
309   //
310   //   std::pair<iterator, bool> try_emplace(const key_type& k, Args&&... args):
311   //   std::pair<iterator, bool> try_emplace(key_type&& k, Args&&... args):
312   //
313   // Inserts (via copy or move) the element of the specified key into the
314   // `btree_map`.
315   //
316   //   iterator try_emplace(const_iterator hint,
317   //                        const key_type& k, Args&&... args):
318   //   iterator try_emplace(const_iterator hint, key_type&& k, Args&&... args):
319   //
320   // Inserts (via copy or move) the element of the specified key into the
321   // `btree_map` using the position of `hint` as a non-binding suggestion
322   // for where to begin the insertion search.
323   using Base::try_emplace;
324 
325   // btree_map::extract()
326   //
327   // Extracts the indicated element, erasing it in the process, and returns it
328   // as a C++17-compatible node handle. Any references, pointers, or iterators
329   // are invalidated. Overloads are listed below.
330   //
331   // node_type extract(const_iterator position):
332   //
333   //   Extracts the element at the indicated position and returns a node handle
334   //   owning that extracted data.
335   //
336   // template <typename K> node_type extract(const K& k):
337   //
338   //   Extracts the element with the key matching the passed key value and
339   //   returns a node handle owning that extracted data. If the `btree_map`
340   //   does not contain an element with a matching key, this function returns an
341   //   empty node handle.
342   //
343   // NOTE: when compiled in an earlier version of C++ than C++17,
344   // `node_type::key()` returns a const reference to the key instead of a
345   // mutable reference. We cannot safely return a mutable reference without
346   // std::launder (which is not available before C++17).
347   //
348   // NOTE: In this context, `node_type` refers to the C++17 concept of a
349   // move-only type that owns and provides access to the elements in associative
350   // containers (https://en.cppreference.com/w/cpp/container/node_handle).
351   // It does NOT refer to the data layout of the underlying btree.
352   using Base::extract;
353 
354   // btree_map::merge()
355   //
356   // Extracts elements from a given `source` btree_map into this
357   // `btree_map`. If the destination `btree_map` already contains an
358   // element with an equivalent key, that element is not extracted.
359   using Base::merge;
360 
361   // btree_map::swap(btree_map& other)
362   //
363   // Exchanges the contents of this `btree_map` with those of the `other`
364   // btree_map, avoiding invocation of any move, copy, or swap operations on
365   // individual elements.
366   //
367   // All iterators and references on the `btree_map` remain valid, excepting
368   // for the past-the-end iterator, which is invalidated.
369   using Base::swap;
370 
371   // btree_map::at()
372   //
373   // Returns a reference to the mapped value of the element with key equivalent
374   // to the passed key.
375   using Base::at;
376 
377   // btree_map::contains()
378   //
379   // template <typename K> bool contains(const K& key) const:
380   //
381   // Determines whether an element comparing equal to the given `key` exists
382   // within the `btree_map`, returning `true` if so or `false` otherwise.
383   //
384   // Supports heterogeneous lookup, provided that the map has a compatible
385   // heterogeneous comparator.
386   using Base::contains;
387 
388   // btree_map::count()
389   //
390   // template <typename K> size_type count(const K& key) const:
391   //
392   // Returns the number of elements comparing equal to the given `key` within
393   // the `btree_map`. Note that this function will return either `1` or `0`
394   // since duplicate elements are not allowed within a `btree_map`.
395   //
396   // Supports heterogeneous lookup, provided that the map has a compatible
397   // heterogeneous comparator.
398   using Base::count;
399 
400   // btree_map::equal_range()
401   //
402   // Returns a half-open range [first, last), defined by a `std::pair` of two
403   // iterators, containing all elements with the passed key in the `btree_map`.
404   using Base::equal_range;
405 
406   // btree_map::find()
407   //
408   // template <typename K> iterator find(const K& key):
409   // template <typename K> const_iterator find(const K& key) const:
410   //
411   // Finds an element with the passed `key` within the `btree_map`.
412   //
413   // Supports heterogeneous lookup, provided that the map has a compatible
414   // heterogeneous comparator.
415   using Base::find;
416 
417   // btree_map::lower_bound()
418   //
419   // template <typename K> iterator lower_bound(const K& key):
420   // template <typename K> const_iterator lower_bound(const K& key) const:
421   //
422   // Finds the first element with a key that is not less than `key` within the
423   // `btree_map`.
424   //
425   // Supports heterogeneous lookup, provided that the map has a compatible
426   // heterogeneous comparator.
427   using Base::lower_bound;
428 
429   // btree_map::upper_bound()
430   //
431   // template <typename K> iterator upper_bound(const K& key):
432   // template <typename K> const_iterator upper_bound(const K& key) const:
433   //
434   // Finds the first element with a key that is greater than `key` within the
435   // `btree_map`.
436   //
437   // Supports heterogeneous lookup, provided that the map has a compatible
438   // heterogeneous comparator.
439   using Base::upper_bound;
440 
441   // btree_map::operator[]()
442   //
443   // Returns a reference to the value mapped to the passed key within the
444   // `btree_map`, performing an `insert()` if the key does not already
445   // exist.
446   //
447   // If an insertion occurs, any references, pointers, or iterators are
448   // invalidated. Otherwise iterators are not affected and references are not
449   // invalidated. Overloads are listed below.
450   //
451   // T& operator[](key_type&& key):
452   // T& operator[](const key_type& key):
453   //
454   //   Inserts a value_type object constructed in-place if the element with the
455   //   given key does not exist.
456   using Base::operator[];
457 
458   // btree_map::get_allocator()
459   //
460   // Returns the allocator function associated with this `btree_map`.
461   using Base::get_allocator;
462 
463   // btree_map::key_comp();
464   //
465   // Returns the key comparator associated with this `btree_map`.
466   using Base::key_comp;
467 
468   // btree_map::value_comp();
469   //
470   // Returns the value comparator associated with this `btree_map`.
471   using Base::value_comp;
472 };
473 
474 // absl::swap(absl::btree_map<>, absl::btree_map<>)
475 //
476 // Swaps the contents of two `absl::btree_map` containers.
477 template <typename K, typename V, typename C, typename A>
swap(btree_map<K,V,C,A> & x,btree_map<K,V,C,A> & y)478 void swap(btree_map<K, V, C, A> &x, btree_map<K, V, C, A> &y) {
479   return x.swap(y);
480 }
481 
482 // absl::erase_if(absl::btree_map<>, Pred)
483 //
484 // Erases all elements that satisfy the predicate pred from the container.
485 // Returns the number of erased elements.
486 template <typename K, typename V, typename C, typename A, typename Pred>
erase_if(btree_map<K,V,C,A> & map,Pred pred)487 typename btree_map<K, V, C, A>::size_type erase_if(
488     btree_map<K, V, C, A> &map, Pred pred) {
489   return container_internal::btree_access::erase_if(map, std::move(pred));
490 }
491 
492 // absl::btree_multimap
493 //
494 // An `absl::btree_multimap<K, V>` is an ordered associative container of
495 // keys and associated values designed to be a more efficient replacement for
496 // `std::multimap` (in most cases). Unlike `absl::btree_map`, a B-tree multimap
497 // allows multiple elements with equivalent keys.
498 //
499 // Keys are sorted using an (optional) comparison function, which defaults to
500 // `std::less<K>`.
501 //
502 // An `absl::btree_multimap<K, V>` uses a default allocator of
503 // `std::allocator<std::pair<const K, V>>` to allocate (and deallocate)
504 // nodes, and construct and destruct values within those nodes. You may
505 // instead specify a custom allocator `A` (which in turn requires specifying a
506 // custom comparator `C`) as in `absl::btree_multimap<K, V, C, A>`.
507 //
508 template <typename Key, typename Value, typename Compare = std::less<Key>,
509           typename Alloc = std::allocator<std::pair<const Key, Value>>>
510 class btree_multimap
511     : public container_internal::btree_multimap_container<
512           container_internal::btree<container_internal::map_params<
513               Key, Value, Compare, Alloc, /*TargetNodeSize=*/256,
514               /*IsMulti=*/true>>> {
515   using Base = typename btree_multimap::btree_multimap_container;
516 
517  public:
518   // Constructors and Assignment Operators
519   //
520   // A `btree_multimap` supports the same overload set as `std::multimap`
521   // for construction and assignment:
522   //
523   // * Default constructor
524   //
525   //   absl::btree_multimap<int, std::string> map1;
526   //
527   // * Initializer List constructor
528   //
529   //   absl::btree_multimap<int, std::string> map2 =
530   //       {{1, "huey"}, {2, "dewey"}, {3, "louie"},};
531   //
532   // * Copy constructor
533   //
534   //   absl::btree_multimap<int, std::string> map3(map2);
535   //
536   // * Copy assignment operator
537   //
538   //  absl::btree_multimap<int, std::string> map4;
539   //  map4 = map3;
540   //
541   // * Move constructor
542   //
543   //   // Move is guaranteed efficient
544   //   absl::btree_multimap<int, std::string> map5(std::move(map4));
545   //
546   // * Move assignment operator
547   //
548   //   // May be efficient if allocators are compatible
549   //   absl::btree_multimap<int, std::string> map6;
550   //   map6 = std::move(map5);
551   //
552   // * Range constructor
553   //
554   //   std::vector<std::pair<int, std::string>> v = {{1, "a"}, {2, "b"}};
555   //   absl::btree_multimap<int, std::string> map7(v.begin(), v.end());
btree_multimap()556   btree_multimap() {}
557   using Base::Base;
558 
559   // btree_multimap::begin()
560   //
561   // Returns an iterator to the beginning of the `btree_multimap`.
562   using Base::begin;
563 
564   // btree_multimap::cbegin()
565   //
566   // Returns a const iterator to the beginning of the `btree_multimap`.
567   using Base::cbegin;
568 
569   // btree_multimap::end()
570   //
571   // Returns an iterator to the end of the `btree_multimap`.
572   using Base::end;
573 
574   // btree_multimap::cend()
575   //
576   // Returns a const iterator to the end of the `btree_multimap`.
577   using Base::cend;
578 
579   // btree_multimap::empty()
580   //
581   // Returns whether or not the `btree_multimap` is empty.
582   using Base::empty;
583 
584   // btree_multimap::max_size()
585   //
586   // Returns the largest theoretical possible number of elements within a
587   // `btree_multimap` under current memory constraints. This value can be
588   // thought of as the largest value of `std::distance(begin(), end())` for a
589   // `btree_multimap<Key, T>`.
590   using Base::max_size;
591 
592   // btree_multimap::size()
593   //
594   // Returns the number of elements currently within the `btree_multimap`.
595   using Base::size;
596 
597   // btree_multimap::clear()
598   //
599   // Removes all elements from the `btree_multimap`. Invalidates any references,
600   // pointers, or iterators referring to contained elements.
601   using Base::clear;
602 
603   // btree_multimap::erase()
604   //
605   // Erases elements within the `btree_multimap`. If an erase occurs, any
606   // references, pointers, or iterators are invalidated.
607   // Overloads are listed below.
608   //
609   // iterator erase(iterator position):
610   // iterator erase(const_iterator position):
611   //
612   //   Erases the element at `position` of the `btree_multimap`, returning
613   //   the iterator pointing to the element after the one that was erased
614   //   (or end() if none exists).
615   //
616   // iterator erase(const_iterator first, const_iterator last):
617   //
618   //   Erases the elements in the open interval [`first`, `last`), returning
619   //   the iterator pointing to the element after the interval that was erased
620   //   (or end() if none exists).
621   //
622   // template <typename K> size_type erase(const K& key):
623   //
624   //   Erases the elements matching the key, if any exist, returning the
625   //   number of elements erased.
626   using Base::erase;
627 
628   // btree_multimap::insert()
629   //
630   // Inserts an element of the specified value into the `btree_multimap`,
631   // returning an iterator pointing to the newly inserted element.
632   // Any references, pointers, or iterators are invalidated.  Overloads are
633   // listed below.
634   //
635   // iterator insert(const value_type& value):
636   //
637   //   Inserts a value into the `btree_multimap`, returning an iterator to the
638   //   inserted element.
639   //
640   // iterator insert(value_type&& value):
641   //
642   //   Inserts a moveable value into the `btree_multimap`, returning an iterator
643   //   to the inserted element.
644   //
645   // iterator insert(const_iterator hint, const value_type& value):
646   // iterator insert(const_iterator hint, value_type&& value):
647   //
648   //   Inserts a value, using the position of `hint` as a non-binding suggestion
649   //   for where to begin the insertion search. Returns an iterator to the
650   //   inserted element.
651   //
652   // void insert(InputIterator first, InputIterator last):
653   //
654   //   Inserts a range of values [`first`, `last`).
655   //
656   // void insert(std::initializer_list<init_type> ilist):
657   //
658   //   Inserts the elements within the initializer list `ilist`.
659   using Base::insert;
660 
661   // btree_multimap::emplace()
662   //
663   // Inserts an element of the specified value by constructing it in-place
664   // within the `btree_multimap`. Any references, pointers, or iterators are
665   // invalidated.
666   using Base::emplace;
667 
668   // btree_multimap::emplace_hint()
669   //
670   // Inserts an element of the specified value by constructing it in-place
671   // within the `btree_multimap`, using the position of `hint` as a non-binding
672   // suggestion for where to begin the insertion search.
673   //
674   // Any references, pointers, or iterators are invalidated.
675   using Base::emplace_hint;
676 
677   // btree_multimap::extract()
678   //
679   // Extracts the indicated element, erasing it in the process, and returns it
680   // as a C++17-compatible node handle. Overloads are listed below.
681   //
682   // node_type extract(const_iterator position):
683   //
684   //   Extracts the element at the indicated position and returns a node handle
685   //   owning that extracted data.
686   //
687   // template <typename K> node_type extract(const K& k):
688   //
689   //   Extracts the element with the key matching the passed key value and
690   //   returns a node handle owning that extracted data. If the `btree_multimap`
691   //   does not contain an element with a matching key, this function returns an
692   //   empty node handle.
693   //
694   // NOTE: when compiled in an earlier version of C++ than C++17,
695   // `node_type::key()` returns a const reference to the key instead of a
696   // mutable reference. We cannot safely return a mutable reference without
697   // std::launder (which is not available before C++17).
698   //
699   // NOTE: In this context, `node_type` refers to the C++17 concept of a
700   // move-only type that owns and provides access to the elements in associative
701   // containers (https://en.cppreference.com/w/cpp/container/node_handle).
702   // It does NOT refer to the data layout of the underlying btree.
703   using Base::extract;
704 
705   // btree_multimap::merge()
706   //
707   // Extracts all elements from a given `source` btree_multimap into this
708   // `btree_multimap`.
709   using Base::merge;
710 
711   // btree_multimap::swap(btree_multimap& other)
712   //
713   // Exchanges the contents of this `btree_multimap` with those of the `other`
714   // btree_multimap, avoiding invocation of any move, copy, or swap operations
715   // on individual elements.
716   //
717   // All iterators and references on the `btree_multimap` remain valid,
718   // excepting for the past-the-end iterator, which is invalidated.
719   using Base::swap;
720 
721   // btree_multimap::contains()
722   //
723   // template <typename K> bool contains(const K& key) const:
724   //
725   // Determines whether an element comparing equal to the given `key` exists
726   // within the `btree_multimap`, returning `true` if so or `false` otherwise.
727   //
728   // Supports heterogeneous lookup, provided that the map has a compatible
729   // heterogeneous comparator.
730   using Base::contains;
731 
732   // btree_multimap::count()
733   //
734   // template <typename K> size_type count(const K& key) const:
735   //
736   // Returns the number of elements comparing equal to the given `key` within
737   // the `btree_multimap`.
738   //
739   // Supports heterogeneous lookup, provided that the map has a compatible
740   // heterogeneous comparator.
741   using Base::count;
742 
743   // btree_multimap::equal_range()
744   //
745   // Returns a half-open range [first, last), defined by a `std::pair` of two
746   // iterators, containing all elements with the passed key in the
747   // `btree_multimap`.
748   using Base::equal_range;
749 
750   // btree_multimap::find()
751   //
752   // template <typename K> iterator find(const K& key):
753   // template <typename K> const_iterator find(const K& key) const:
754   //
755   // Finds an element with the passed `key` within the `btree_multimap`.
756   //
757   // Supports heterogeneous lookup, provided that the map has a compatible
758   // heterogeneous comparator.
759   using Base::find;
760 
761   // btree_multimap::lower_bound()
762   //
763   // template <typename K> iterator lower_bound(const K& key):
764   // template <typename K> const_iterator lower_bound(const K& key) const:
765   //
766   // Finds the first element with a key that is not less than `key` within the
767   // `btree_multimap`.
768   //
769   // Supports heterogeneous lookup, provided that the map has a compatible
770   // heterogeneous comparator.
771   using Base::lower_bound;
772 
773   // btree_multimap::upper_bound()
774   //
775   // template <typename K> iterator upper_bound(const K& key):
776   // template <typename K> const_iterator upper_bound(const K& key) const:
777   //
778   // Finds the first element with a key that is greater than `key` within the
779   // `btree_multimap`.
780   //
781   // Supports heterogeneous lookup, provided that the map has a compatible
782   // heterogeneous comparator.
783   using Base::upper_bound;
784 
785   // btree_multimap::get_allocator()
786   //
787   // Returns the allocator function associated with this `btree_multimap`.
788   using Base::get_allocator;
789 
790   // btree_multimap::key_comp();
791   //
792   // Returns the key comparator associated with this `btree_multimap`.
793   using Base::key_comp;
794 
795   // btree_multimap::value_comp();
796   //
797   // Returns the value comparator associated with this `btree_multimap`.
798   using Base::value_comp;
799 };
800 
801 // absl::swap(absl::btree_multimap<>, absl::btree_multimap<>)
802 //
803 // Swaps the contents of two `absl::btree_multimap` containers.
804 template <typename K, typename V, typename C, typename A>
swap(btree_multimap<K,V,C,A> & x,btree_multimap<K,V,C,A> & y)805 void swap(btree_multimap<K, V, C, A> &x, btree_multimap<K, V, C, A> &y) {
806   return x.swap(y);
807 }
808 
809 // absl::erase_if(absl::btree_multimap<>, Pred)
810 //
811 // Erases all elements that satisfy the predicate pred from the container.
812 // Returns the number of erased elements.
813 template <typename K, typename V, typename C, typename A, typename Pred>
erase_if(btree_multimap<K,V,C,A> & map,Pred pred)814 typename btree_multimap<K, V, C, A>::size_type erase_if(
815     btree_multimap<K, V, C, A> &map, Pred pred) {
816   return container_internal::btree_access::erase_if(map, std::move(pred));
817 }
818 
819 namespace container_internal {
820 
821 // A parameters structure for holding the type parameters for a btree_map.
822 // Compare and Alloc should be nothrow copy-constructible.
823 template <typename Key, typename Data, typename Compare, typename Alloc,
824           int TargetNodeSize, bool IsMulti>
825 struct map_params : common_params<Key, Compare, Alloc, TargetNodeSize, IsMulti,
826                                   /*IsMap=*/true, map_slot_policy<Key, Data>> {
827   using super_type = typename map_params::common_params;
828   using mapped_type = Data;
829   // This type allows us to move keys when it is safe to do so. It is safe
830   // for maps in which value_type and mutable_value_type are layout compatible.
831   using slot_policy = typename super_type::slot_policy;
832   using slot_type = typename super_type::slot_type;
833   using value_type = typename super_type::value_type;
834   using init_type = typename super_type::init_type;
835 
836   template <typename V>
837   static auto key(const V &value) -> decltype(value.first) {
838     return value.first;
839   }
keymap_params840   static const Key &key(const slot_type *s) { return slot_policy::key(s); }
keymap_params841   static const Key &key(slot_type *s) { return slot_policy::key(s); }
842   // For use in node handle.
843   static auto mutable_key(slot_type *s)
844       -> decltype(slot_policy::mutable_key(s)) {
845     return slot_policy::mutable_key(s);
846   }
valuemap_params847   static mapped_type &value(value_type *value) { return value->second; }
848 };
849 
850 }  // namespace container_internal
851 
852 ABSL_NAMESPACE_END
853 }  // namespace absl
854 
855 #endif  // ABSL_CONTAINER_BTREE_MAP_H_
856