1#ifndef ABSL_DEBUGGING_INTERNAL_STACKTRACE_AARCH64_INL_H_ 2#define ABSL_DEBUGGING_INTERNAL_STACKTRACE_AARCH64_INL_H_ 3 4// Generate stack tracer for aarch64 5 6#if defined(__linux__) 7#include <sys/mman.h> 8#include <ucontext.h> 9#include <unistd.h> 10#endif 11 12#include <atomic> 13#include <cassert> 14#include <cstdint> 15#include <iostream> 16 17#include "absl/base/attributes.h" 18#include "absl/debugging/internal/address_is_readable.h" 19#include "absl/debugging/internal/vdso_support.h" // a no-op on non-elf or non-glibc systems 20#include "absl/debugging/stacktrace.h" 21 22static const size_t kUnknownFrameSize = 0; 23 24#if defined(__linux__) 25// Returns the address of the VDSO __kernel_rt_sigreturn function, if present. 26static const unsigned char* GetKernelRtSigreturnAddress() { 27 constexpr uintptr_t kImpossibleAddress = 1; 28 ABSL_CONST_INIT static std::atomic<uintptr_t> memoized{kImpossibleAddress}; 29 uintptr_t address = memoized.load(std::memory_order_relaxed); 30 if (address != kImpossibleAddress) { 31 return reinterpret_cast<const unsigned char*>(address); 32 } 33 34 address = reinterpret_cast<uintptr_t>(nullptr); 35 36#ifdef ABSL_HAVE_VDSO_SUPPORT 37 absl::debugging_internal::VDSOSupport vdso; 38 if (vdso.IsPresent()) { 39 absl::debugging_internal::VDSOSupport::SymbolInfo symbol_info; 40 auto lookup = [&](int type) { 41 return vdso.LookupSymbol("__kernel_rt_sigreturn", "LINUX_2.6.39", type, 42 &symbol_info); 43 }; 44 if ((!lookup(STT_FUNC) && !lookup(STT_NOTYPE)) || 45 symbol_info.address == nullptr) { 46 // Unexpected: VDSO is present, yet the expected symbol is missing 47 // or null. 48 assert(false && "VDSO is present, but doesn't have expected symbol"); 49 } else { 50 if (reinterpret_cast<uintptr_t>(symbol_info.address) != 51 kImpossibleAddress) { 52 address = reinterpret_cast<uintptr_t>(symbol_info.address); 53 } else { 54 assert(false && "VDSO returned invalid address"); 55 } 56 } 57 } 58#endif 59 60 memoized.store(address, std::memory_order_relaxed); 61 return reinterpret_cast<const unsigned char*>(address); 62} 63#endif // __linux__ 64 65// Compute the size of a stack frame in [low..high). We assume that 66// low < high. Return size of kUnknownFrameSize. 67template<typename T> 68static inline size_t ComputeStackFrameSize(const T* low, 69 const T* high) { 70 const char* low_char_ptr = reinterpret_cast<const char *>(low); 71 const char* high_char_ptr = reinterpret_cast<const char *>(high); 72 return low < high ? static_cast<size_t>(high_char_ptr - low_char_ptr) 73 : kUnknownFrameSize; 74} 75 76// Given a pointer to a stack frame, locate and return the calling 77// stackframe, or return null if no stackframe can be found. Perform sanity 78// checks (the strictness of which is controlled by the boolean parameter 79// "STRICT_UNWINDING") to reduce the chance that a bad pointer is returned. 80template<bool STRICT_UNWINDING, bool WITH_CONTEXT> 81ABSL_ATTRIBUTE_NO_SANITIZE_ADDRESS // May read random elements from stack. 82ABSL_ATTRIBUTE_NO_SANITIZE_MEMORY // May read random elements from stack. 83static void **NextStackFrame(void **old_frame_pointer, const void *uc) { 84 void **new_frame_pointer = reinterpret_cast<void**>(*old_frame_pointer); 85 bool check_frame_size = true; 86 87#if defined(__linux__) 88 if (WITH_CONTEXT && uc != nullptr) { 89 // Check to see if next frame's return address is __kernel_rt_sigreturn. 90 if (old_frame_pointer[1] == GetKernelRtSigreturnAddress()) { 91 const ucontext_t *ucv = static_cast<const ucontext_t *>(uc); 92 // old_frame_pointer[0] is not suitable for unwinding, look at 93 // ucontext to discover frame pointer before signal. 94 void **const pre_signal_frame_pointer = 95 reinterpret_cast<void **>(ucv->uc_mcontext.regs[29]); 96 97 // Check that alleged frame pointer is actually readable. This is to 98 // prevent "double fault" in case we hit the first fault due to e.g. 99 // stack corruption. 100 if (!absl::debugging_internal::AddressIsReadable( 101 pre_signal_frame_pointer)) 102 return nullptr; 103 104 // Alleged frame pointer is readable, use it for further unwinding. 105 new_frame_pointer = pre_signal_frame_pointer; 106 107 // Skip frame size check if we return from a signal. We may be using a 108 // an alternate stack for signals. 109 check_frame_size = false; 110 } 111 } 112#endif 113 114 // The frame pointer should be 8-byte aligned. 115 if ((reinterpret_cast<uintptr_t>(new_frame_pointer) & 7) != 0) 116 return nullptr; 117 118 // Check frame size. In strict mode, we assume frames to be under 119 // 100,000 bytes. In non-strict mode, we relax the limit to 1MB. 120 if (check_frame_size) { 121 const size_t max_size = STRICT_UNWINDING ? 100000 : 1000000; 122 const size_t frame_size = 123 ComputeStackFrameSize(old_frame_pointer, new_frame_pointer); 124 if (frame_size == kUnknownFrameSize || frame_size > max_size) 125 return nullptr; 126 } 127 128 return new_frame_pointer; 129} 130 131template <bool IS_STACK_FRAMES, bool IS_WITH_CONTEXT> 132ABSL_ATTRIBUTE_NO_SANITIZE_ADDRESS // May read random elements from stack. 133ABSL_ATTRIBUTE_NO_SANITIZE_MEMORY // May read random elements from stack. 134static int UnwindImpl(void** result, int* sizes, int max_depth, int skip_count, 135 const void *ucp, int *min_dropped_frames) { 136#ifdef __GNUC__ 137 void **frame_pointer = reinterpret_cast<void**>(__builtin_frame_address(0)); 138#else 139# error reading stack point not yet supported on this platform. 140#endif 141 142 skip_count++; // Skip the frame for this function. 143 int n = 0; 144 145 // The frame pointer points to low address of a frame. The first 64-bit 146 // word of a frame points to the next frame up the call chain, which normally 147 // is just after the high address of the current frame. The second word of 148 // a frame contains return adress of to the caller. To find a pc value 149 // associated with the current frame, we need to go down a level in the call 150 // chain. So we remember return the address of the last frame seen. This 151 // does not work for the first stack frame, which belongs to UnwindImp() but 152 // we skip the frame for UnwindImp() anyway. 153 void* prev_return_address = nullptr; 154 155 while (frame_pointer && n < max_depth) { 156 // The absl::GetStackFrames routine is called when we are in some 157 // informational context (the failure signal handler for example). 158 // Use the non-strict unwinding rules to produce a stack trace 159 // that is as complete as possible (even if it contains a few bogus 160 // entries in some rare cases). 161 void **next_frame_pointer = 162 NextStackFrame<!IS_STACK_FRAMES, IS_WITH_CONTEXT>(frame_pointer, ucp); 163 164 if (skip_count > 0) { 165 skip_count--; 166 } else { 167 result[n] = prev_return_address; 168 if (IS_STACK_FRAMES) { 169 sizes[n] = static_cast<int>( 170 ComputeStackFrameSize(frame_pointer, next_frame_pointer)); 171 } 172 n++; 173 } 174 prev_return_address = frame_pointer[1]; 175 frame_pointer = next_frame_pointer; 176 } 177 if (min_dropped_frames != nullptr) { 178 // Implementation detail: we clamp the max of frames we are willing to 179 // count, so as not to spend too much time in the loop below. 180 const int kMaxUnwind = 200; 181 int num_dropped_frames = 0; 182 for (int j = 0; frame_pointer != nullptr && j < kMaxUnwind; j++) { 183 if (skip_count > 0) { 184 skip_count--; 185 } else { 186 num_dropped_frames++; 187 } 188 frame_pointer = 189 NextStackFrame<!IS_STACK_FRAMES, IS_WITH_CONTEXT>(frame_pointer, ucp); 190 } 191 *min_dropped_frames = num_dropped_frames; 192 } 193 return n; 194} 195 196namespace absl { 197ABSL_NAMESPACE_BEGIN 198namespace debugging_internal { 199bool StackTraceWorksForTest() { 200 return true; 201} 202} // namespace debugging_internal 203ABSL_NAMESPACE_END 204} // namespace absl 205 206#endif // ABSL_DEBUGGING_INTERNAL_STACKTRACE_AARCH64_INL_H_ 207