• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Copyright 2017 The Abseil Authors.
2 //
3 // Licensed under the Apache License, Version 2.0 (the "License");
4 // you may not use this file except in compliance with the License.
5 // You may obtain a copy of the License at
6 //
7 //      https://www.apache.org/licenses/LICENSE-2.0
8 //
9 // Unless required by applicable law or agreed to in writing, software
10 // distributed under the License is distributed on an "AS IS" BASIS,
11 // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12 // See the License for the specific language governing permissions and
13 // limitations under the License.
14 
15 #include "absl/random/gaussian_distribution.h"
16 
17 #include <algorithm>
18 #include <cmath>
19 #include <cstddef>
20 #include <ios>
21 #include <iterator>
22 #include <random>
23 #include <string>
24 #include <type_traits>
25 #include <vector>
26 
27 #include "gmock/gmock.h"
28 #include "gtest/gtest.h"
29 #include "absl/base/internal/raw_logging.h"
30 #include "absl/base/macros.h"
31 #include "absl/numeric/internal/representation.h"
32 #include "absl/random/internal/chi_square.h"
33 #include "absl/random/internal/distribution_test_util.h"
34 #include "absl/random/internal/sequence_urbg.h"
35 #include "absl/random/random.h"
36 #include "absl/strings/str_cat.h"
37 #include "absl/strings/str_format.h"
38 #include "absl/strings/str_replace.h"
39 #include "absl/strings/strip.h"
40 
41 namespace {
42 
43 using absl::random_internal::kChiSquared;
44 
45 template <typename RealType>
46 class GaussianDistributionInterfaceTest : public ::testing::Test {};
47 
48 // double-double arithmetic is not supported well by either GCC or Clang; see
49 // https://gcc.gnu.org/bugzilla/show_bug.cgi?id=99048,
50 // https://bugs.llvm.org/show_bug.cgi?id=49131, and
51 // https://bugs.llvm.org/show_bug.cgi?id=49132. Don't bother running these tests
52 // with double doubles until compiler support is better.
53 using RealTypes =
54     std::conditional<absl::numeric_internal::IsDoubleDouble(),
55                      ::testing::Types<float, double>,
56                      ::testing::Types<float, double, long double>>::type;
57 TYPED_TEST_SUITE(GaussianDistributionInterfaceTest, RealTypes);
58 
TYPED_TEST(GaussianDistributionInterfaceTest,SerializeTest)59 TYPED_TEST(GaussianDistributionInterfaceTest, SerializeTest) {
60   using param_type =
61       typename absl::gaussian_distribution<TypeParam>::param_type;
62 
63   const TypeParam kParams[] = {
64       // Cases around 1.
65       1,                                           //
66       std::nextafter(TypeParam(1), TypeParam(0)),  // 1 - epsilon
67       std::nextafter(TypeParam(1), TypeParam(2)),  // 1 + epsilon
68       // Arbitrary values.
69       TypeParam(1e-8), TypeParam(1e-4), TypeParam(2), TypeParam(1e4),
70       TypeParam(1e8), TypeParam(1e20), TypeParam(2.5),
71       // Boundary cases.
72       std::numeric_limits<TypeParam>::infinity(),
73       std::numeric_limits<TypeParam>::max(),
74       std::numeric_limits<TypeParam>::epsilon(),
75       std::nextafter(std::numeric_limits<TypeParam>::min(),
76                      TypeParam(1)),           // min + epsilon
77       std::numeric_limits<TypeParam>::min(),  // smallest normal
78       // There are some errors dealing with denorms on apple platforms.
79       std::numeric_limits<TypeParam>::denorm_min(),  // smallest denorm
80       std::numeric_limits<TypeParam>::min() / 2,
81       std::nextafter(std::numeric_limits<TypeParam>::min(),
82                      TypeParam(0)),  // denorm_max
83   };
84 
85   constexpr int kCount = 1000;
86   absl::InsecureBitGen gen;
87 
88   // Use a loop to generate the combinations of {+/-x, +/-y}, and assign x, y to
89   // all values in kParams,
90   for (const auto mod : {0, 1, 2, 3}) {
91     for (const auto x : kParams) {
92       if (!std::isfinite(x)) continue;
93       for (const auto y : kParams) {
94         const TypeParam mean = (mod & 0x1) ? -x : x;
95         const TypeParam stddev = (mod & 0x2) ? -y : y;
96         const param_type param(mean, stddev);
97 
98         absl::gaussian_distribution<TypeParam> before(mean, stddev);
99         EXPECT_EQ(before.mean(), param.mean());
100         EXPECT_EQ(before.stddev(), param.stddev());
101 
102         {
103           absl::gaussian_distribution<TypeParam> via_param(param);
104           EXPECT_EQ(via_param, before);
105           EXPECT_EQ(via_param.param(), before.param());
106         }
107 
108         // Smoke test.
109         auto sample_min = before.max();
110         auto sample_max = before.min();
111         for (int i = 0; i < kCount; i++) {
112           auto sample = before(gen);
113           if (sample > sample_max) sample_max = sample;
114           if (sample < sample_min) sample_min = sample;
115           EXPECT_GE(sample, before.min()) << before;
116           EXPECT_LE(sample, before.max()) << before;
117         }
118         if (!std::is_same<TypeParam, long double>::value) {
119           ABSL_INTERNAL_LOG(
120               INFO, absl::StrFormat("Range{%f, %f}: %f, %f", mean, stddev,
121                                     sample_min, sample_max));
122         }
123 
124         std::stringstream ss;
125         ss << before;
126 
127         if (!std::isfinite(mean) || !std::isfinite(stddev)) {
128           // Streams do not parse inf/nan.
129           continue;
130         }
131 
132         // Validate stream serialization.
133         absl::gaussian_distribution<TypeParam> after(-0.53f, 2.3456f);
134 
135         EXPECT_NE(before.mean(), after.mean());
136         EXPECT_NE(before.stddev(), after.stddev());
137         EXPECT_NE(before.param(), after.param());
138         EXPECT_NE(before, after);
139 
140         ss >> after;
141 
142         EXPECT_EQ(before.mean(), after.mean());
143         EXPECT_EQ(before.stddev(), after.stddev())  //
144             << ss.str() << " "                      //
145             << (ss.good() ? "good " : "")           //
146             << (ss.bad() ? "bad " : "")             //
147             << (ss.eof() ? "eof " : "")             //
148             << (ss.fail() ? "fail " : "");
149       }
150     }
151   }
152 }
153 
154 // http://www.itl.nist.gov/div898/handbook/eda/section3/eda3661.htm
155 
156 class GaussianModel {
157  public:
GaussianModel(double mean,double stddev)158   GaussianModel(double mean, double stddev) : mean_(mean), stddev_(stddev) {}
159 
mean() const160   double mean() const { return mean_; }
variance() const161   double variance() const { return stddev() * stddev(); }
stddev() const162   double stddev() const { return stddev_; }
skew() const163   double skew() const { return 0; }
kurtosis() const164   double kurtosis() const { return 3.0; }
165 
166   // The inverse CDF, or PercentPoint function.
InverseCDF(double p)167   double InverseCDF(double p) {
168     ABSL_ASSERT(p >= 0.0);
169     ABSL_ASSERT(p < 1.0);
170     return mean() + stddev() * -absl::random_internal::InverseNormalSurvival(p);
171   }
172 
173  private:
174   const double mean_;
175   const double stddev_;
176 };
177 
178 struct Param {
179   double mean;
180   double stddev;
181   double p_fail;  // Z-Test probability of failure.
182   int trials;     // Z-Test trials.
183 };
184 
185 // GaussianDistributionTests implements a z-test for the gaussian
186 // distribution.
187 class GaussianDistributionTests : public testing::TestWithParam<Param>,
188                                   public GaussianModel {
189  public:
GaussianDistributionTests()190   GaussianDistributionTests()
191       : GaussianModel(GetParam().mean, GetParam().stddev) {}
192 
193   // SingleZTest provides a basic z-squared test of the mean vs. expected
194   // mean for data generated by the poisson distribution.
195   template <typename D>
196   bool SingleZTest(const double p, const size_t samples);
197 
198   // SingleChiSquaredTest provides a basic chi-squared test of the normal
199   // distribution.
200   template <typename D>
201   double SingleChiSquaredTest();
202 
203   // We use a fixed bit generator for distribution accuracy tests.  This allows
204   // these tests to be deterministic, while still testing the qualify of the
205   // implementation.
206   absl::random_internal::pcg64_2018_engine rng_{0x2B7E151628AED2A6};
207 };
208 
209 template <typename D>
SingleZTest(const double p,const size_t samples)210 bool GaussianDistributionTests::SingleZTest(const double p,
211                                             const size_t samples) {
212   D dis(mean(), stddev());
213 
214   std::vector<double> data;
215   data.reserve(samples);
216   for (size_t i = 0; i < samples; i++) {
217     const double x = dis(rng_);
218     data.push_back(x);
219   }
220 
221   const double max_err = absl::random_internal::MaxErrorTolerance(p);
222   const auto m = absl::random_internal::ComputeDistributionMoments(data);
223   const double z = absl::random_internal::ZScore(mean(), m);
224   const bool pass = absl::random_internal::Near("z", z, 0.0, max_err);
225 
226   // NOTE: Informational statistical test:
227   //
228   // Compute the Jarque-Bera test statistic given the excess skewness
229   // and kurtosis. The statistic is drawn from a chi-square(2) distribution.
230   // https://en.wikipedia.org/wiki/Jarque%E2%80%93Bera_test
231   //
232   // The null-hypothesis (normal distribution) is rejected when
233   // (p = 0.05 => jb > 5.99)
234   // (p = 0.01 => jb > 9.21)
235   // NOTE: JB has a large type-I error rate, so it will reject the
236   // null-hypothesis even when it is true more often than the z-test.
237   //
238   const double jb =
239       static_cast<double>(m.n) / 6.0 *
240       (std::pow(m.skewness, 2.0) + std::pow(m.kurtosis - 3.0, 2.0) / 4.0);
241 
242   if (!pass || jb > 9.21) {
243     ABSL_INTERNAL_LOG(
244         INFO, absl::StrFormat("p=%f max_err=%f\n"
245                               " mean=%f vs. %f\n"
246                               " stddev=%f vs. %f\n"
247                               " skewness=%f vs. %f\n"
248                               " kurtosis=%f vs. %f\n"
249                               " z=%f vs. 0\n"
250                               " jb=%f vs. 9.21",
251                               p, max_err, m.mean, mean(), std::sqrt(m.variance),
252                               stddev(), m.skewness, skew(), m.kurtosis,
253                               kurtosis(), z, jb));
254   }
255   return pass;
256 }
257 
258 template <typename D>
SingleChiSquaredTest()259 double GaussianDistributionTests::SingleChiSquaredTest() {
260   const size_t kSamples = 10000;
261   const int kBuckets = 50;
262 
263   // The InverseCDF is the percent point function of the
264   // distribution, and can be used to assign buckets
265   // roughly uniformly.
266   std::vector<double> cutoffs;
267   const double kInc = 1.0 / static_cast<double>(kBuckets);
268   for (double p = kInc; p < 1.0; p += kInc) {
269     cutoffs.push_back(InverseCDF(p));
270   }
271   if (cutoffs.back() != std::numeric_limits<double>::infinity()) {
272     cutoffs.push_back(std::numeric_limits<double>::infinity());
273   }
274 
275   D dis(mean(), stddev());
276 
277   std::vector<int32_t> counts(cutoffs.size(), 0);
278   for (int j = 0; j < kSamples; j++) {
279     const double x = dis(rng_);
280     auto it = std::upper_bound(cutoffs.begin(), cutoffs.end(), x);
281     counts[std::distance(cutoffs.begin(), it)]++;
282   }
283 
284   // Null-hypothesis is that the distribution is a gaussian distribution
285   // with the provided mean and stddev (not estimated from the data).
286   const int dof = static_cast<int>(counts.size()) - 1;
287 
288   // Our threshold for logging is 1-in-50.
289   const double threshold = absl::random_internal::ChiSquareValue(dof, 0.98);
290 
291   const double expected =
292       static_cast<double>(kSamples) / static_cast<double>(counts.size());
293 
294   double chi_square = absl::random_internal::ChiSquareWithExpected(
295       std::begin(counts), std::end(counts), expected);
296   double p = absl::random_internal::ChiSquarePValue(chi_square, dof);
297 
298   // Log if the chi_square value is above the threshold.
299   if (chi_square > threshold) {
300     for (int i = 0; i < cutoffs.size(); i++) {
301       ABSL_INTERNAL_LOG(
302           INFO, absl::StrFormat("%d : (%f) = %d", i, cutoffs[i], counts[i]));
303     }
304 
305     ABSL_INTERNAL_LOG(
306         INFO, absl::StrCat("mean=", mean(), " stddev=", stddev(), "\n",   //
307                            " expected ", expected, "\n",                  //
308                            kChiSquared, " ", chi_square, " (", p, ")\n",  //
309                            kChiSquared, " @ 0.98 = ", threshold));
310   }
311   return p;
312 }
313 
TEST_P(GaussianDistributionTests,ZTest)314 TEST_P(GaussianDistributionTests, ZTest) {
315   // TODO(absl-team): Run these tests against std::normal_distribution<double>
316   // to validate outcomes are similar.
317   const size_t kSamples = 10000;
318   const auto& param = GetParam();
319   const int expected_failures =
320       std::max(1, static_cast<int>(std::ceil(param.trials * param.p_fail)));
321   const double p = absl::random_internal::RequiredSuccessProbability(
322       param.p_fail, param.trials);
323 
324   int failures = 0;
325   for (int i = 0; i < param.trials; i++) {
326     failures +=
327         SingleZTest<absl::gaussian_distribution<double>>(p, kSamples) ? 0 : 1;
328   }
329   EXPECT_LE(failures, expected_failures);
330 }
331 
TEST_P(GaussianDistributionTests,ChiSquaredTest)332 TEST_P(GaussianDistributionTests, ChiSquaredTest) {
333   const int kTrials = 20;
334   int failures = 0;
335 
336   for (int i = 0; i < kTrials; i++) {
337     double p_value =
338         SingleChiSquaredTest<absl::gaussian_distribution<double>>();
339     if (p_value < 0.0025) {  // 1/400
340       failures++;
341     }
342   }
343   // There is a 0.05% chance of producing at least one failure, so raise the
344   // failure threshold high enough to allow for a flake rate of less than one in
345   // 10,000.
346   EXPECT_LE(failures, 4);
347 }
348 
GenParams()349 std::vector<Param> GenParams() {
350   return {
351       // Mean around 0.
352       Param{0.0, 1.0, 0.01, 100},
353       Param{0.0, 1e2, 0.01, 100},
354       Param{0.0, 1e4, 0.01, 100},
355       Param{0.0, 1e8, 0.01, 100},
356       Param{0.0, 1e16, 0.01, 100},
357       Param{0.0, 1e-3, 0.01, 100},
358       Param{0.0, 1e-5, 0.01, 100},
359       Param{0.0, 1e-9, 0.01, 100},
360       Param{0.0, 1e-17, 0.01, 100},
361 
362       // Mean around 1.
363       Param{1.0, 1.0, 0.01, 100},
364       Param{1.0, 1e2, 0.01, 100},
365       Param{1.0, 1e-2, 0.01, 100},
366 
367       // Mean around 100 / -100
368       Param{1e2, 1.0, 0.01, 100},
369       Param{-1e2, 1.0, 0.01, 100},
370       Param{1e2, 1e6, 0.01, 100},
371       Param{-1e2, 1e6, 0.01, 100},
372 
373       // More extreme
374       Param{1e4, 1e4, 0.01, 100},
375       Param{1e8, 1e4, 0.01, 100},
376       Param{1e12, 1e4, 0.01, 100},
377   };
378 }
379 
ParamName(const::testing::TestParamInfo<Param> & info)380 std::string ParamName(const ::testing::TestParamInfo<Param>& info) {
381   const auto& p = info.param;
382   std::string name = absl::StrCat("mean_", absl::SixDigits(p.mean), "__stddev_",
383                                   absl::SixDigits(p.stddev));
384   return absl::StrReplaceAll(name, {{"+", "_"}, {"-", "_"}, {".", "_"}});
385 }
386 
387 INSTANTIATE_TEST_SUITE_P(All, GaussianDistributionTests,
388                          ::testing::ValuesIn(GenParams()), ParamName);
389 
390 // NOTE: absl::gaussian_distribution is not guaranteed to be stable.
TEST(GaussianDistributionTest,StabilityTest)391 TEST(GaussianDistributionTest, StabilityTest) {
392   // absl::gaussian_distribution stability relies on the underlying zignor
393   // data, absl::random_interna::RandU64ToDouble, std::exp, std::log, and
394   // std::abs.
395   absl::random_internal::sequence_urbg urbg(
396       {0x0003eb76f6f7f755ull, 0xFFCEA50FDB2F953Bull, 0xC332DDEFBE6C5AA5ull,
397        0x6558218568AB9702ull, 0x2AEF7DAD5B6E2F84ull, 0x1521B62829076170ull,
398        0xECDD4775619F1510ull, 0x13CCA830EB61BD96ull, 0x0334FE1EAA0363CFull,
399        0xB5735C904C70A239ull, 0xD59E9E0BCBAADE14ull, 0xEECC86BC60622CA7ull});
400 
401   std::vector<int> output(11);
402 
403   {
404     absl::gaussian_distribution<double> dist;
405     std::generate(std::begin(output), std::end(output),
406                   [&] { return static_cast<int>(10000000.0 * dist(urbg)); });
407 
408     EXPECT_EQ(13, urbg.invocations());
409     EXPECT_THAT(output,  //
410                 testing::ElementsAre(1494, 25518841, 9991550, 1351856,
411                                      -20373238, 3456682, 333530, -6804981,
412                                      -15279580, -16459654, 1494));
413   }
414 
415   urbg.reset();
416   {
417     absl::gaussian_distribution<float> dist;
418     std::generate(std::begin(output), std::end(output),
419                   [&] { return static_cast<int>(1000000.0f * dist(urbg)); });
420 
421     EXPECT_EQ(13, urbg.invocations());
422     EXPECT_THAT(
423         output,  //
424         testing::ElementsAre(149, 2551884, 999155, 135185, -2037323, 345668,
425                              33353, -680498, -1527958, -1645965, 149));
426   }
427 }
428 
429 // This is an implementation-specific test. If any part of the implementation
430 // changes, then it is likely that this test will change as well.
431 // Also, if dependencies of the distribution change, such as RandU64ToDouble,
432 // then this is also likely to change.
TEST(GaussianDistributionTest,AlgorithmBounds)433 TEST(GaussianDistributionTest, AlgorithmBounds) {
434   absl::gaussian_distribution<double> dist;
435 
436   // In ~95% of cases, a single value is used to generate the output.
437   // for all inputs where |x| < 0.750461021389 this should be the case.
438   //
439   // The exact constraints are based on the ziggurat tables, and any
440   // changes to the ziggurat tables may require adjusting these bounds.
441   //
442   // for i in range(0, len(X)-1):
443   //   print i, X[i+1]/X[i], (X[i+1]/X[i] > 0.984375)
444   //
445   // 0.125 <= |values| <= 0.75
446   const uint64_t kValues[] = {
447       0x1000000000000100ull, 0x2000000000000100ull, 0x3000000000000100ull,
448       0x4000000000000100ull, 0x5000000000000100ull, 0x6000000000000100ull,
449       // negative values
450       0x9000000000000100ull, 0xa000000000000100ull, 0xb000000000000100ull,
451       0xc000000000000100ull, 0xd000000000000100ull, 0xe000000000000100ull};
452 
453   // 0.875 <= |values| <= 0.984375
454   const uint64_t kExtraValues[] = {
455       0x7000000000000100ull, 0x7800000000000100ull,  //
456       0x7c00000000000100ull, 0x7e00000000000100ull,  //
457       // negative values
458       0xf000000000000100ull, 0xf800000000000100ull,  //
459       0xfc00000000000100ull, 0xfe00000000000100ull};
460 
461   auto make_box = [](uint64_t v, uint64_t box) {
462     return (v & 0xffffffffffffff80ull) | box;
463   };
464 
465   // The box is the lower 7 bits of the value. When the box == 0, then
466   // the algorithm uses an escape hatch to select the result for large
467   // outputs.
468   for (uint64_t box = 0; box < 0x7f; box++) {
469     for (const uint64_t v : kValues) {
470       // Extra values are added to the sequence to attempt to avoid
471       // infinite loops from rejection sampling on bugs/errors.
472       absl::random_internal::sequence_urbg urbg(
473           {make_box(v, box), 0x0003eb76f6f7f755ull, 0x5FCEA50FDB2F953Bull});
474 
475       auto a = dist(urbg);
476       EXPECT_EQ(1, urbg.invocations()) << box << " " << std::hex << v;
477       if (v & 0x8000000000000000ull) {
478         EXPECT_LT(a, 0.0) << box << " " << std::hex << v;
479       } else {
480         EXPECT_GT(a, 0.0) << box << " " << std::hex << v;
481       }
482     }
483     if (box > 10 && box < 100) {
484       // The center boxes use the fast algorithm for more
485       // than 98.4375% of values.
486       for (const uint64_t v : kExtraValues) {
487         absl::random_internal::sequence_urbg urbg(
488             {make_box(v, box), 0x0003eb76f6f7f755ull, 0x5FCEA50FDB2F953Bull});
489 
490         auto a = dist(urbg);
491         EXPECT_EQ(1, urbg.invocations()) << box << " " << std::hex << v;
492         if (v & 0x8000000000000000ull) {
493           EXPECT_LT(a, 0.0) << box << " " << std::hex << v;
494         } else {
495           EXPECT_GT(a, 0.0) << box << " " << std::hex << v;
496         }
497       }
498     }
499   }
500 
501   // When the box == 0, the fallback algorithm uses a ratio of uniforms,
502   // which consumes 2 additional values from the urbg.
503   // Fallback also requires that the initial value be > 0.9271586026096681.
504   auto make_fallback = [](uint64_t v) { return (v & 0xffffffffffffff80ull); };
505 
506   double tail[2];
507   {
508     // 0.9375
509     absl::random_internal::sequence_urbg urbg(
510         {make_fallback(0x7800000000000000ull), 0x13CCA830EB61BD96ull,
511          0x00000076f6f7f755ull});
512     tail[0] = dist(urbg);
513     EXPECT_EQ(3, urbg.invocations());
514     EXPECT_GT(tail[0], 0);
515   }
516   {
517     // -0.9375
518     absl::random_internal::sequence_urbg urbg(
519         {make_fallback(0xf800000000000000ull), 0x13CCA830EB61BD96ull,
520          0x00000076f6f7f755ull});
521     tail[1] = dist(urbg);
522     EXPECT_EQ(3, urbg.invocations());
523     EXPECT_LT(tail[1], 0);
524   }
525   EXPECT_EQ(tail[0], -tail[1]);
526   EXPECT_EQ(418610, static_cast<int64_t>(tail[0] * 100000.0));
527 
528   // When the box != 0, the fallback algorithm computes a wedge function.
529   // Depending on the box, the threshold for varies as high as
530   // 0.991522480228.
531   {
532     // 0.9921875, 0.875
533     absl::random_internal::sequence_urbg urbg(
534         {make_box(0x7f00000000000000ull, 120), 0xe000000000000001ull,
535          0x13CCA830EB61BD96ull});
536     tail[0] = dist(urbg);
537     EXPECT_EQ(2, urbg.invocations());
538     EXPECT_GT(tail[0], 0);
539   }
540   {
541     // -0.9921875, 0.875
542     absl::random_internal::sequence_urbg urbg(
543         {make_box(0xff00000000000000ull, 120), 0xe000000000000001ull,
544          0x13CCA830EB61BD96ull});
545     tail[1] = dist(urbg);
546     EXPECT_EQ(2, urbg.invocations());
547     EXPECT_LT(tail[1], 0);
548   }
549   EXPECT_EQ(tail[0], -tail[1]);
550   EXPECT_EQ(61948, static_cast<int64_t>(tail[0] * 100000.0));
551 
552   // Fallback rejected, try again.
553   {
554     // -0.9921875, 0.0625
555     absl::random_internal::sequence_urbg urbg(
556         {make_box(0xff00000000000000ull, 120), 0x1000000000000001,
557          make_box(0x1000000000000100ull, 50), 0x13CCA830EB61BD96ull});
558     dist(urbg);
559     EXPECT_EQ(3, urbg.invocations());
560   }
561 }
562 
563 }  // namespace
564