1 /*
2 * Copyright 2023 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17 #define LOG_TAG "MotionPredictorMetricsManager"
18
19 #include <input/MotionPredictorMetricsManager.h>
20
21 #include <algorithm>
22
23 #include <android-base/logging.h>
24
25 #include "Eigen/Core"
26 #include "Eigen/Geometry"
27
28 #ifdef __ANDROID__
29 #include <statslog_libinput.h>
30 #endif
31
32 namespace android {
33 namespace {
34
35 inline constexpr int NANOS_PER_SECOND = 1'000'000'000; // nanoseconds per second
36 inline constexpr int NANOS_PER_MILLIS = 1'000'000; // nanoseconds per millisecond
37
38 // Velocity threshold at which we report "high-velocity" metrics, in pixels per second.
39 // This value was selected from manual experimentation, as a threshold that separates "fast"
40 // (semi-sloppy) handwriting from more careful medium to slow handwriting.
41 inline constexpr float HIGH_VELOCITY_THRESHOLD = 1100.0;
42
43 // Small value to add to the path length when computing scale-invariant error to avoid division by
44 // zero.
45 inline constexpr float PATH_LENGTH_EPSILON = 0.001;
46
47 } // namespace
48
MotionPredictorMetricsManager(nsecs_t predictionInterval,size_t maxNumPredictions)49 MotionPredictorMetricsManager::MotionPredictorMetricsManager(nsecs_t predictionInterval,
50 size_t maxNumPredictions)
51 : mPredictionInterval(predictionInterval),
52 mMaxNumPredictions(maxNumPredictions),
53 mRecentGroundTruthPoints(maxNumPredictions + 1),
54 mAggregatedMetrics(maxNumPredictions),
55 mAtomFields(maxNumPredictions) {}
56
onRecord(const MotionEvent & inputEvent)57 void MotionPredictorMetricsManager::onRecord(const MotionEvent& inputEvent) {
58 // Convert MotionEvent to GroundTruthPoint.
59 const PointerCoords* coords = inputEvent.getRawPointerCoords(/*pointerIndex=*/0);
60 LOG_ALWAYS_FATAL_IF(coords == nullptr);
61 const GroundTruthPoint groundTruthPoint{{.position = Eigen::Vector2f{coords->getY(),
62 coords->getX()},
63 .pressure =
64 inputEvent.getPressure(/*pointerIndex=*/0)},
65 .timestamp = inputEvent.getEventTime()};
66
67 // Handle event based on action type.
68 switch (inputEvent.getActionMasked()) {
69 case AMOTION_EVENT_ACTION_DOWN: {
70 clearStrokeData();
71 incorporateNewGroundTruth(groundTruthPoint);
72 break;
73 }
74 case AMOTION_EVENT_ACTION_MOVE: {
75 incorporateNewGroundTruth(groundTruthPoint);
76 break;
77 }
78 case AMOTION_EVENT_ACTION_UP:
79 case AMOTION_EVENT_ACTION_CANCEL: {
80 // Only expect meaningful predictions when given at least two input points.
81 if (mRecentGroundTruthPoints.size() >= 2) {
82 computeAtomFields();
83 reportMetrics();
84 break;
85 }
86 }
87 }
88 }
89
90 // Adds new predictions to mRecentPredictions and maintains the invariant that elements are
91 // sorted in ascending order of targetTimestamp.
onPredict(const MotionEvent & predictionEvent)92 void MotionPredictorMetricsManager::onPredict(const MotionEvent& predictionEvent) {
93 for (size_t i = 0; i < predictionEvent.getHistorySize() + 1; ++i) {
94 // Convert MotionEvent to PredictionPoint.
95 const PointerCoords* coords =
96 predictionEvent.getHistoricalRawPointerCoords(/*pointerIndex=*/0, i);
97 LOG_ALWAYS_FATAL_IF(coords == nullptr);
98 const nsecs_t targetTimestamp = predictionEvent.getHistoricalEventTime(i);
99 mRecentPredictions.push_back(
100 PredictionPoint{{.position = Eigen::Vector2f{coords->getY(), coords->getX()},
101 .pressure =
102 predictionEvent.getHistoricalPressure(/*pointerIndex=*/0,
103 i)},
104 .originTimestamp = mRecentGroundTruthPoints.back().timestamp,
105 .targetTimestamp = targetTimestamp});
106 }
107
108 std::sort(mRecentPredictions.begin(), mRecentPredictions.end());
109 }
110
clearStrokeData()111 void MotionPredictorMetricsManager::clearStrokeData() {
112 mRecentGroundTruthPoints.clear();
113 mRecentPredictions.clear();
114 std::fill(mAggregatedMetrics.begin(), mAggregatedMetrics.end(), AggregatedStrokeMetrics{});
115 std::fill(mAtomFields.begin(), mAtomFields.end(), AtomFields{});
116 }
117
incorporateNewGroundTruth(const GroundTruthPoint & groundTruthPoint)118 void MotionPredictorMetricsManager::incorporateNewGroundTruth(
119 const GroundTruthPoint& groundTruthPoint) {
120 // Note: this removes the oldest point if `mRecentGroundTruthPoints` is already at capacity.
121 mRecentGroundTruthPoints.pushBack(groundTruthPoint);
122
123 // Remove outdated predictions – those that can never be matched with the current or any future
124 // ground truth points. We use fuzzy association for the timestamps here, because ground truth
125 // and prediction timestamps may not be perfectly synchronized.
126 const nsecs_t fuzzy_association_time_delta = mPredictionInterval / 4;
127 const auto firstCurrentIt =
128 std::find_if(mRecentPredictions.begin(), mRecentPredictions.end(),
129 [&groundTruthPoint,
130 fuzzy_association_time_delta](const PredictionPoint& prediction) {
131 return prediction.targetTimestamp >
132 groundTruthPoint.timestamp - fuzzy_association_time_delta;
133 });
134 mRecentPredictions.erase(mRecentPredictions.begin(), firstCurrentIt);
135
136 // Fuzzily match the new ground truth's timestamp to recent predictions' targetTimestamp and
137 // update the corresponding metrics.
138 for (const PredictionPoint& prediction : mRecentPredictions) {
139 if ((prediction.targetTimestamp >
140 groundTruthPoint.timestamp - fuzzy_association_time_delta) &&
141 (prediction.targetTimestamp <
142 groundTruthPoint.timestamp + fuzzy_association_time_delta)) {
143 updateAggregatedMetrics(prediction);
144 }
145 }
146 }
147
updateAggregatedMetrics(const PredictionPoint & predictionPoint)148 void MotionPredictorMetricsManager::updateAggregatedMetrics(
149 const PredictionPoint& predictionPoint) {
150 if (mRecentGroundTruthPoints.size() < 2) {
151 return;
152 }
153
154 const GroundTruthPoint& latestGroundTruthPoint = mRecentGroundTruthPoints.back();
155 const GroundTruthPoint& previousGroundTruthPoint =
156 mRecentGroundTruthPoints[mRecentGroundTruthPoints.size() - 2];
157 // Calculate prediction error vector.
158 const Eigen::Vector2f groundTruthTrajectory =
159 latestGroundTruthPoint.position - previousGroundTruthPoint.position;
160 const Eigen::Vector2f predictionTrajectory =
161 predictionPoint.position - previousGroundTruthPoint.position;
162 const Eigen::Vector2f predictionError = predictionTrajectory - groundTruthTrajectory;
163
164 // By default, prediction error counts fully as both off-trajectory and along-trajectory error.
165 // This serves as the fallback when the two most recent ground truth points are equal.
166 const float predictionErrorNorm = predictionError.norm();
167 float alongTrajectoryError = predictionErrorNorm;
168 float offTrajectoryError = predictionErrorNorm;
169 if (groundTruthTrajectory.squaredNorm() > 0) {
170 // Rotate the prediction error vector by the angle of the ground truth trajectory vector.
171 // This yields a vector whose first component is the along-trajectory error and whose
172 // second component is the off-trajectory error.
173 const float theta = std::atan2(groundTruthTrajectory[1], groundTruthTrajectory[0]);
174 const Eigen::Vector2f rotatedPredictionError = Eigen::Rotation2Df(-theta) * predictionError;
175 alongTrajectoryError = rotatedPredictionError[0];
176 offTrajectoryError = rotatedPredictionError[1];
177 }
178
179 // Compute the multiple of mPredictionInterval nearest to the amount of time into the
180 // future being predicted. This serves as the time bucket index into mAggregatedMetrics.
181 const float timestampDeltaFloat =
182 static_cast<float>(predictionPoint.targetTimestamp - predictionPoint.originTimestamp);
183 const size_t tIndex =
184 static_cast<size_t>(std::round(timestampDeltaFloat / mPredictionInterval - 1));
185
186 // Aggregate values into "general errors".
187 mAggregatedMetrics[tIndex].alongTrajectoryErrorSum += alongTrajectoryError;
188 mAggregatedMetrics[tIndex].alongTrajectorySumSquaredErrors +=
189 alongTrajectoryError * alongTrajectoryError;
190 mAggregatedMetrics[tIndex].offTrajectorySumSquaredErrors +=
191 offTrajectoryError * offTrajectoryError;
192 const float pressureError = predictionPoint.pressure - latestGroundTruthPoint.pressure;
193 mAggregatedMetrics[tIndex].pressureSumSquaredErrors += pressureError * pressureError;
194 ++mAggregatedMetrics[tIndex].generalErrorsCount;
195
196 // Aggregate values into high-velocity metrics, if we are in one of the last two time buckets
197 // and the velocity is above the threshold. Velocity here is measured in pixels per second.
198 const float velocity = groundTruthTrajectory.norm() /
199 (static_cast<float>(latestGroundTruthPoint.timestamp -
200 previousGroundTruthPoint.timestamp) /
201 NANOS_PER_SECOND);
202 if ((tIndex + 2 >= mMaxNumPredictions) && (velocity > HIGH_VELOCITY_THRESHOLD)) {
203 mAggregatedMetrics[tIndex].highVelocityAlongTrajectorySse +=
204 alongTrajectoryError * alongTrajectoryError;
205 mAggregatedMetrics[tIndex].highVelocityOffTrajectorySse +=
206 offTrajectoryError * offTrajectoryError;
207 ++mAggregatedMetrics[tIndex].highVelocityErrorsCount;
208 }
209
210 // Compute path length for scale-invariant errors.
211 float pathLength = 0;
212 for (size_t i = 1; i < mRecentGroundTruthPoints.size(); ++i) {
213 pathLength +=
214 (mRecentGroundTruthPoints[i].position - mRecentGroundTruthPoints[i - 1].position)
215 .norm();
216 }
217 // Avoid overweighting errors at the beginning of a stroke: compute the path length as if there
218 // were a full ground truth history by filling in missing segments with the average length.
219 // Note: the "- 1" is needed to translate from number of endpoints to number of segments.
220 pathLength *= static_cast<float>(mRecentGroundTruthPoints.capacity() - 1) /
221 (mRecentGroundTruthPoints.size() - 1);
222 pathLength += PATH_LENGTH_EPSILON; // Ensure path length is nonzero (>= PATH_LENGTH_EPSILON).
223
224 // Compute and aggregate scale-invariant errors.
225 const float scaleInvariantAlongTrajectoryError = alongTrajectoryError / pathLength;
226 const float scaleInvariantOffTrajectoryError = offTrajectoryError / pathLength;
227 mAggregatedMetrics[tIndex].scaleInvariantAlongTrajectorySse +=
228 scaleInvariantAlongTrajectoryError * scaleInvariantAlongTrajectoryError;
229 mAggregatedMetrics[tIndex].scaleInvariantOffTrajectorySse +=
230 scaleInvariantOffTrajectoryError * scaleInvariantOffTrajectoryError;
231 ++mAggregatedMetrics[tIndex].scaleInvariantErrorsCount;
232 }
233
computeAtomFields()234 void MotionPredictorMetricsManager::computeAtomFields() {
235 for (size_t i = 0; i < mAggregatedMetrics.size(); ++i) {
236 if (mAggregatedMetrics[i].generalErrorsCount == 0) {
237 // We have not received data corresponding to metrics for this time bucket.
238 continue;
239 }
240
241 mAtomFields[i].deltaTimeBucketMilliseconds =
242 static_cast<int>(mPredictionInterval / NANOS_PER_MILLIS * (i + 1));
243
244 // Note: we need the "* 1000"s below because we report values in integral milli-units.
245
246 { // General errors: reported for every time bucket.
247 const float alongTrajectoryErrorMean = mAggregatedMetrics[i].alongTrajectoryErrorSum /
248 mAggregatedMetrics[i].generalErrorsCount;
249 mAtomFields[i].alongTrajectoryErrorMeanMillipixels =
250 static_cast<int>(alongTrajectoryErrorMean * 1000);
251
252 const float alongTrajectoryMse = mAggregatedMetrics[i].alongTrajectorySumSquaredErrors /
253 mAggregatedMetrics[i].generalErrorsCount;
254 // Take the max with 0 to avoid negative values caused by numerical instability.
255 const float alongTrajectoryErrorVariance =
256 std::max(0.0f,
257 alongTrajectoryMse -
258 alongTrajectoryErrorMean * alongTrajectoryErrorMean);
259 const float alongTrajectoryErrorStd = std::sqrt(alongTrajectoryErrorVariance);
260 mAtomFields[i].alongTrajectoryErrorStdMillipixels =
261 static_cast<int>(alongTrajectoryErrorStd * 1000);
262
263 LOG_ALWAYS_FATAL_IF(mAggregatedMetrics[i].offTrajectorySumSquaredErrors < 0,
264 "mAggregatedMetrics[%zu].offTrajectorySumSquaredErrors = %f should "
265 "not be negative",
266 i, mAggregatedMetrics[i].offTrajectorySumSquaredErrors);
267 const float offTrajectoryRmse =
268 std::sqrt(mAggregatedMetrics[i].offTrajectorySumSquaredErrors /
269 mAggregatedMetrics[i].generalErrorsCount);
270 mAtomFields[i].offTrajectoryRmseMillipixels =
271 static_cast<int>(offTrajectoryRmse * 1000);
272
273 LOG_ALWAYS_FATAL_IF(mAggregatedMetrics[i].pressureSumSquaredErrors < 0,
274 "mAggregatedMetrics[%zu].pressureSumSquaredErrors = %f should not "
275 "be negative",
276 i, mAggregatedMetrics[i].pressureSumSquaredErrors);
277 const float pressureRmse = std::sqrt(mAggregatedMetrics[i].pressureSumSquaredErrors /
278 mAggregatedMetrics[i].generalErrorsCount);
279 mAtomFields[i].pressureRmseMilliunits = static_cast<int>(pressureRmse * 1000);
280 }
281
282 // High-velocity errors: reported only for last two time buckets.
283 // Check if we are in one of the last two time buckets, and there is high-velocity data.
284 if ((i + 2 >= mMaxNumPredictions) && (mAggregatedMetrics[i].highVelocityErrorsCount > 0)) {
285 LOG_ALWAYS_FATAL_IF(mAggregatedMetrics[i].highVelocityAlongTrajectorySse < 0,
286 "mAggregatedMetrics[%zu].highVelocityAlongTrajectorySse = %f "
287 "should not be negative",
288 i, mAggregatedMetrics[i].highVelocityAlongTrajectorySse);
289 const float alongTrajectoryRmse =
290 std::sqrt(mAggregatedMetrics[i].highVelocityAlongTrajectorySse /
291 mAggregatedMetrics[i].highVelocityErrorsCount);
292 mAtomFields[i].highVelocityAlongTrajectoryRmse =
293 static_cast<int>(alongTrajectoryRmse * 1000);
294
295 LOG_ALWAYS_FATAL_IF(mAggregatedMetrics[i].highVelocityOffTrajectorySse < 0,
296 "mAggregatedMetrics[%zu].highVelocityOffTrajectorySse = %f should "
297 "not be negative",
298 i, mAggregatedMetrics[i].highVelocityOffTrajectorySse);
299 const float offTrajectoryRmse =
300 std::sqrt(mAggregatedMetrics[i].highVelocityOffTrajectorySse /
301 mAggregatedMetrics[i].highVelocityErrorsCount);
302 mAtomFields[i].highVelocityOffTrajectoryRmse =
303 static_cast<int>(offTrajectoryRmse * 1000);
304 }
305
306 // Scale-invariant errors: reported only for the last time bucket, where the values
307 // represent an average across all time buckets.
308 if (i + 1 == mMaxNumPredictions) {
309 // Compute error averages.
310 float alongTrajectoryRmseSum = 0;
311 float offTrajectoryRmseSum = 0;
312 for (size_t j = 0; j < mAggregatedMetrics.size(); ++j) {
313 // If we have general errors (checked above), we should always also have
314 // scale-invariant errors.
315 LOG_ALWAYS_FATAL_IF(mAggregatedMetrics[j].scaleInvariantErrorsCount == 0,
316 "mAggregatedMetrics[%zu].scaleInvariantErrorsCount is 0", j);
317
318 LOG_ALWAYS_FATAL_IF(mAggregatedMetrics[j].scaleInvariantAlongTrajectorySse < 0,
319 "mAggregatedMetrics[%zu].scaleInvariantAlongTrajectorySse = %f "
320 "should not be negative",
321 j, mAggregatedMetrics[j].scaleInvariantAlongTrajectorySse);
322 alongTrajectoryRmseSum +=
323 std::sqrt(mAggregatedMetrics[j].scaleInvariantAlongTrajectorySse /
324 mAggregatedMetrics[j].scaleInvariantErrorsCount);
325
326 LOG_ALWAYS_FATAL_IF(mAggregatedMetrics[j].scaleInvariantOffTrajectorySse < 0,
327 "mAggregatedMetrics[%zu].scaleInvariantOffTrajectorySse = %f "
328 "should not be negative",
329 j, mAggregatedMetrics[j].scaleInvariantOffTrajectorySse);
330 offTrajectoryRmseSum +=
331 std::sqrt(mAggregatedMetrics[j].scaleInvariantOffTrajectorySse /
332 mAggregatedMetrics[j].scaleInvariantErrorsCount);
333 }
334
335 const float averageAlongTrajectoryRmse =
336 alongTrajectoryRmseSum / mAggregatedMetrics.size();
337 mAtomFields.back().scaleInvariantAlongTrajectoryRmse =
338 static_cast<int>(averageAlongTrajectoryRmse * 1000);
339
340 const float averageOffTrajectoryRmse = offTrajectoryRmseSum / mAggregatedMetrics.size();
341 mAtomFields.back().scaleInvariantOffTrajectoryRmse =
342 static_cast<int>(averageOffTrajectoryRmse * 1000);
343 }
344 }
345 }
346
reportMetrics()347 void MotionPredictorMetricsManager::reportMetrics() {
348 // Report one atom for each time bucket.
349 for (size_t i = 0; i < mAtomFields.size(); ++i) {
350 // Call stats_write logging function only on Android targets (not supported on host).
351 #ifdef __ANDROID__
352 android::stats::libinput::
353 stats_write(android::stats::libinput::STYLUS_PREDICTION_METRICS_REPORTED,
354 /*stylus_vendor_id=*/0,
355 /*stylus_product_id=*/0, mAtomFields[i].deltaTimeBucketMilliseconds,
356 mAtomFields[i].alongTrajectoryErrorMeanMillipixels,
357 mAtomFields[i].alongTrajectoryErrorStdMillipixels,
358 mAtomFields[i].offTrajectoryRmseMillipixels,
359 mAtomFields[i].pressureRmseMilliunits,
360 mAtomFields[i].highVelocityAlongTrajectoryRmse,
361 mAtomFields[i].highVelocityOffTrajectoryRmse,
362 mAtomFields[i].scaleInvariantAlongTrajectoryRmse,
363 mAtomFields[i].scaleInvariantOffTrajectoryRmse);
364 #endif
365 }
366
367 // Set mock atom fields, if available.
368 if (mMockLoggedAtomFields != nullptr) {
369 *mMockLoggedAtomFields = mAtomFields;
370 }
371 }
372
373 } // namespace android
374