1 /*
2 * Copyright 2021 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17 #pragma once
18
19 #include <cstddef>
20 #include <limits>
21 #include <optional>
22 #include <string_view>
23 #include <type_traits>
24 #include <utility>
25
26 #include <ftl/string.h>
27
28 // Returns the name of enumerator E::V (i.e. "V") as std::optional<std::string_view> by parsing the
29 // compiler-generated string literal for the signature of this function. The function is defined in
30 // the global namespace with a short name and inferred return type to reduce bloat in the read-only
31 // data segment.
32 template <typename E, E V>
ftl_enum()33 constexpr auto ftl_enum() {
34 static_assert(std::is_enum_v<E>);
35
36 using R = std::optional<std::string_view>;
37 using namespace std::literals;
38
39 // The "pretty" signature has the following format:
40 //
41 // auto ftl_enum() [E = android::test::Enum, V = android::test::Enum::kValue]
42 //
43 std::string_view view = __PRETTY_FUNCTION__;
44 const auto template_begin = view.rfind('[');
45 const auto template_end = view.rfind(']');
46 if (template_begin == view.npos || template_end == view.npos) return R{};
47
48 // Extract the template parameters without the enclosing brackets. Example (cont'd):
49 //
50 // E = android::test::Enum, V = android::test::Enum::kValue
51 //
52 view = view.substr(template_begin + 1, template_end - template_begin - 1);
53 const auto value_begin = view.rfind("V = "sv);
54 if (value_begin == view.npos) return R{};
55
56 // Example (cont'd):
57 //
58 // V = android::test::Enum::kValue
59 //
60 view = view.substr(value_begin);
61 const auto name_begin = view.rfind("::"sv);
62 if (name_begin == view.npos) return R{};
63
64 // Chop off the leading "::".
65 const auto name = view.substr(name_begin + 2);
66
67 // A value that is not enumerated has the format "Enum)42".
68 return name.find(')') == view.npos ? R{name} : R{};
69 }
70
71 namespace android::ftl {
72
73 // Trait for determining whether a type is specifically a scoped enum or not. By definition, a
74 // scoped enum is one that is not implicitly convertible to its underlying type.
75 //
76 // TODO: Replace with std::is_scoped_enum in C++23.
77 //
78 template <typename T, bool = std::is_enum_v<T>>
79 struct is_scoped_enum : std::false_type {};
80
81 template <typename T>
82 struct is_scoped_enum<T, true> : std::negation<std::is_convertible<T, std::underlying_type_t<T>>> {
83 };
84
85 template <typename T>
86 inline constexpr bool is_scoped_enum_v = is_scoped_enum<T>::value;
87
88 // Shorthand for casting an enumerator to its integral value.
89 //
90 // TODO: Replace with std::to_underlying in C++23.
91 //
92 // enum class E { A, B, C };
93 // static_assert(ftl::to_underlying(E::B) == 1);
94 //
95 template <typename E, typename = std::enable_if_t<std::is_enum_v<E>>>
96 constexpr auto to_underlying(E v) {
97 return static_cast<std::underlying_type_t<E>>(v);
98 }
99
100 // Traits for retrieving an enum's range. An enum specifies its range by defining enumerators named
101 // ftl_first and ftl_last. If omitted, ftl_first defaults to 0, whereas ftl_last defaults to N - 1
102 // where N is the bit width of the underlying type, but only if that type is unsigned, assuming the
103 // enumerators are flags. Also, note that unscoped enums must define both bounds, as casting out-of-
104 // range values results in undefined behavior if the underlying type is not fixed.
105 //
106 // enum class E { A, B, C, F = 5, ftl_last = F };
107 //
108 // static_assert(ftl::enum_begin_v<E> == E::A);
109 // static_assert(ftl::enum_last_v<E> == E::F);
110 // static_assert(ftl::enum_size_v<E> == 6);
111 //
112 // enum class F : std::uint16_t { X = 0b1, Y = 0b10, Z = 0b100 };
113 //
114 // static_assert(ftl::enum_begin_v<F> == F{0});
115 // static_assert(ftl::enum_last_v<F> == F{15});
116 // static_assert(ftl::enum_size_v<F> == 16);
117 //
118 template <typename E, typename = void>
119 struct enum_begin {
120 static_assert(is_scoped_enum_v<E>, "Missing ftl_first enumerator");
121 static constexpr E value{0};
122 };
123
124 template <typename E>
125 struct enum_begin<E, std::void_t<decltype(E::ftl_first)>> {
126 static constexpr E value = E::ftl_first;
127 };
128
129 template <typename E>
130 inline constexpr E enum_begin_v = enum_begin<E>::value;
131
132 template <typename E, typename = void>
133 struct enum_end {
134 using U = std::underlying_type_t<E>;
135 static_assert(is_scoped_enum_v<E> && std::is_unsigned_v<U>, "Missing ftl_last enumerator");
136
137 static constexpr E value{std::numeric_limits<U>::digits};
138 };
139
140 template <typename E>
141 struct enum_end<E, std::void_t<decltype(E::ftl_last)>> {
142 static constexpr E value = E{to_underlying(E::ftl_last) + 1};
143 };
144
145 template <typename E>
146 inline constexpr E enum_end_v = enum_end<E>::value;
147
148 template <typename E>
149 inline constexpr E enum_last_v = E{to_underlying(enum_end_v<E>) - 1};
150
151 template <typename E>
152 struct enum_size {
153 static constexpr auto kBegin = to_underlying(enum_begin_v<E>);
154 static constexpr auto kEnd = to_underlying(enum_end_v<E>);
155 static_assert(kBegin < kEnd, "Invalid range");
156
157 static constexpr std::size_t value = kEnd - kBegin;
158 static_assert(value <= 64, "Excessive range size");
159 };
160
161 template <typename E>
162 inline constexpr std::size_t enum_size_v = enum_size<E>::value;
163
164 namespace details {
165
166 template <auto V>
167 struct Identity {
168 static constexpr auto value = V;
169 };
170
171 template <typename E>
172 using make_enum_sequence = std::make_integer_sequence<std::underlying_type_t<E>, enum_size_v<E>>;
173
174 template <typename E, template <E> class = Identity, typename = make_enum_sequence<E>>
175 struct EnumRange;
176
177 template <typename E, template <E> class F, typename T, T... Vs>
178 struct EnumRange<E, F, std::integer_sequence<T, Vs...>> {
179 static constexpr auto kBegin = to_underlying(enum_begin_v<E>);
180 static constexpr auto kSize = enum_size_v<E>;
181
182 using R = decltype(F<E{}>::value);
183 const R values[kSize] = {F<static_cast<E>(Vs + kBegin)>::value...};
184
185 constexpr const auto* begin() const { return values; }
186 constexpr const auto* end() const { return values + kSize; }
187 };
188
189 template <auto V>
190 struct EnumName {
191 static constexpr auto value = ftl_enum<decltype(V), V>();
192 };
193
194 template <auto I>
195 struct FlagName {
196 using E = decltype(I);
197 using U = std::underlying_type_t<E>;
198
199 static constexpr E V{U{1} << to_underlying(I)};
200 static constexpr auto value = ftl_enum<E, V>();
201 };
202
203 } // namespace details
204
205 // Returns an iterable over the range of an enum.
206 //
207 // enum class E { A, B, C, F = 5, ftl_last = F };
208 //
209 // std::string string;
210 // for (E v : ftl::enum_range<E>()) {
211 // string += ftl::enum_name(v).value_or("?");
212 // }
213 //
214 // assert(string == "ABC??F");
215 //
216 template <typename E>
217 constexpr auto enum_range() {
218 return details::EnumRange<E>{};
219 }
220
221 // Returns a stringified enumerator at compile time.
222 //
223 // enum class E { A, B, C };
224 // static_assert(ftl::enum_name<E::B>() == "B");
225 //
226 template <auto V>
227 constexpr std::string_view enum_name() {
228 constexpr auto kName = ftl_enum<decltype(V), V>();
229 static_assert(kName, "Unknown enumerator");
230 return *kName;
231 }
232
233 // Returns a stringified enumerator, possibly at compile time.
234 //
235 // enum class E { A, B, C, F = 5, ftl_last = F };
236 //
237 // static_assert(ftl::enum_name(E::C).value_or("?") == "C");
238 // static_assert(ftl::enum_name(E{3}).value_or("?") == "?");
239 //
240 template <typename E>
241 constexpr std::optional<std::string_view> enum_name(E v) {
242 const auto value = to_underlying(v);
243
244 constexpr auto kBegin = to_underlying(enum_begin_v<E>);
245 constexpr auto kLast = to_underlying(enum_last_v<E>);
246 if (value < kBegin || value > kLast) return {};
247
248 constexpr auto kRange = details::EnumRange<E, details::EnumName>{};
249 return kRange.values[value - kBegin];
250 }
251
252 // Returns a stringified flag enumerator, possibly at compile time.
253 //
254 // enum class F : std::uint16_t { X = 0b1, Y = 0b10, Z = 0b100 };
255 //
256 // static_assert(ftl::flag_name(F::Z).value_or("?") == "Z");
257 // static_assert(ftl::flag_name(F{0b111}).value_or("?") == "?");
258 //
259 template <typename E>
260 constexpr std::optional<std::string_view> flag_name(E v) {
261 const auto value = to_underlying(v);
262
263 // TODO: Replace with std::popcount and std::countr_zero in C++20.
264 if (__builtin_popcountll(value) != 1) return {};
265
266 constexpr auto kRange = details::EnumRange<E, details::FlagName>{};
267 return kRange.values[__builtin_ctzll(value)];
268 }
269
270 // Returns a stringified enumerator, or its integral value if not named.
271 //
272 // enum class E { A, B, C, F = 5, ftl_last = F };
273 //
274 // assert(ftl::enum_string(E::C) == "C");
275 // assert(ftl::enum_string(E{3}) == "3");
276 //
277 template <typename E>
278 inline std::string enum_string(E v) {
279 if (const auto name = enum_name(v)) {
280 return std::string(*name);
281 }
282 return to_string(to_underlying(v));
283 }
284
285 // Returns a stringified flag enumerator, or its integral value if not named.
286 //
287 // enum class F : std::uint16_t { X = 0b1, Y = 0b10, Z = 0b100 };
288 //
289 // assert(ftl::flag_string(F::Z) == "Z");
290 // assert(ftl::flag_string(F{7}) == "0b111");
291 //
292 template <typename E>
293 inline std::string flag_string(E v) {
294 if (const auto name = flag_name(v)) {
295 return std::string(*name);
296 }
297 constexpr auto radix = sizeof(E) == 1 ? Radix::kBin : Radix::kHex;
298 return to_string(to_underlying(v), radix);
299 }
300
301 } // namespace android::ftl
302