1 /*
2 * Copyright 2023 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17 #include <input/MotionPredictor.h>
18
19 #include <cmath>
20 #include <cstddef>
21 #include <cstdint>
22 #include <numeric>
23 #include <vector>
24
25 #include <gmock/gmock.h>
26 #include <gtest/gtest.h>
27 #include <input/InputEventBuilders.h>
28 #include <utils/Timers.h> // for nsecs_t
29
30 #include "Eigen/Core"
31 #include "Eigen/Geometry"
32
33 namespace android {
34 namespace {
35
36 using ::testing::FloatNear;
37 using ::testing::Matches;
38
39 using GroundTruthPoint = MotionPredictorMetricsManager::GroundTruthPoint;
40 using PredictionPoint = MotionPredictorMetricsManager::PredictionPoint;
41 using AtomFields = MotionPredictorMetricsManager::AtomFields;
42
43 inline constexpr int NANOS_PER_MILLIS = 1'000'000;
44
45 inline constexpr nsecs_t TEST_INITIAL_TIMESTAMP = 1'000'000'000;
46 inline constexpr size_t TEST_MAX_NUM_PREDICTIONS = 5;
47 inline constexpr nsecs_t TEST_PREDICTION_INTERVAL_NANOS = 12'500'000 / 3; // 1 / (240 hz)
48 inline constexpr int NO_DATA_SENTINEL = MotionPredictorMetricsManager::NO_DATA_SENTINEL;
49
50 // Parameters:
51 // • arg: Eigen::Vector2f
52 // • target: Eigen::Vector2f
53 // • epsilon: float
54 MATCHER_P2(Vector2fNear, target, epsilon, "") {
55 return Matches(FloatNear(target[0], epsilon))(arg[0]) &&
56 Matches(FloatNear(target[1], epsilon))(arg[1]);
57 }
58
59 // Parameters:
60 // • arg: PredictionPoint
61 // • target: PredictionPoint
62 // • epsilon: float
63 MATCHER_P2(PredictionPointNear, target, epsilon, "") {
64 if (!Matches(Vector2fNear(target.position, epsilon))(arg.position)) {
65 *result_listener << "Position mismatch. Actual: (" << arg.position[0] << ", "
66 << arg.position[1] << "), expected: (" << target.position[0] << ", "
67 << target.position[1] << ")";
68 return false;
69 }
70 if (!Matches(FloatNear(target.pressure, epsilon))(arg.pressure)) {
71 *result_listener << "Pressure mismatch. Actual: " << arg.pressure
72 << ", expected: " << target.pressure;
73 return false;
74 }
75 if (arg.originTimestamp != target.originTimestamp) {
76 *result_listener << "Origin timestamp mismatch. Actual: " << arg.originTimestamp
77 << ", expected: " << target.originTimestamp;
78 return false;
79 }
80 if (arg.targetTimestamp != target.targetTimestamp) {
81 *result_listener << "Target timestamp mismatch. Actual: " << arg.targetTimestamp
82 << ", expected: " << target.targetTimestamp;
83 return false;
84 }
85 return true;
86 }
87
88 // --- Mathematical helper functions. ---
89
90 template <typename T>
average(std::vector<T> values)91 T average(std::vector<T> values) {
92 return std::accumulate(values.begin(), values.end(), T{}) / static_cast<T>(values.size());
93 }
94
95 template <typename T>
standardDeviation(std::vector<T> values)96 T standardDeviation(std::vector<T> values) {
97 T mean = average(values);
98 T accumulator = {};
99 for (const T value : values) {
100 accumulator += value * value - mean * mean;
101 }
102 // Take the max with 0 to avoid negative values caused by numerical instability.
103 return std::sqrt(std::max(T{}, accumulator) / static_cast<T>(values.size()));
104 }
105
106 template <typename T>
rmse(std::vector<T> errors)107 T rmse(std::vector<T> errors) {
108 T sse = {};
109 for (const T error : errors) {
110 sse += error * error;
111 }
112 return std::sqrt(sse / static_cast<T>(errors.size()));
113 }
114
TEST(MathematicalHelperFunctionTest,Average)115 TEST(MathematicalHelperFunctionTest, Average) {
116 std::vector<float> values{1, 2, 3, 4, 5, 6, 7, 8, 9, 10};
117 EXPECT_EQ(5.5f, average(values));
118 }
119
TEST(MathematicalHelperFunctionTest,StandardDeviation)120 TEST(MathematicalHelperFunctionTest, StandardDeviation) {
121 // https://www.calculator.net/standard-deviation-calculator.html?numberinputs=10%2C+12%2C+23%2C+23%2C+16%2C+23%2C+21%2C+16
122 std::vector<float> values{10, 12, 23, 23, 16, 23, 21, 16};
123 EXPECT_FLOAT_EQ(4.8989794855664f, standardDeviation(values));
124 }
125
TEST(MathematicalHelperFunctionTest,Rmse)126 TEST(MathematicalHelperFunctionTest, Rmse) {
127 std::vector<float> errors{1, 5, 7, 7, 8, 20};
128 EXPECT_FLOAT_EQ(9.899494937f, rmse(errors));
129 }
130
131 // --- MotionEvent-related helper functions. ---
132
133 // Creates a MotionEvent corresponding to the given GroundTruthPoint.
makeMotionEvent(const GroundTruthPoint & groundTruthPoint)134 MotionEvent makeMotionEvent(const GroundTruthPoint& groundTruthPoint) {
135 // Build single pointer of type STYLUS, with coordinates from groundTruthPoint.
136 PointerBuilder pointerBuilder =
137 PointerBuilder(/*id=*/0, ToolType::STYLUS)
138 .x(groundTruthPoint.position[1])
139 .y(groundTruthPoint.position[0])
140 .axis(AMOTION_EVENT_AXIS_PRESSURE, groundTruthPoint.pressure);
141 return MotionEventBuilder(/*action=*/AMOTION_EVENT_ACTION_MOVE,
142 /*source=*/AINPUT_SOURCE_CLASS_POINTER)
143 .eventTime(groundTruthPoint.timestamp)
144 .pointer(pointerBuilder)
145 .build();
146 }
147
148 // Creates a MotionEvent corresponding to the given sequence of PredictionPoints.
makeMotionEvent(const std::vector<PredictionPoint> & predictionPoints)149 MotionEvent makeMotionEvent(const std::vector<PredictionPoint>& predictionPoints) {
150 // Build single pointer of type STYLUS, with coordinates from first prediction point.
151 PointerBuilder pointerBuilder =
152 PointerBuilder(/*id=*/0, ToolType::STYLUS)
153 .x(predictionPoints[0].position[1])
154 .y(predictionPoints[0].position[0])
155 .axis(AMOTION_EVENT_AXIS_PRESSURE, predictionPoints[0].pressure);
156 MotionEvent predictionEvent =
157 MotionEventBuilder(
158 /*action=*/AMOTION_EVENT_ACTION_MOVE, /*source=*/AINPUT_SOURCE_CLASS_POINTER)
159 .eventTime(predictionPoints[0].targetTimestamp)
160 .pointer(pointerBuilder)
161 .build();
162 for (size_t i = 1; i < predictionPoints.size(); ++i) {
163 PointerCoords coords =
164 PointerBuilder(/*id=*/0, ToolType::STYLUS)
165 .x(predictionPoints[i].position[1])
166 .y(predictionPoints[i].position[0])
167 .axis(AMOTION_EVENT_AXIS_PRESSURE, predictionPoints[i].pressure)
168 .buildCoords();
169 predictionEvent.addSample(predictionPoints[i].targetTimestamp, &coords);
170 }
171 return predictionEvent;
172 }
173
174 // Creates a MotionEvent corresponding to a stylus lift (UP) ground truth event.
makeLiftMotionEvent()175 MotionEvent makeLiftMotionEvent() {
176 return MotionEventBuilder(/*action=*/AMOTION_EVENT_ACTION_UP,
177 /*source=*/AINPUT_SOURCE_CLASS_POINTER)
178 .pointer(PointerBuilder(/*id=*/0, ToolType::STYLUS))
179 .build();
180 }
181
TEST(MakeMotionEventTest,MakeGroundTruthMotionEvent)182 TEST(MakeMotionEventTest, MakeGroundTruthMotionEvent) {
183 const GroundTruthPoint groundTruthPoint{{.position = Eigen::Vector2f(10.0f, 20.0f),
184 .pressure = 0.6f},
185 .timestamp = TEST_INITIAL_TIMESTAMP};
186 const MotionEvent groundTruthMotionEvent = makeMotionEvent(groundTruthPoint);
187
188 ASSERT_EQ(1u, groundTruthMotionEvent.getPointerCount());
189 // Note: a MotionEvent's "history size" is one less than its number of samples.
190 ASSERT_EQ(0u, groundTruthMotionEvent.getHistorySize());
191 EXPECT_EQ(groundTruthPoint.position[0], groundTruthMotionEvent.getRawPointerCoords(0)->getY());
192 EXPECT_EQ(groundTruthPoint.position[1], groundTruthMotionEvent.getRawPointerCoords(0)->getX());
193 EXPECT_EQ(groundTruthPoint.pressure,
194 groundTruthMotionEvent.getRawPointerCoords(0)->getAxisValue(
195 AMOTION_EVENT_AXIS_PRESSURE));
196 EXPECT_EQ(AMOTION_EVENT_ACTION_MOVE, groundTruthMotionEvent.getAction());
197 }
198
TEST(MakeMotionEventTest,MakePredictionMotionEvent)199 TEST(MakeMotionEventTest, MakePredictionMotionEvent) {
200 const nsecs_t originTimestamp = TEST_INITIAL_TIMESTAMP;
201 const std::vector<PredictionPoint>
202 predictionPoints{{{.position = Eigen::Vector2f(10.0f, 20.0f), .pressure = 0.6f},
203 .originTimestamp = originTimestamp,
204 .targetTimestamp = originTimestamp + 5 * NANOS_PER_MILLIS},
205 {{.position = Eigen::Vector2f(11.0f, 22.0f), .pressure = 0.5f},
206 .originTimestamp = originTimestamp,
207 .targetTimestamp = originTimestamp + 10 * NANOS_PER_MILLIS},
208 {{.position = Eigen::Vector2f(12.0f, 24.0f), .pressure = 0.4f},
209 .originTimestamp = originTimestamp,
210 .targetTimestamp = originTimestamp + 15 * NANOS_PER_MILLIS}};
211 const MotionEvent predictionMotionEvent = makeMotionEvent(predictionPoints);
212
213 ASSERT_EQ(1u, predictionMotionEvent.getPointerCount());
214 // Note: a MotionEvent's "history size" is one less than its number of samples.
215 ASSERT_EQ(predictionPoints.size(), predictionMotionEvent.getHistorySize() + 1);
216 for (size_t i = 0; i < predictionPoints.size(); ++i) {
217 SCOPED_TRACE(testing::Message() << "i = " << i);
218 const PointerCoords coords = *predictionMotionEvent.getHistoricalRawPointerCoords(
219 /*pointerIndex=*/0, /*historicalIndex=*/i);
220 EXPECT_EQ(predictionPoints[i].position[0], coords.getY());
221 EXPECT_EQ(predictionPoints[i].position[1], coords.getX());
222 EXPECT_EQ(predictionPoints[i].pressure, coords.getAxisValue(AMOTION_EVENT_AXIS_PRESSURE));
223 // Note: originTimestamp is discarded when converting PredictionPoint to MotionEvent.
224 EXPECT_EQ(predictionPoints[i].targetTimestamp,
225 predictionMotionEvent.getHistoricalEventTime(i));
226 EXPECT_EQ(AMOTION_EVENT_ACTION_MOVE, predictionMotionEvent.getAction());
227 }
228 }
229
TEST(MakeMotionEventTest,MakeLiftMotionEvent)230 TEST(MakeMotionEventTest, MakeLiftMotionEvent) {
231 const MotionEvent liftMotionEvent = makeLiftMotionEvent();
232 ASSERT_EQ(1u, liftMotionEvent.getPointerCount());
233 // Note: a MotionEvent's "history size" is one less than its number of samples.
234 ASSERT_EQ(0u, liftMotionEvent.getHistorySize());
235 EXPECT_EQ(AMOTION_EVENT_ACTION_UP, liftMotionEvent.getAction());
236 }
237
238 // --- Ground-truth-generation helper functions. ---
239
generateConstantGroundTruthPoints(const GroundTruthPoint & groundTruthPoint,size_t numPoints)240 std::vector<GroundTruthPoint> generateConstantGroundTruthPoints(
241 const GroundTruthPoint& groundTruthPoint, size_t numPoints) {
242 std::vector<GroundTruthPoint> groundTruthPoints;
243 nsecs_t timestamp = groundTruthPoint.timestamp;
244 for (size_t i = 0; i < numPoints; ++i) {
245 groundTruthPoints.emplace_back(groundTruthPoint);
246 groundTruthPoints.back().timestamp = timestamp;
247 timestamp += TEST_PREDICTION_INTERVAL_NANOS;
248 }
249 return groundTruthPoints;
250 }
251
252 // This function uses the coordinate system (y, x), with +y pointing downwards and +x pointing
253 // rightwards. Angles are measured counterclockwise from down (+y).
generateCircularArcGroundTruthPoints(Eigen::Vector2f initialPosition,float initialAngle,float velocity,float turningAngle,size_t numPoints)254 std::vector<GroundTruthPoint> generateCircularArcGroundTruthPoints(Eigen::Vector2f initialPosition,
255 float initialAngle,
256 float velocity,
257 float turningAngle,
258 size_t numPoints) {
259 std::vector<GroundTruthPoint> groundTruthPoints;
260 // Create first point.
261 if (numPoints > 0) {
262 groundTruthPoints.push_back({{.position = initialPosition, .pressure = 0.0f},
263 .timestamp = TEST_INITIAL_TIMESTAMP});
264 }
265 float trajectoryAngle = initialAngle; // measured counterclockwise from +y axis.
266 for (size_t i = 1; i < numPoints; ++i) {
267 const Eigen::Vector2f trajectory =
268 Eigen::Rotation2D(trajectoryAngle) * Eigen::Vector2f(1, 0);
269 groundTruthPoints.push_back(
270 {{.position = groundTruthPoints.back().position + velocity * trajectory,
271 .pressure = 0.0f},
272 .timestamp = groundTruthPoints.back().timestamp + TEST_PREDICTION_INTERVAL_NANOS});
273 trajectoryAngle += turningAngle;
274 }
275 return groundTruthPoints;
276 }
277
TEST(GenerateConstantGroundTruthPointsTest,BasicTest)278 TEST(GenerateConstantGroundTruthPointsTest, BasicTest) {
279 const GroundTruthPoint groundTruthPoint{{.position = Eigen::Vector2f(10, 20), .pressure = 0.3f},
280 .timestamp = TEST_INITIAL_TIMESTAMP};
281 const std::vector<GroundTruthPoint> groundTruthPoints =
282 generateConstantGroundTruthPoints(groundTruthPoint, /*numPoints=*/3);
283
284 ASSERT_EQ(3u, groundTruthPoints.size());
285 // First point.
286 EXPECT_EQ(groundTruthPoints[0].position, groundTruthPoint.position);
287 EXPECT_EQ(groundTruthPoints[0].pressure, groundTruthPoint.pressure);
288 EXPECT_EQ(groundTruthPoints[0].timestamp, groundTruthPoint.timestamp);
289 // Second point.
290 EXPECT_EQ(groundTruthPoints[1].position, groundTruthPoint.position);
291 EXPECT_EQ(groundTruthPoints[1].pressure, groundTruthPoint.pressure);
292 EXPECT_GT(groundTruthPoints[1].timestamp, groundTruthPoints[0].timestamp);
293 // Third point.
294 EXPECT_EQ(groundTruthPoints[2].position, groundTruthPoint.position);
295 EXPECT_EQ(groundTruthPoints[2].pressure, groundTruthPoint.pressure);
296 EXPECT_GT(groundTruthPoints[2].timestamp, groundTruthPoints[1].timestamp);
297 }
298
TEST(GenerateCircularArcGroundTruthTest,StraightLineUpwards)299 TEST(GenerateCircularArcGroundTruthTest, StraightLineUpwards) {
300 const std::vector<GroundTruthPoint> groundTruthPoints = generateCircularArcGroundTruthPoints(
301 /*initialPosition=*/Eigen::Vector2f(0, 0),
302 /*initialAngle=*/M_PI,
303 /*velocity=*/1.0f,
304 /*turningAngle=*/0.0f,
305 /*numPoints=*/3);
306
307 ASSERT_EQ(3u, groundTruthPoints.size());
308 EXPECT_THAT(groundTruthPoints[0].position, Vector2fNear(Eigen::Vector2f(0, 0), 1e-6));
309 EXPECT_THAT(groundTruthPoints[1].position, Vector2fNear(Eigen::Vector2f(-1, 0), 1e-6));
310 EXPECT_THAT(groundTruthPoints[2].position, Vector2fNear(Eigen::Vector2f(-2, 0), 1e-6));
311 // Check that timestamps are increasing between consecutive ground truth points.
312 EXPECT_GT(groundTruthPoints[1].timestamp, groundTruthPoints[0].timestamp);
313 EXPECT_GT(groundTruthPoints[2].timestamp, groundTruthPoints[1].timestamp);
314 }
315
TEST(GenerateCircularArcGroundTruthTest,CounterclockwiseSquare)316 TEST(GenerateCircularArcGroundTruthTest, CounterclockwiseSquare) {
317 // Generate points in a counterclockwise unit square starting pointing right.
318 const std::vector<GroundTruthPoint> groundTruthPoints = generateCircularArcGroundTruthPoints(
319 /*initialPosition=*/Eigen::Vector2f(10, 100),
320 /*initialAngle=*/M_PI_2,
321 /*velocity=*/1.0f,
322 /*turningAngle=*/M_PI_2,
323 /*numPoints=*/5);
324
325 ASSERT_EQ(5u, groundTruthPoints.size());
326 EXPECT_THAT(groundTruthPoints[0].position, Vector2fNear(Eigen::Vector2f(10, 100), 1e-6));
327 EXPECT_THAT(groundTruthPoints[1].position, Vector2fNear(Eigen::Vector2f(10, 101), 1e-6));
328 EXPECT_THAT(groundTruthPoints[2].position, Vector2fNear(Eigen::Vector2f(9, 101), 1e-6));
329 EXPECT_THAT(groundTruthPoints[3].position, Vector2fNear(Eigen::Vector2f(9, 100), 1e-6));
330 EXPECT_THAT(groundTruthPoints[4].position, Vector2fNear(Eigen::Vector2f(10, 100), 1e-6));
331 }
332
333 // --- Prediction-generation helper functions. ---
334
335 // Creates a sequence of predictions with values equal to those of the given GroundTruthPoint.
generateConstantPredictions(const GroundTruthPoint & groundTruthPoint)336 std::vector<PredictionPoint> generateConstantPredictions(const GroundTruthPoint& groundTruthPoint) {
337 std::vector<PredictionPoint> predictions;
338 nsecs_t predictionTimestamp = groundTruthPoint.timestamp + TEST_PREDICTION_INTERVAL_NANOS;
339 for (size_t j = 0; j < TEST_MAX_NUM_PREDICTIONS; ++j) {
340 predictions.push_back(PredictionPoint{{.position = groundTruthPoint.position,
341 .pressure = groundTruthPoint.pressure},
342 .originTimestamp = groundTruthPoint.timestamp,
343 .targetTimestamp = predictionTimestamp});
344 predictionTimestamp += TEST_PREDICTION_INTERVAL_NANOS;
345 }
346 return predictions;
347 }
348
349 // Generates TEST_MAX_NUM_PREDICTIONS predictions from the given most recent two ground truth points
350 // by linear extrapolation of position and pressure. The interval between consecutive predictions'
351 // timestamps is TEST_PREDICTION_INTERVAL_NANOS.
generatePredictionsByLinearExtrapolation(const GroundTruthPoint & firstGroundTruth,const GroundTruthPoint & secondGroundTruth)352 std::vector<PredictionPoint> generatePredictionsByLinearExtrapolation(
353 const GroundTruthPoint& firstGroundTruth, const GroundTruthPoint& secondGroundTruth) {
354 // Precompute deltas.
355 const Eigen::Vector2f trajectory = secondGroundTruth.position - firstGroundTruth.position;
356 const float deltaPressure = secondGroundTruth.pressure - firstGroundTruth.pressure;
357 // Compute predictions.
358 std::vector<PredictionPoint> predictions;
359 Eigen::Vector2f predictionPosition = secondGroundTruth.position;
360 float predictionPressure = secondGroundTruth.pressure;
361 nsecs_t predictionTargetTimestamp = secondGroundTruth.timestamp;
362 for (size_t i = 0; i < TEST_MAX_NUM_PREDICTIONS; ++i) {
363 predictionPosition += trajectory;
364 predictionPressure += deltaPressure;
365 predictionTargetTimestamp += TEST_PREDICTION_INTERVAL_NANOS;
366 predictions.push_back(
367 PredictionPoint{{.position = predictionPosition, .pressure = predictionPressure},
368 .originTimestamp = secondGroundTruth.timestamp,
369 .targetTimestamp = predictionTargetTimestamp});
370 }
371 return predictions;
372 }
373
TEST(GeneratePredictionsTest,GenerateConstantPredictions)374 TEST(GeneratePredictionsTest, GenerateConstantPredictions) {
375 const GroundTruthPoint groundTruthPoint{{.position = Eigen::Vector2f(10, 20), .pressure = 0.3f},
376 .timestamp = TEST_INITIAL_TIMESTAMP};
377 const std::vector<PredictionPoint> predictionPoints =
378 generateConstantPredictions(groundTruthPoint);
379
380 ASSERT_EQ(TEST_MAX_NUM_PREDICTIONS, predictionPoints.size());
381 for (size_t i = 0; i < predictionPoints.size(); ++i) {
382 SCOPED_TRACE(testing::Message() << "i = " << i);
383 EXPECT_THAT(predictionPoints[i].position, Vector2fNear(groundTruthPoint.position, 1e-6));
384 EXPECT_THAT(predictionPoints[i].pressure, FloatNear(groundTruthPoint.pressure, 1e-6));
385 EXPECT_EQ(predictionPoints[i].originTimestamp, groundTruthPoint.timestamp);
386 EXPECT_EQ(predictionPoints[i].targetTimestamp,
387 groundTruthPoint.timestamp +
388 static_cast<nsecs_t>(i + 1) * TEST_PREDICTION_INTERVAL_NANOS);
389 }
390 }
391
TEST(GeneratePredictionsTest,LinearExtrapolationFromTwoPoints)392 TEST(GeneratePredictionsTest, LinearExtrapolationFromTwoPoints) {
393 const nsecs_t initialTimestamp = TEST_INITIAL_TIMESTAMP;
394 const std::vector<PredictionPoint> predictionPoints = generatePredictionsByLinearExtrapolation(
395 GroundTruthPoint{{.position = Eigen::Vector2f(100, 200), .pressure = 0.9f},
396 .timestamp = initialTimestamp},
397 GroundTruthPoint{{.position = Eigen::Vector2f(105, 190), .pressure = 0.8f},
398 .timestamp = initialTimestamp + TEST_PREDICTION_INTERVAL_NANOS});
399
400 ASSERT_EQ(TEST_MAX_NUM_PREDICTIONS, predictionPoints.size());
401 const nsecs_t originTimestamp = initialTimestamp + TEST_PREDICTION_INTERVAL_NANOS;
402 EXPECT_THAT(predictionPoints[0],
403 PredictionPointNear(PredictionPoint{{.position = Eigen::Vector2f(110, 180),
404 .pressure = 0.7f},
405 .originTimestamp = originTimestamp,
406 .targetTimestamp = originTimestamp +
407 TEST_PREDICTION_INTERVAL_NANOS},
408 0.001));
409 EXPECT_THAT(predictionPoints[1],
410 PredictionPointNear(PredictionPoint{{.position = Eigen::Vector2f(115, 170),
411 .pressure = 0.6f},
412 .originTimestamp = originTimestamp,
413 .targetTimestamp = originTimestamp +
414 2 * TEST_PREDICTION_INTERVAL_NANOS},
415 0.001));
416 EXPECT_THAT(predictionPoints[2],
417 PredictionPointNear(PredictionPoint{{.position = Eigen::Vector2f(120, 160),
418 .pressure = 0.5f},
419 .originTimestamp = originTimestamp,
420 .targetTimestamp = originTimestamp +
421 3 * TEST_PREDICTION_INTERVAL_NANOS},
422 0.001));
423 EXPECT_THAT(predictionPoints[3],
424 PredictionPointNear(PredictionPoint{{.position = Eigen::Vector2f(125, 150),
425 .pressure = 0.4f},
426 .originTimestamp = originTimestamp,
427 .targetTimestamp = originTimestamp +
428 4 * TEST_PREDICTION_INTERVAL_NANOS},
429 0.001));
430 EXPECT_THAT(predictionPoints[4],
431 PredictionPointNear(PredictionPoint{{.position = Eigen::Vector2f(130, 140),
432 .pressure = 0.3f},
433 .originTimestamp = originTimestamp,
434 .targetTimestamp = originTimestamp +
435 5 * TEST_PREDICTION_INTERVAL_NANOS},
436 0.001));
437 }
438
439 // Generates predictions by linear extrapolation for each consecutive pair of ground truth points
440 // (see the comment for the above function for further explanation). Returns a vector of vectors of
441 // prediction points, where the first index is the source ground truth index, and the second is the
442 // prediction target index.
443 //
444 // The returned vector has size equal to the input vector, and the first element of the returned
445 // vector is always empty.
generateAllPredictionsByLinearExtrapolation(const std::vector<GroundTruthPoint> & groundTruthPoints)446 std::vector<std::vector<PredictionPoint>> generateAllPredictionsByLinearExtrapolation(
447 const std::vector<GroundTruthPoint>& groundTruthPoints) {
448 std::vector<std::vector<PredictionPoint>> allPredictions;
449 allPredictions.emplace_back();
450 for (size_t i = 1; i < groundTruthPoints.size(); ++i) {
451 allPredictions.push_back(generatePredictionsByLinearExtrapolation(groundTruthPoints[i - 1],
452 groundTruthPoints[i]));
453 }
454 return allPredictions;
455 }
456
TEST(GeneratePredictionsTest,GenerateAllPredictions)457 TEST(GeneratePredictionsTest, GenerateAllPredictions) {
458 const nsecs_t initialTimestamp = TEST_INITIAL_TIMESTAMP;
459 std::vector<GroundTruthPoint>
460 groundTruthPoints{GroundTruthPoint{{.position = Eigen::Vector2f(0, 0),
461 .pressure = 0.5f},
462 .timestamp = initialTimestamp},
463 GroundTruthPoint{{.position = Eigen::Vector2f(1, -1),
464 .pressure = 0.51f},
465 .timestamp = initialTimestamp +
466 2 * TEST_PREDICTION_INTERVAL_NANOS},
467 GroundTruthPoint{{.position = Eigen::Vector2f(2, -2),
468 .pressure = 0.52f},
469 .timestamp = initialTimestamp +
470 3 * TEST_PREDICTION_INTERVAL_NANOS}};
471
472 const std::vector<std::vector<PredictionPoint>> allPredictions =
473 generateAllPredictionsByLinearExtrapolation(groundTruthPoints);
474
475 // Check format of allPredictions data.
476 ASSERT_EQ(groundTruthPoints.size(), allPredictions.size());
477 EXPECT_TRUE(allPredictions[0].empty());
478 EXPECT_EQ(TEST_MAX_NUM_PREDICTIONS, allPredictions[1].size());
479 EXPECT_EQ(TEST_MAX_NUM_PREDICTIONS, allPredictions[2].size());
480
481 // Check positions of predictions generated from first pair of ground truth points.
482 EXPECT_THAT(allPredictions[1][0].position, Vector2fNear(Eigen::Vector2f(2, -2), 1e-9));
483 EXPECT_THAT(allPredictions[1][1].position, Vector2fNear(Eigen::Vector2f(3, -3), 1e-9));
484 EXPECT_THAT(allPredictions[1][2].position, Vector2fNear(Eigen::Vector2f(4, -4), 1e-9));
485 EXPECT_THAT(allPredictions[1][3].position, Vector2fNear(Eigen::Vector2f(5, -5), 1e-9));
486 EXPECT_THAT(allPredictions[1][4].position, Vector2fNear(Eigen::Vector2f(6, -6), 1e-9));
487
488 // Check pressures of predictions generated from first pair of ground truth points.
489 EXPECT_FLOAT_EQ(0.52f, allPredictions[1][0].pressure);
490 EXPECT_FLOAT_EQ(0.53f, allPredictions[1][1].pressure);
491 EXPECT_FLOAT_EQ(0.54f, allPredictions[1][2].pressure);
492 EXPECT_FLOAT_EQ(0.55f, allPredictions[1][3].pressure);
493 EXPECT_FLOAT_EQ(0.56f, allPredictions[1][4].pressure);
494 }
495
496 // --- Prediction error helper functions. ---
497
498 struct GeneralPositionErrors {
499 float alongTrajectoryErrorMean;
500 float alongTrajectoryErrorStd;
501 float offTrajectoryRmse;
502 };
503
504 // Inputs:
505 // • Vector of ground truth points
506 // • Vector of vectors of prediction points, where the first index is the source ground truth
507 // index, and the second is the prediction target index.
508 //
509 // Returns a vector of GeneralPositionErrors, indexed by prediction time delta bucket.
computeGeneralPositionErrors(const std::vector<GroundTruthPoint> & groundTruthPoints,const std::vector<std::vector<PredictionPoint>> & predictionPoints)510 std::vector<GeneralPositionErrors> computeGeneralPositionErrors(
511 const std::vector<GroundTruthPoint>& groundTruthPoints,
512 const std::vector<std::vector<PredictionPoint>>& predictionPoints) {
513 // Aggregate errors by time bucket (prediction target index).
514 std::vector<GeneralPositionErrors> generalPostitionErrors;
515 for (size_t predictionTargetIndex = 0; predictionTargetIndex < TEST_MAX_NUM_PREDICTIONS;
516 ++predictionTargetIndex) {
517 std::vector<float> alongTrajectoryErrors;
518 std::vector<float> alongTrajectorySquaredErrors;
519 std::vector<float> offTrajectoryErrors;
520 for (size_t sourceGroundTruthIndex = 1; sourceGroundTruthIndex < groundTruthPoints.size();
521 ++sourceGroundTruthIndex) {
522 const size_t targetGroundTruthIndex =
523 sourceGroundTruthIndex + predictionTargetIndex + 1;
524 // Only include errors for points with a ground truth value.
525 if (targetGroundTruthIndex < groundTruthPoints.size()) {
526 const Eigen::Vector2f trajectory =
527 (groundTruthPoints[targetGroundTruthIndex].position -
528 groundTruthPoints[targetGroundTruthIndex - 1].position)
529 .normalized();
530 const Eigen::Vector2f orthogonalTrajectory =
531 Eigen::Rotation2Df(M_PI_2) * trajectory;
532 const Eigen::Vector2f positionError =
533 predictionPoints[sourceGroundTruthIndex][predictionTargetIndex].position -
534 groundTruthPoints[targetGroundTruthIndex].position;
535 alongTrajectoryErrors.push_back(positionError.dot(trajectory));
536 alongTrajectorySquaredErrors.push_back(alongTrajectoryErrors.back() *
537 alongTrajectoryErrors.back());
538 offTrajectoryErrors.push_back(positionError.dot(orthogonalTrajectory));
539 }
540 }
541 generalPostitionErrors.push_back(
542 {.alongTrajectoryErrorMean = average(alongTrajectoryErrors),
543 .alongTrajectoryErrorStd = standardDeviation(alongTrajectoryErrors),
544 .offTrajectoryRmse = rmse(offTrajectoryErrors)});
545 }
546 return generalPostitionErrors;
547 }
548
549 // Inputs:
550 // • Vector of ground truth points
551 // • Vector of vectors of prediction points, where the first index is the source ground truth
552 // index, and the second is the prediction target index.
553 //
554 // Returns a vector of pressure RMSEs, indexed by prediction time delta bucket.
computePressureRmses(const std::vector<GroundTruthPoint> & groundTruthPoints,const std::vector<std::vector<PredictionPoint>> & predictionPoints)555 std::vector<float> computePressureRmses(
556 const std::vector<GroundTruthPoint>& groundTruthPoints,
557 const std::vector<std::vector<PredictionPoint>>& predictionPoints) {
558 // Aggregate errors by time bucket (prediction target index).
559 std::vector<float> pressureRmses;
560 for (size_t predictionTargetIndex = 0; predictionTargetIndex < TEST_MAX_NUM_PREDICTIONS;
561 ++predictionTargetIndex) {
562 std::vector<float> pressureErrors;
563 for (size_t sourceGroundTruthIndex = 1; sourceGroundTruthIndex < groundTruthPoints.size();
564 ++sourceGroundTruthIndex) {
565 const size_t targetGroundTruthIndex =
566 sourceGroundTruthIndex + predictionTargetIndex + 1;
567 // Only include errors for points with a ground truth value.
568 if (targetGroundTruthIndex < groundTruthPoints.size()) {
569 pressureErrors.push_back(
570 predictionPoints[sourceGroundTruthIndex][predictionTargetIndex].pressure -
571 groundTruthPoints[targetGroundTruthIndex].pressure);
572 }
573 }
574 pressureRmses.push_back(rmse(pressureErrors));
575 }
576 return pressureRmses;
577 }
578
TEST(ErrorComputationHelperTest,ComputeGeneralPositionErrorsSimpleTest)579 TEST(ErrorComputationHelperTest, ComputeGeneralPositionErrorsSimpleTest) {
580 std::vector<GroundTruthPoint> groundTruthPoints =
581 generateConstantGroundTruthPoints(GroundTruthPoint{{.position = Eigen::Vector2f(0, 0),
582 .pressure = 0.0f},
583 .timestamp = TEST_INITIAL_TIMESTAMP},
584 /*numPoints=*/TEST_MAX_NUM_PREDICTIONS + 2);
585 groundTruthPoints[3].position = Eigen::Vector2f(1, 0);
586 groundTruthPoints[4].position = Eigen::Vector2f(1, 1);
587 groundTruthPoints[5].position = Eigen::Vector2f(1, 3);
588 groundTruthPoints[6].position = Eigen::Vector2f(2, 3);
589
590 std::vector<std::vector<PredictionPoint>> predictionPoints =
591 generateAllPredictionsByLinearExtrapolation(groundTruthPoints);
592
593 // The generated predictions look like:
594 //
595 // | Source | Target Ground Truth Index |
596 // | Index | 2 | 3 | 4 | 5 | 6 |
597 // |------------|--------|--------|--------|--------|--------|
598 // | 1 | (0, 0) | (0, 0) | (0, 0) | (0, 0) | (0, 0) |
599 // | 2 | | (0, 0) | (0, 0) | (0, 0) | (0, 0) |
600 // | 3 | | | (2, 0) | (3, 0) | (4, 0) |
601 // | 4 | | | | (1, 2) | (1, 3) |
602 // | 5 | | | | | (1, 5) |
603 // |---------------------------------------------------------|
604 // | Actual Ground Truth Values |
605 // | Position | (0, 0) | (1, 0) | (1, 1) | (1, 3) | (2, 3) |
606 // | Previous | (0, 0) | (0, 0) | (1, 0) | (1, 1) | (1, 3) |
607 //
608 // Note: this table organizes prediction targets by target ground truth index. Metrics are
609 // aggregated across points with the same prediction time bucket index, which is different.
610 // Each down-right diagonal from this table gives us points from a unique time bucket.
611
612 // Initialize expected prediction errors from the table above. The first time bucket corresponds
613 // to the long diagonal of the table, and subsequent time buckets step up-right from there.
614 const std::vector<std::vector<float>> expectedAlongTrajectoryErrors{{0, -1, -1, -1, -1},
615 {-1, -1, -3, -1},
616 {-1, -3, 2},
617 {-3, -2},
618 {-2}};
619 const std::vector<std::vector<float>> expectedOffTrajectoryErrors{{0, 0, 1, 0, 2},
620 {0, 1, 2, 0},
621 {1, 1, 3},
622 {1, 3},
623 {3}};
624
625 std::vector<GeneralPositionErrors> generalPositionErrors =
626 computeGeneralPositionErrors(groundTruthPoints, predictionPoints);
627
628 ASSERT_EQ(TEST_MAX_NUM_PREDICTIONS, generalPositionErrors.size());
629 for (size_t i = 0; i < generalPositionErrors.size(); ++i) {
630 SCOPED_TRACE(testing::Message() << "i = " << i);
631 EXPECT_FLOAT_EQ(average(expectedAlongTrajectoryErrors[i]),
632 generalPositionErrors[i].alongTrajectoryErrorMean);
633 EXPECT_FLOAT_EQ(standardDeviation(expectedAlongTrajectoryErrors[i]),
634 generalPositionErrors[i].alongTrajectoryErrorStd);
635 EXPECT_FLOAT_EQ(rmse(expectedOffTrajectoryErrors[i]),
636 generalPositionErrors[i].offTrajectoryRmse);
637 }
638 }
639
TEST(ErrorComputationHelperTest,ComputePressureRmsesSimpleTest)640 TEST(ErrorComputationHelperTest, ComputePressureRmsesSimpleTest) {
641 // Generate ground truth points with pressures {0.0, 0.0, 0.0, 0.0, 0.5, 0.5, 0.5}.
642 // (We need TEST_MAX_NUM_PREDICTIONS + 2 to test all prediction time buckets.)
643 std::vector<GroundTruthPoint> groundTruthPoints =
644 generateConstantGroundTruthPoints(GroundTruthPoint{{.position = Eigen::Vector2f(0, 0),
645 .pressure = 0.0f},
646 .timestamp = TEST_INITIAL_TIMESTAMP},
647 /*numPoints=*/TEST_MAX_NUM_PREDICTIONS + 2);
648 for (size_t i = 4; i < groundTruthPoints.size(); ++i) {
649 groundTruthPoints[i].pressure = 0.5f;
650 }
651
652 std::vector<std::vector<PredictionPoint>> predictionPoints =
653 generateAllPredictionsByLinearExtrapolation(groundTruthPoints);
654
655 std::vector<float> pressureRmses = computePressureRmses(groundTruthPoints, predictionPoints);
656
657 ASSERT_EQ(TEST_MAX_NUM_PREDICTIONS, pressureRmses.size());
658 EXPECT_FLOAT_EQ(rmse(std::vector<float>{0.0f, 0.0f, -0.5f, 0.5f, 0.0f}), pressureRmses[0]);
659 EXPECT_FLOAT_EQ(rmse(std::vector<float>{0.0f, -0.5f, -0.5f, 1.0f}), pressureRmses[1]);
660 EXPECT_FLOAT_EQ(rmse(std::vector<float>{-0.5f, -0.5f, -0.5f}), pressureRmses[2]);
661 EXPECT_FLOAT_EQ(rmse(std::vector<float>{-0.5f, -0.5f}), pressureRmses[3]);
662 EXPECT_FLOAT_EQ(rmse(std::vector<float>{-0.5f}), pressureRmses[4]);
663 }
664
665 // --- MotionPredictorMetricsManager tests. ---
666
667 // Helper function that instantiates a MetricsManager with the given mock logged AtomFields. Takes
668 // vectors of ground truth and prediction points of the same length, and passes these points to the
669 // MetricsManager. The format of these vectors is expected to be:
670 // • groundTruthPoints: chronologically-ordered ground truth points, with at least 2 elements.
671 // • predictionPoints: the first index points to a vector of predictions corresponding to the
672 // source ground truth point with the same index.
673 // - The first element should be empty, because there are not expected to be predictions until
674 // we have received 2 ground truth points.
675 // - The last element may be empty, because there will be no future ground truth points to
676 // associate with those predictions (if not empty, it will be ignored).
677 // - To test all prediction buckets, there should be at least TEST_MAX_NUM_PREDICTIONS non-empty
678 // prediction sets (that is, excluding the first and last). Thus, groundTruthPoints and
679 // predictionPoints should have size at least TEST_MAX_NUM_PREDICTIONS + 2.
680 //
681 // The passed-in outAtomFields will contain the logged AtomFields when the function returns.
682 //
683 // This function returns void so that it can use test assertions.
runMetricsManager(const std::vector<GroundTruthPoint> & groundTruthPoints,const std::vector<std::vector<PredictionPoint>> & predictionPoints,std::vector<AtomFields> & outAtomFields)684 void runMetricsManager(const std::vector<GroundTruthPoint>& groundTruthPoints,
685 const std::vector<std::vector<PredictionPoint>>& predictionPoints,
686 std::vector<AtomFields>& outAtomFields) {
687 MotionPredictorMetricsManager metricsManager(TEST_PREDICTION_INTERVAL_NANOS,
688 TEST_MAX_NUM_PREDICTIONS);
689 metricsManager.setMockLoggedAtomFields(&outAtomFields);
690
691 // Validate structure of groundTruthPoints and predictionPoints.
692 ASSERT_EQ(predictionPoints.size(), groundTruthPoints.size());
693 ASSERT_GE(groundTruthPoints.size(), 2u);
694 ASSERT_EQ(predictionPoints[0].size(), 0u);
695 for (size_t i = 1; i + 1 < predictionPoints.size(); ++i) {
696 SCOPED_TRACE(testing::Message() << "i = " << i);
697 ASSERT_EQ(predictionPoints[i].size(), TEST_MAX_NUM_PREDICTIONS);
698 }
699
700 // Pass ground truth points and predictions (for all except first and last ground truth).
701 for (size_t i = 0; i < groundTruthPoints.size(); ++i) {
702 metricsManager.onRecord(makeMotionEvent(groundTruthPoints[i]));
703 if ((i > 0) && (i + 1 < predictionPoints.size())) {
704 metricsManager.onPredict(makeMotionEvent(predictionPoints[i]));
705 }
706 }
707 // Send a stroke-end event to trigger the logging call.
708 metricsManager.onRecord(makeLiftMotionEvent());
709 }
710
711 // Vacuous test:
712 // • Input: no prediction data.
713 // • Expectation: no metrics should be logged.
TEST(MotionPredictorMetricsManagerTest,NoPredictions)714 TEST(MotionPredictorMetricsManagerTest, NoPredictions) {
715 std::vector<AtomFields> mockLoggedAtomFields;
716 MotionPredictorMetricsManager metricsManager(TEST_PREDICTION_INTERVAL_NANOS,
717 TEST_MAX_NUM_PREDICTIONS);
718 metricsManager.setMockLoggedAtomFields(&mockLoggedAtomFields);
719
720 metricsManager.onRecord(makeMotionEvent(
721 GroundTruthPoint{{.position = Eigen::Vector2f(0, 0), .pressure = 0}, .timestamp = 0}));
722 metricsManager.onRecord(makeLiftMotionEvent());
723
724 // Check that mockLoggedAtomFields is still empty (as it was initialized empty), ensuring that
725 // no metrics were logged.
726 EXPECT_EQ(0u, mockLoggedAtomFields.size());
727 }
728
729 // Perfect predictions test:
730 // • Input: constant input events, perfect predictions matching the input events.
731 // • Expectation: all error metrics should be zero, or NO_DATA_SENTINEL for "unreported" metrics.
732 // (For example, scale-invariant errors are only reported for the final time bucket.)
TEST(MotionPredictorMetricsManagerTest,ConstantGroundTruthPerfectPredictions)733 TEST(MotionPredictorMetricsManagerTest, ConstantGroundTruthPerfectPredictions) {
734 GroundTruthPoint groundTruthPoint{{.position = Eigen::Vector2f(10.0f, 20.0f), .pressure = 0.6f},
735 .timestamp = TEST_INITIAL_TIMESTAMP};
736
737 // Generate ground truth and prediction points as described by the runMetricsManager comment.
738 std::vector<GroundTruthPoint> groundTruthPoints;
739 std::vector<std::vector<PredictionPoint>> predictionPoints;
740 for (size_t i = 0; i < TEST_MAX_NUM_PREDICTIONS + 2; ++i) {
741 groundTruthPoints.push_back(groundTruthPoint);
742 predictionPoints.push_back(i > 0 ? generateConstantPredictions(groundTruthPoint)
743 : std::vector<PredictionPoint>{});
744 groundTruthPoint.timestamp += TEST_PREDICTION_INTERVAL_NANOS;
745 }
746
747 std::vector<AtomFields> atomFields;
748 runMetricsManager(groundTruthPoints, predictionPoints, atomFields);
749
750 ASSERT_EQ(TEST_MAX_NUM_PREDICTIONS, atomFields.size());
751 // Check that errors are all zero, or NO_DATA_SENTINEL for unreported metrics.
752 for (size_t i = 0; i < atomFields.size(); ++i) {
753 SCOPED_TRACE(testing::Message() << "i = " << i);
754 const AtomFields& atom = atomFields[i];
755 const nsecs_t deltaTimeBucketNanos = TEST_PREDICTION_INTERVAL_NANOS * (i + 1);
756 EXPECT_EQ(deltaTimeBucketNanos / NANOS_PER_MILLIS, atom.deltaTimeBucketMilliseconds);
757 // General errors: reported for every time bucket.
758 EXPECT_EQ(0, atom.alongTrajectoryErrorMeanMillipixels);
759 EXPECT_EQ(0, atom.alongTrajectoryErrorStdMillipixels);
760 EXPECT_EQ(0, atom.offTrajectoryRmseMillipixels);
761 EXPECT_EQ(0, atom.pressureRmseMilliunits);
762 // High-velocity errors: reported only for the last two time buckets.
763 // However, this data has zero velocity, so these metrics should all be NO_DATA_SENTINEL.
764 EXPECT_EQ(NO_DATA_SENTINEL, atom.highVelocityAlongTrajectoryRmse);
765 EXPECT_EQ(NO_DATA_SENTINEL, atom.highVelocityOffTrajectoryRmse);
766 // Scale-invariant errors: reported only for the last time bucket.
767 if (i + 1 == atomFields.size()) {
768 EXPECT_EQ(0, atom.scaleInvariantAlongTrajectoryRmse);
769 EXPECT_EQ(0, atom.scaleInvariantOffTrajectoryRmse);
770 } else {
771 EXPECT_EQ(NO_DATA_SENTINEL, atom.scaleInvariantAlongTrajectoryRmse);
772 EXPECT_EQ(NO_DATA_SENTINEL, atom.scaleInvariantOffTrajectoryRmse);
773 }
774 }
775 }
776
TEST(MotionPredictorMetricsManagerTest,QuadraticPressureLinearPredictions)777 TEST(MotionPredictorMetricsManagerTest, QuadraticPressureLinearPredictions) {
778 // Generate ground truth points.
779 //
780 // Ground truth pressures are a quadratically increasing function from some initial value.
781 const float initialPressure = 0.5f;
782 const float quadraticCoefficient = 0.01f;
783 std::vector<GroundTruthPoint> groundTruthPoints;
784 nsecs_t timestamp = TEST_INITIAL_TIMESTAMP;
785 // As described in the runMetricsManager comment, we should have TEST_MAX_NUM_PREDICTIONS + 2
786 // ground truth points.
787 for (size_t i = 0; i < TEST_MAX_NUM_PREDICTIONS + 2; ++i) {
788 const float pressure = initialPressure + quadraticCoefficient * static_cast<float>(i * i);
789 groundTruthPoints.push_back(
790 GroundTruthPoint{{.position = Eigen::Vector2f(0, 0), .pressure = pressure},
791 .timestamp = timestamp});
792 timestamp += TEST_PREDICTION_INTERVAL_NANOS;
793 }
794
795 // Note: the first index is the source ground truth index, and the second is the prediction
796 // target index.
797 std::vector<std::vector<PredictionPoint>> predictionPoints =
798 generateAllPredictionsByLinearExtrapolation(groundTruthPoints);
799
800 const std::vector<float> pressureErrors =
801 computePressureRmses(groundTruthPoints, predictionPoints);
802
803 // Run test.
804 std::vector<AtomFields> atomFields;
805 runMetricsManager(groundTruthPoints, predictionPoints, atomFields);
806
807 // Check logged metrics match expectations.
808 ASSERT_EQ(TEST_MAX_NUM_PREDICTIONS, atomFields.size());
809 for (size_t i = 0; i < atomFields.size(); ++i) {
810 SCOPED_TRACE(testing::Message() << "i = " << i);
811 const AtomFields& atom = atomFields[i];
812 // Check time bucket delta matches expectation based on index and prediction interval.
813 const nsecs_t deltaTimeBucketNanos = TEST_PREDICTION_INTERVAL_NANOS * (i + 1);
814 EXPECT_EQ(deltaTimeBucketNanos / NANOS_PER_MILLIS, atom.deltaTimeBucketMilliseconds);
815 // Check pressure error matches expectation.
816 EXPECT_NEAR(static_cast<int>(1000 * pressureErrors[i]), atom.pressureRmseMilliunits, 1);
817 }
818 }
819
TEST(MotionPredictorMetricsManagerTest,QuadraticPositionLinearPredictionsGeneralErrors)820 TEST(MotionPredictorMetricsManagerTest, QuadraticPositionLinearPredictionsGeneralErrors) {
821 // Generate ground truth points.
822 //
823 // Each component of the ground truth positions are an independent quadratically increasing
824 // function from some initial value.
825 const Eigen::Vector2f initialPosition(200, 300);
826 const Eigen::Vector2f quadraticCoefficients(-2, 3);
827 std::vector<GroundTruthPoint> groundTruthPoints;
828 nsecs_t timestamp = TEST_INITIAL_TIMESTAMP;
829 // As described in the runMetricsManager comment, we should have TEST_MAX_NUM_PREDICTIONS + 2
830 // ground truth points.
831 for (size_t i = 0; i < TEST_MAX_NUM_PREDICTIONS + 2; ++i) {
832 const Eigen::Vector2f position =
833 initialPosition + quadraticCoefficients * static_cast<float>(i * i);
834 groundTruthPoints.push_back(
835 GroundTruthPoint{{.position = position, .pressure = 0.5}, .timestamp = timestamp});
836 timestamp += TEST_PREDICTION_INTERVAL_NANOS;
837 }
838
839 // Note: the first index is the source ground truth index, and the second is the prediction
840 // target index.
841 std::vector<std::vector<PredictionPoint>> predictionPoints =
842 generateAllPredictionsByLinearExtrapolation(groundTruthPoints);
843
844 std::vector<GeneralPositionErrors> generalPositionErrors =
845 computeGeneralPositionErrors(groundTruthPoints, predictionPoints);
846
847 // Run test.
848 std::vector<AtomFields> atomFields;
849 runMetricsManager(groundTruthPoints, predictionPoints, atomFields);
850
851 // Check logged metrics match expectations.
852 ASSERT_EQ(TEST_MAX_NUM_PREDICTIONS, atomFields.size());
853 for (size_t i = 0; i < atomFields.size(); ++i) {
854 SCOPED_TRACE(testing::Message() << "i = " << i);
855 const AtomFields& atom = atomFields[i];
856 // Check time bucket delta matches expectation based on index and prediction interval.
857 const nsecs_t deltaTimeBucketNanos = TEST_PREDICTION_INTERVAL_NANOS * (i + 1);
858 EXPECT_EQ(deltaTimeBucketNanos / NANOS_PER_MILLIS, atom.deltaTimeBucketMilliseconds);
859 // Check general position errors match expectation.
860 EXPECT_NEAR(static_cast<int>(1000 * generalPositionErrors[i].alongTrajectoryErrorMean),
861 atom.alongTrajectoryErrorMeanMillipixels, 1);
862 EXPECT_NEAR(static_cast<int>(1000 * generalPositionErrors[i].alongTrajectoryErrorStd),
863 atom.alongTrajectoryErrorStdMillipixels, 1);
864 EXPECT_NEAR(static_cast<int>(1000 * generalPositionErrors[i].offTrajectoryRmse),
865 atom.offTrajectoryRmseMillipixels, 1);
866 }
867 }
868
869 // Counterclockwise regular octagonal section test:
870 // • Input – ground truth: constantly-spaced input events starting at a trajectory pointing exactly
871 // rightwards, and rotating by 45° counterclockwise after each input.
872 // • Input – predictions: simple linear extrapolations of previous two ground truth points.
873 //
874 // The code below uses the following terminology to distinguish references to ground truth events:
875 // • Source ground truth: the most recent ground truth point received at the time the prediction
876 // was made.
877 // • Target ground truth: the ground truth event that the prediction was attempting to match.
TEST(MotionPredictorMetricsManagerTest,CounterclockwiseOctagonGroundTruthLinearPredictions)878 TEST(MotionPredictorMetricsManagerTest, CounterclockwiseOctagonGroundTruthLinearPredictions) {
879 // Select a stroke velocity that exceeds the high-velocity threshold of 1100 px/sec.
880 // For an input rate of 240 hz, 1100 px/sec * (1/240) sec/input ≈ 4.58 pixels per input.
881 const float strokeVelocity = 10; // pixels per input
882
883 // As described in the runMetricsManager comment, we should have TEST_MAX_NUM_PREDICTIONS + 2
884 // ground truth points.
885 std::vector<GroundTruthPoint> groundTruthPoints = generateCircularArcGroundTruthPoints(
886 /*initialPosition=*/Eigen::Vector2f(100, 100),
887 /*initialAngle=*/M_PI_2,
888 /*velocity=*/strokeVelocity,
889 /*turningAngle=*/-M_PI_4,
890 /*numPoints=*/TEST_MAX_NUM_PREDICTIONS + 2);
891
892 std::vector<std::vector<PredictionPoint>> predictionPoints =
893 generateAllPredictionsByLinearExtrapolation(groundTruthPoints);
894
895 std::vector<GeneralPositionErrors> generalPositionErrors =
896 computeGeneralPositionErrors(groundTruthPoints, predictionPoints);
897
898 // Run test.
899 std::vector<AtomFields> atomFields;
900 runMetricsManager(groundTruthPoints, predictionPoints, atomFields);
901
902 // Check logged metrics match expectations.
903 ASSERT_EQ(TEST_MAX_NUM_PREDICTIONS, atomFields.size());
904 for (size_t i = 0; i < atomFields.size(); ++i) {
905 SCOPED_TRACE(testing::Message() << "i = " << i);
906 const AtomFields& atom = atomFields[i];
907 const nsecs_t deltaTimeBucketNanos = TEST_PREDICTION_INTERVAL_NANOS * (i + 1);
908 EXPECT_EQ(deltaTimeBucketNanos / NANOS_PER_MILLIS, atom.deltaTimeBucketMilliseconds);
909
910 // General errors: reported for every time bucket.
911 EXPECT_NEAR(static_cast<int>(1000 * generalPositionErrors[i].alongTrajectoryErrorMean),
912 atom.alongTrajectoryErrorMeanMillipixels, 1);
913 // We allow for some floating point error in standard deviation (0.02 pixels).
914 EXPECT_NEAR(1000 * generalPositionErrors[i].alongTrajectoryErrorStd,
915 atom.alongTrajectoryErrorStdMillipixels, 20);
916 // All position errors are equal, so the standard deviation should be approximately zero.
917 EXPECT_NEAR(0, atom.alongTrajectoryErrorStdMillipixels, 20);
918 // Absolute value for RMSE, since it must be non-negative.
919 EXPECT_NEAR(static_cast<int>(1000 * generalPositionErrors[i].offTrajectoryRmse),
920 atom.offTrajectoryRmseMillipixels, 1);
921
922 // High-velocity errors: reported only for the last two time buckets.
923 //
924 // Since our input stroke velocity is chosen to be above the high-velocity threshold, all
925 // data contributes to high-velocity errors, and thus high-velocity errors should be equal
926 // to general errors (where reported).
927 //
928 // As above, use absolute value for RMSE, since it must be non-negative.
929 if (i + 2 >= atomFields.size()) {
930 EXPECT_NEAR(static_cast<int>(
931 1000 * std::abs(generalPositionErrors[i].alongTrajectoryErrorMean)),
932 atom.highVelocityAlongTrajectoryRmse, 1);
933 EXPECT_NEAR(static_cast<int>(1000 *
934 std::abs(generalPositionErrors[i].offTrajectoryRmse)),
935 atom.highVelocityOffTrajectoryRmse, 1);
936 } else {
937 EXPECT_EQ(NO_DATA_SENTINEL, atom.highVelocityAlongTrajectoryRmse);
938 EXPECT_EQ(NO_DATA_SENTINEL, atom.highVelocityOffTrajectoryRmse);
939 }
940
941 // Scale-invariant errors: reported only for the last time bucket, where the reported value
942 // is the aggregation across all time buckets.
943 //
944 // The MetricsManager stores mMaxNumPredictions recent ground truth segments. Our ground
945 // truth segments here all have a length of strokeVelocity, so we can convert general errors
946 // to scale-invariant errors by dividing by `strokeVelocty * TEST_MAX_NUM_PREDICTIONS`.
947 //
948 // As above, use absolute value for RMSE, since it must be non-negative.
949 if (i + 1 == atomFields.size()) {
950 const float pathLength = strokeVelocity * TEST_MAX_NUM_PREDICTIONS;
951 std::vector<float> alongTrajectoryAbsoluteErrors;
952 std::vector<float> offTrajectoryAbsoluteErrors;
953 for (size_t j = 0; j < TEST_MAX_NUM_PREDICTIONS; ++j) {
954 alongTrajectoryAbsoluteErrors.push_back(
955 std::abs(generalPositionErrors[j].alongTrajectoryErrorMean));
956 offTrajectoryAbsoluteErrors.push_back(
957 std::abs(generalPositionErrors[j].offTrajectoryRmse));
958 }
959 EXPECT_NEAR(static_cast<int>(1000 * average(alongTrajectoryAbsoluteErrors) /
960 pathLength),
961 atom.scaleInvariantAlongTrajectoryRmse, 1);
962 EXPECT_NEAR(static_cast<int>(1000 * average(offTrajectoryAbsoluteErrors) / pathLength),
963 atom.scaleInvariantOffTrajectoryRmse, 1);
964 } else {
965 EXPECT_EQ(NO_DATA_SENTINEL, atom.scaleInvariantAlongTrajectoryRmse);
966 EXPECT_EQ(NO_DATA_SENTINEL, atom.scaleInvariantOffTrajectoryRmse);
967 }
968 }
969 }
970
971 } // namespace
972 } // namespace android
973