1 // Copyright 2017 The Abseil Authors.
2 //
3 // Licensed under the Apache License, Version 2.0 (the "License");
4 // you may not use this file except in compliance with the License.
5 // You may obtain a copy of the License at
6 //
7 // https://www.apache.org/licenses/LICENSE-2.0
8 //
9 // Unless required by applicable law or agreed to in writing, software
10 // distributed under the License is distributed on an "AS IS" BASIS,
11 // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12 // See the License for the specific language governing permissions and
13 // limitations under the License.
14
15 #include "absl/random/internal/distribution_test_util.h"
16
17 #include <cassert>
18 #include <cmath>
19 #include <string>
20 #include <vector>
21
22 #include "absl/base/internal/raw_logging.h"
23 #include "absl/base/macros.h"
24 #include "absl/strings/str_cat.h"
25 #include "absl/strings/str_format.h"
26
27 namespace absl {
28 ABSL_NAMESPACE_BEGIN
29 namespace random_internal {
30 namespace {
31
32 #if defined(__EMSCRIPTEN__)
33 // Workaround __EMSCRIPTEN__ error: llvm_fma_f64 not found.
fma(double x,double y,double z)34 inline double fma(double x, double y, double z) { return (x * y) + z; }
35 #endif
36
37 } // namespace
38
ComputeDistributionMoments(absl::Span<const double> data_points)39 DistributionMoments ComputeDistributionMoments(
40 absl::Span<const double> data_points) {
41 DistributionMoments result;
42
43 // Compute m1
44 for (double x : data_points) {
45 result.n++;
46 result.mean += x;
47 }
48 result.mean /= static_cast<double>(result.n);
49
50 // Compute m2, m3, m4
51 for (double x : data_points) {
52 double v = x - result.mean;
53 result.variance += v * v;
54 result.skewness += v * v * v;
55 result.kurtosis += v * v * v * v;
56 }
57 result.variance /= static_cast<double>(result.n - 1);
58
59 result.skewness /= static_cast<double>(result.n);
60 result.skewness /= std::pow(result.variance, 1.5);
61
62 result.kurtosis /= static_cast<double>(result.n);
63 result.kurtosis /= std::pow(result.variance, 2.0);
64 return result;
65
66 // When validating the min/max count, the following confidence intervals may
67 // be of use:
68 // 3.291 * stddev = 99.9% CI
69 // 2.576 * stddev = 99% CI
70 // 1.96 * stddev = 95% CI
71 // 1.65 * stddev = 90% CI
72 }
73
operator <<(std::ostream & os,const DistributionMoments & moments)74 std::ostream& operator<<(std::ostream& os, const DistributionMoments& moments) {
75 return os << absl::StrFormat("mean=%f, stddev=%f, skewness=%f, kurtosis=%f",
76 moments.mean, std::sqrt(moments.variance),
77 moments.skewness, moments.kurtosis);
78 }
79
InverseNormalSurvival(double x)80 double InverseNormalSurvival(double x) {
81 // inv_sf(u) = -sqrt(2) * erfinv(2u-1)
82 static constexpr double kSqrt2 = 1.4142135623730950488;
83 return -kSqrt2 * absl::random_internal::erfinv(2 * x - 1.0);
84 }
85
Near(absl::string_view msg,double actual,double expected,double bound)86 bool Near(absl::string_view msg, double actual, double expected, double bound) {
87 assert(bound > 0.0);
88 double delta = fabs(expected - actual);
89 if (delta < bound) {
90 return true;
91 }
92
93 std::string formatted = absl::StrCat(
94 msg, " actual=", actual, " expected=", expected, " err=", delta / bound);
95 ABSL_RAW_LOG(INFO, "%s", formatted.c_str());
96 return false;
97 }
98
99 // TODO(absl-team): Replace with an "ABSL_HAVE_SPECIAL_MATH" and try
100 // to use std::beta(). As of this writing P0226R1 is not implemented
101 // in libc++: http://libcxx.llvm.org/cxx1z_status.html
beta(double p,double q)102 double beta(double p, double q) {
103 // Beta(x, y) = Gamma(x) * Gamma(y) / Gamma(x+y)
104 double lbeta = std::lgamma(p) + std::lgamma(q) - std::lgamma(p + q);
105 return std::exp(lbeta);
106 }
107
108 // Approximation to inverse of the Error Function in double precision.
109 // (http://people.maths.ox.ac.uk/gilesm/files/gems_erfinv.pdf)
erfinv(double x)110 double erfinv(double x) {
111 #if !defined(__EMSCRIPTEN__)
112 using std::fma;
113 #endif
114
115 double w = 0.0;
116 double p = 0.0;
117 w = -std::log((1.0 - x) * (1.0 + x));
118 if (w < 6.250000) {
119 w = w - 3.125000;
120 p = -3.6444120640178196996e-21;
121 p = fma(p, w, -1.685059138182016589e-19);
122 p = fma(p, w, 1.2858480715256400167e-18);
123 p = fma(p, w, 1.115787767802518096e-17);
124 p = fma(p, w, -1.333171662854620906e-16);
125 p = fma(p, w, 2.0972767875968561637e-17);
126 p = fma(p, w, 6.6376381343583238325e-15);
127 p = fma(p, w, -4.0545662729752068639e-14);
128 p = fma(p, w, -8.1519341976054721522e-14);
129 p = fma(p, w, 2.6335093153082322977e-12);
130 p = fma(p, w, -1.2975133253453532498e-11);
131 p = fma(p, w, -5.4154120542946279317e-11);
132 p = fma(p, w, 1.051212273321532285e-09);
133 p = fma(p, w, -4.1126339803469836976e-09);
134 p = fma(p, w, -2.9070369957882005086e-08);
135 p = fma(p, w, 4.2347877827932403518e-07);
136 p = fma(p, w, -1.3654692000834678645e-06);
137 p = fma(p, w, -1.3882523362786468719e-05);
138 p = fma(p, w, 0.0001867342080340571352);
139 p = fma(p, w, -0.00074070253416626697512);
140 p = fma(p, w, -0.0060336708714301490533);
141 p = fma(p, w, 0.24015818242558961693);
142 p = fma(p, w, 1.6536545626831027356);
143 } else if (w < 16.000000) {
144 w = std::sqrt(w) - 3.250000;
145 p = 2.2137376921775787049e-09;
146 p = fma(p, w, 9.0756561938885390979e-08);
147 p = fma(p, w, -2.7517406297064545428e-07);
148 p = fma(p, w, 1.8239629214389227755e-08);
149 p = fma(p, w, 1.5027403968909827627e-06);
150 p = fma(p, w, -4.013867526981545969e-06);
151 p = fma(p, w, 2.9234449089955446044e-06);
152 p = fma(p, w, 1.2475304481671778723e-05);
153 p = fma(p, w, -4.7318229009055733981e-05);
154 p = fma(p, w, 6.8284851459573175448e-05);
155 p = fma(p, w, 2.4031110387097893999e-05);
156 p = fma(p, w, -0.0003550375203628474796);
157 p = fma(p, w, 0.00095328937973738049703);
158 p = fma(p, w, -0.0016882755560235047313);
159 p = fma(p, w, 0.0024914420961078508066);
160 p = fma(p, w, -0.0037512085075692412107);
161 p = fma(p, w, 0.005370914553590063617);
162 p = fma(p, w, 1.0052589676941592334);
163 p = fma(p, w, 3.0838856104922207635);
164 } else {
165 w = std::sqrt(w) - 5.000000;
166 p = -2.7109920616438573243e-11;
167 p = fma(p, w, -2.5556418169965252055e-10);
168 p = fma(p, w, 1.5076572693500548083e-09);
169 p = fma(p, w, -3.7894654401267369937e-09);
170 p = fma(p, w, 7.6157012080783393804e-09);
171 p = fma(p, w, -1.4960026627149240478e-08);
172 p = fma(p, w, 2.9147953450901080826e-08);
173 p = fma(p, w, -6.7711997758452339498e-08);
174 p = fma(p, w, 2.2900482228026654717e-07);
175 p = fma(p, w, -9.9298272942317002539e-07);
176 p = fma(p, w, 4.5260625972231537039e-06);
177 p = fma(p, w, -1.9681778105531670567e-05);
178 p = fma(p, w, 7.5995277030017761139e-05);
179 p = fma(p, w, -0.00021503011930044477347);
180 p = fma(p, w, -0.00013871931833623122026);
181 p = fma(p, w, 1.0103004648645343977);
182 p = fma(p, w, 4.8499064014085844221);
183 }
184 return p * x;
185 }
186
187 namespace {
188
189 // Direct implementation of AS63, BETAIN()
190 // https://www.jstor.org/stable/2346797?seq=3#page_scan_tab_contents.
191 //
192 // BETAIN(x, p, q, beta)
193 // x: the value of the upper limit x.
194 // p: the value of the parameter p.
195 // q: the value of the parameter q.
196 // beta: the value of ln B(p, q)
197 //
BetaIncompleteImpl(const double x,const double p,const double q,const double beta)198 double BetaIncompleteImpl(const double x, const double p, const double q,
199 const double beta) {
200 if (p < (p + q) * x) {
201 // Incomplete beta function is symmetrical, so return the complement.
202 return 1. - BetaIncompleteImpl(1.0 - x, q, p, beta);
203 }
204
205 double psq = p + q;
206 const double kErr = 1e-14;
207 const double xc = 1. - x;
208 const double pre =
209 std::exp(p * std::log(x) + (q - 1.) * std::log(xc) - beta) / p;
210
211 double term = 1.;
212 double ai = 1.;
213 double result = 1.;
214 int ns = static_cast<int>(q + xc * psq);
215
216 // Use the soper reduction forumla.
217 double rx = (ns == 0) ? x : x / xc;
218 double temp = q - ai;
219 for (;;) {
220 term = term * temp * rx / (p + ai);
221 result = result + term;
222 temp = std::fabs(term);
223 if (temp < kErr && temp < kErr * result) {
224 return result * pre;
225 }
226 ai = ai + 1.;
227 --ns;
228 if (ns >= 0) {
229 temp = q - ai;
230 if (ns == 0) {
231 rx = x;
232 }
233 } else {
234 temp = psq;
235 psq = psq + 1.;
236 }
237 }
238
239 // NOTE: See also TOMS Alogrithm 708.
240 // http://www.netlib.org/toms/index.html
241 //
242 // NOTE: The NWSC library also includes BRATIO / ISUBX (p87)
243 // https://archive.org/details/DTIC_ADA261511/page/n75
244 }
245
246 // Direct implementation of AS109, XINBTA(p, q, beta, alpha)
247 // https://www.jstor.org/stable/2346798?read-now=1&seq=4#page_scan_tab_contents
248 // https://www.jstor.org/stable/2346887?seq=1#page_scan_tab_contents
249 //
250 // XINBTA(p, q, beta, alhpa)
251 // p: the value of the parameter p.
252 // q: the value of the parameter q.
253 // beta: the value of ln B(p, q)
254 // alpha: the value of the lower tail area.
255 //
BetaIncompleteInvImpl(const double p,const double q,const double beta,const double alpha)256 double BetaIncompleteInvImpl(const double p, const double q, const double beta,
257 const double alpha) {
258 if (alpha < 0.5) {
259 // Inverse Incomplete beta function is symmetrical, return the complement.
260 return 1. - BetaIncompleteInvImpl(q, p, beta, 1. - alpha);
261 }
262 const double kErr = 1e-14;
263 double value = kErr;
264
265 // Compute the initial estimate.
266 {
267 double r = std::sqrt(-std::log(alpha * alpha));
268 double y =
269 r - fma(r, 0.27061, 2.30753) / fma(r, fma(r, 0.04481, 0.99229), 1.0);
270 if (p > 1. && q > 1.) {
271 r = (y * y - 3.) / 6.;
272 double s = 1. / (p + p - 1.);
273 double t = 1. / (q + q - 1.);
274 double h = 2. / s + t;
275 double w =
276 y * std::sqrt(h + r) / h - (t - s) * (r + 5. / 6. - t / (3. * h));
277 value = p / (p + q * std::exp(w + w));
278 } else {
279 r = q + q;
280 double t = 1.0 / (9. * q);
281 double u = 1.0 - t + y * std::sqrt(t);
282 t = r * (u * u * u);
283 if (t <= 0) {
284 value = 1.0 - std::exp((std::log((1.0 - alpha) * q) + beta) / q);
285 } else {
286 t = (4.0 * p + r - 2.0) / t;
287 if (t <= 1) {
288 value = std::exp((std::log(alpha * p) + beta) / p);
289 } else {
290 value = 1.0 - 2.0 / (t + 1.0);
291 }
292 }
293 }
294 }
295
296 // Solve for x using a modified newton-raphson method using the function
297 // BetaIncomplete.
298 {
299 value = std::max(value, kErr);
300 value = std::min(value, 1.0 - kErr);
301
302 const double r = 1.0 - p;
303 const double t = 1.0 - q;
304 double y;
305 double yprev = 0;
306 double sq = 1;
307 double prev = 1;
308 for (;;) {
309 if (value < 0 || value > 1.0) {
310 // Error case; value went infinite.
311 return std::numeric_limits<double>::infinity();
312 } else if (value == 0 || value == 1) {
313 y = value;
314 } else {
315 y = BetaIncompleteImpl(value, p, q, beta);
316 if (!std::isfinite(y)) {
317 return y;
318 }
319 }
320 y = (y - alpha) *
321 std::exp(beta + r * std::log(value) + t * std::log(1.0 - value));
322 if (y * yprev <= 0) {
323 prev = std::max(sq, std::numeric_limits<double>::min());
324 }
325 double g = 1.0;
326 for (;;) {
327 const double adj = g * y;
328 const double adj_sq = adj * adj;
329 if (adj_sq >= prev) {
330 g = g / 3.0;
331 continue;
332 }
333 const double tx = value - adj;
334 if (tx < 0 || tx > 1) {
335 g = g / 3.0;
336 continue;
337 }
338 if (prev < kErr) {
339 return value;
340 }
341 if (y * y < kErr) {
342 return value;
343 }
344 if (tx == value) {
345 return value;
346 }
347 if (tx == 0 || tx == 1) {
348 g = g / 3.0;
349 continue;
350 }
351 value = tx;
352 yprev = y;
353 break;
354 }
355 }
356 }
357
358 // NOTES: See also: Asymptotic inversion of the incomplete beta function.
359 // https://core.ac.uk/download/pdf/82140723.pdf
360 //
361 // NOTE: See the Boost library documentation as well:
362 // https://www.boost.org/doc/libs/1_52_0/libs/math/doc/sf_and_dist/html/math_toolkit/special/sf_beta/ibeta_function.html
363 }
364
365 } // namespace
366
BetaIncomplete(const double x,const double p,const double q)367 double BetaIncomplete(const double x, const double p, const double q) {
368 // Error cases.
369 if (p < 0 || q < 0 || x < 0 || x > 1.0) {
370 return std::numeric_limits<double>::infinity();
371 }
372 if (x == 0 || x == 1) {
373 return x;
374 }
375 // ln(Beta(p, q))
376 double beta = std::lgamma(p) + std::lgamma(q) - std::lgamma(p + q);
377 return BetaIncompleteImpl(x, p, q, beta);
378 }
379
BetaIncompleteInv(const double p,const double q,const double alpha)380 double BetaIncompleteInv(const double p, const double q, const double alpha) {
381 // Error cases.
382 if (p < 0 || q < 0 || alpha < 0 || alpha > 1.0) {
383 return std::numeric_limits<double>::infinity();
384 }
385 if (alpha == 0 || alpha == 1) {
386 return alpha;
387 }
388 // ln(Beta(p, q))
389 double beta = std::lgamma(p) + std::lgamma(q) - std::lgamma(p + q);
390 return BetaIncompleteInvImpl(p, q, beta, alpha);
391 }
392
393 // Given `num_trials` trials each with probability `p` of success, the
394 // probability of no failures is `p^k`. To ensure the probability of a failure
395 // is no more than `p_fail`, it must be that `p^k == 1 - p_fail`. This function
396 // computes `p` from that equation.
RequiredSuccessProbability(const double p_fail,const int num_trials)397 double RequiredSuccessProbability(const double p_fail, const int num_trials) {
398 double p = std::exp(std::log(1.0 - p_fail) / static_cast<double>(num_trials));
399 ABSL_ASSERT(p > 0);
400 return p;
401 }
402
ZScore(double expected_mean,const DistributionMoments & moments)403 double ZScore(double expected_mean, const DistributionMoments& moments) {
404 return (moments.mean - expected_mean) /
405 (std::sqrt(moments.variance) /
406 std::sqrt(static_cast<double>(moments.n)));
407 }
408
MaxErrorTolerance(double acceptance_probability)409 double MaxErrorTolerance(double acceptance_probability) {
410 double one_sided_pvalue = 0.5 * (1.0 - acceptance_probability);
411 const double max_err = InverseNormalSurvival(one_sided_pvalue);
412 ABSL_ASSERT(max_err > 0);
413 return max_err;
414 }
415
416 } // namespace random_internal
417 ABSL_NAMESPACE_END
418 } // namespace absl
419