• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright 2013 The Android Open Source Project
3  *
4  * Licensed under the Apache License, Version 2.0 (the "License");
5  * you may not use this file except in compliance with the License.
6  * You may obtain a copy of the License at
7  *
8  *      http://www.apache.org/licenses/LICENSE-2.0
9  *
10  * Unless required by applicable law or agreed to in writing, software
11  * distributed under the License is distributed on an "AS IS" BASIS,
12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13  * See the License for the specific language governing permissions and
14  * limitations under the License.
15  */
16 
17 #pragma once
18 
19 #include <math/quat.h>
20 #include <math/TMatHelpers.h>
21 #include <math/vec3.h>
22 #include <stdint.h>
23 #include <sys/types.h>
24 
25 #define PURE __attribute__((pure))
26 
27 #if __cplusplus >= 201402L
28 #define CONSTEXPR constexpr
29 #else
30 #define CONSTEXPR
31 #endif
32 
33 namespace android {
34 // -------------------------------------------------------------------------------------
35 namespace details {
36 
37 template<typename T>
38 class TQuaternion;
39 
40 /**
41  * A 3x3 column-major matrix class.
42  *
43  * Conceptually a 3x3 matrix is a an array of 3 column vec3:
44  *
45  * mat3 m =
46  *      \f$
47  *      \left(
48  *      \begin{array}{ccc}
49  *      m[0] & m[1] & m[2] \\
50  *      \end{array}
51  *      \right)
52  *      \f$
53  *      =
54  *      \f$
55  *      \left(
56  *      \begin{array}{ccc}
57  *      m[0][0] & m[1][0] & m[2][0] \\
58  *      m[0][1] & m[1][1] & m[2][1] \\
59  *      m[0][2] & m[1][2] & m[2][2] \\
60  *      \end{array}
61  *      \right)
62  *      \f$
63  *      =
64  *      \f$
65  *      \left(
66  *      \begin{array}{ccc}
67  *      m(0,0) & m(0,1) & m(0,2) \\
68  *      m(1,0) & m(1,1) & m(1,2) \\
69  *      m(2,0) & m(2,1) & m(2,2) \\
70  *      \end{array}
71  *      \right)
72  *      \f$
73  *
74  * m[n] is the \f$ n^{th} \f$ column of the matrix and is a vec3.
75  *
76  */
77 template <typename T>
78 class TMat33 :  public TVecUnaryOperators<TMat33, T>,
79                 public TVecComparisonOperators<TMat33, T>,
80                 public TVecAddOperators<TMat33, T>,
81                 public TMatProductOperators<TMat33, T>,
82                 public TMatSquareFunctions<TMat33, T>,
83                 public TMatTransform<TMat33, T>,
84                 public TMatHelpers<TMat33, T>,
85                 public TMatDebug<TMat33, T> {
86 public:
87     enum no_init { NO_INIT };
88     typedef T value_type;
89     typedef T& reference;
90     typedef T const& const_reference;
91     typedef size_t size_type;
92     typedef TVec3<T> col_type;
93     typedef TVec3<T> row_type;
94 
95     static constexpr size_t COL_SIZE = col_type::SIZE;  // size of a column (i.e.: number of rows)
96     static constexpr size_t ROW_SIZE = row_type::SIZE;  // size of a row (i.e.: number of columns)
97     static constexpr size_t NUM_ROWS = COL_SIZE;
98     static constexpr size_t NUM_COLS = ROW_SIZE;
99 
100 private:
101     /*
102      *  <--  N columns  -->
103      *
104      *  a[0][0] a[1][0] a[2][0] ... a[N][0]    ^
105      *  a[0][1] a[1][1] a[2][1] ... a[N][1]    |
106      *  a[0][2] a[1][2] a[2][2] ... a[N][2]  M rows
107      *  ...                                    |
108      *  a[0][M] a[1][M] a[2][M] ... a[N][M]    v
109      *
110      *  COL_SIZE = M
111      *  ROW_SIZE = N
112      *  m[0] = [ a[0][0] a[0][1] a[0][2] ... a[0][M] ]
113      */
114 
115     col_type m_value[NUM_COLS];
116 
117 public:
118     // array access
119     inline constexpr col_type const& operator[](size_t column) const {
120 #if __cplusplus >= 201402L
121         // only possible in C++0x14 with constexpr
122         assert(column < NUM_COLS);
123 #endif
124         return m_value[column];
125     }
126 
127     inline col_type& operator[](size_t column) {
128         assert(column < NUM_COLS);
129         return m_value[column];
130     }
131 
132     // -----------------------------------------------------------------------
133     // we want the compiler generated versions for these...
134     TMat33(const TMat33&) = default;
135     ~TMat33() = default;
136     TMat33& operator = (const TMat33&) = default;
137 
138     /**
139      *  constructors
140      */
141 
142     /**
143      * leaves object uninitialized. use with caution.
144      */
TMat33(no_init)145     explicit constexpr TMat33(no_init)
146             : m_value{ col_type(col_type::NO_INIT),
147                        col_type(col_type::NO_INIT),
148                        col_type(col_type::NO_INIT) } {}
149 
150 
151     /**
152      * initialize to identity.
153      *
154      *      \f$
155      *      \left(
156      *      \begin{array}{ccc}
157      *      1 & 0 & 0 \\
158      *      0 & 1 & 0 \\
159      *      0 & 0 & 1 \\
160      *      \end{array}
161      *      \right)
162      *      \f$
163      */
164     CONSTEXPR TMat33();
165 
166     /**
167      * initialize to Identity*scalar.
168      *
169      *      \f$
170      *      \left(
171      *      \begin{array}{ccc}
172      *      v & 0 & 0 \\
173      *      0 & v & 0 \\
174      *      0 & 0 & v \\
175      *      \end{array}
176      *      \right)
177      *      \f$
178      */
179     template<typename U>
180     explicit CONSTEXPR TMat33(U v);
181 
182     /**
183      * sets the diagonal to a vector.
184      *
185      *      \f$
186      *      \left(
187      *      \begin{array}{ccc}
188      *      v[0] & 0 & 0 \\
189      *      0 & v[1] & 0 \\
190      *      0 & 0 & v[2] \\
191      *      \end{array}
192      *      \right)
193      *      \f$
194      */
195     template <typename U>
196     explicit CONSTEXPR TMat33(const TVec3<U>& v);
197 
198     /**
199      * construct from another matrix of the same size
200      */
201     template <typename U>
202     explicit CONSTEXPR TMat33(const TMat33<U>& rhs);
203 
204     /**
205      * construct from 3 column vectors.
206      *
207      *      \f$
208      *      \left(
209      *      \begin{array}{ccc}
210      *      v0 & v1 & v2 \\
211      *      \end{array}
212      *      \right)
213      *      \f$
214      */
215     template <typename A, typename B, typename C>
216     CONSTEXPR TMat33(const TVec3<A>& v0, const TVec3<B>& v1, const TVec3<C>& v2);
217 
218     /** construct from 9 elements in column-major form.
219      *
220      *      \f$
221      *      \left(
222      *      \begin{array}{ccc}
223      *      m[0][0] & m[1][0] & m[2][0] \\
224      *      m[0][1] & m[1][1] & m[2][1] \\
225      *      m[0][2] & m[1][2] & m[2][2] \\
226      *      \end{array}
227      *      \right)
228      *      \f$
229      */
230     template <
231         typename A, typename B, typename C,
232         typename D, typename E, typename F,
233         typename G, typename H, typename I>
234     CONSTEXPR TMat33(
235            A m00, B m01, C m02,
236            D m10, E m11, F m12,
237            G m20, H m21, I m22);
238 
239     /**
240      * construct from a quaternion
241      */
242     template <typename U>
243     explicit CONSTEXPR TMat33(const TQuaternion<U>& q);
244 
245     /**
246      * construct from a C array in column major form.
247      */
248     template <typename U>
249     explicit CONSTEXPR TMat33(U const* rawArray);
250 
251     /**
252      * orthogonalize only works on matrices of size 3x3
253      */
254     friend inline
orthogonalize(const TMat33 & m)255     CONSTEXPR TMat33 orthogonalize(const TMat33& m) {
256         TMat33 ret(TMat33::NO_INIT);
257         ret[0] = normalize(m[0]);
258         ret[2] = normalize(cross(ret[0], m[1]));
259         ret[1] = normalize(cross(ret[2], ret[0]));
260         return ret;
261     }
262 };
263 
264 // ----------------------------------------------------------------------------------------
265 // Constructors
266 // ----------------------------------------------------------------------------------------
267 
268 // Since the matrix code could become pretty big quickly, we don't inline most
269 // operations.
270 
271 template <typename T>
TMat33()272 CONSTEXPR TMat33<T>::TMat33() {
273     m_value[0] = col_type(1, 0, 0);
274     m_value[1] = col_type(0, 1, 0);
275     m_value[2] = col_type(0, 0, 1);
276 }
277 
278 template <typename T>
279 template <typename U>
TMat33(U v)280 CONSTEXPR TMat33<T>::TMat33(U v) {
281     m_value[0] = col_type(v, 0, 0);
282     m_value[1] = col_type(0, v, 0);
283     m_value[2] = col_type(0, 0, v);
284 }
285 
286 template<typename T>
287 template<typename U>
TMat33(const TVec3<U> & v)288 CONSTEXPR TMat33<T>::TMat33(const TVec3<U>& v) {
289     m_value[0] = col_type(v.x, 0, 0);
290     m_value[1] = col_type(0, v.y, 0);
291     m_value[2] = col_type(0, 0, v.z);
292 }
293 
294 // construct from 9 scalars. Note that the arrangement
295 // of values in the constructor is the transpose of the matrix
296 // notation.
297 template<typename T>
298 template <
299     typename A, typename B, typename C,
300     typename D, typename E, typename F,
301     typename G, typename H, typename I>
TMat33(A m00,B m01,C m02,D m10,E m11,F m12,G m20,H m21,I m22)302 CONSTEXPR TMat33<T>::TMat33(
303         A m00, B m01, C m02,
304         D m10, E m11, F m12,
305         G m20, H m21, I m22) {
306     m_value[0] = col_type(m00, m01, m02);
307     m_value[1] = col_type(m10, m11, m12);
308     m_value[2] = col_type(m20, m21, m22);
309 }
310 
311 template <typename T>
312 template <typename U>
TMat33(const TMat33<U> & rhs)313 CONSTEXPR TMat33<T>::TMat33(const TMat33<U>& rhs) {
314     for (size_t col = 0; col < NUM_COLS; ++col) {
315         m_value[col] = col_type(rhs[col]);
316     }
317 }
318 
319 // Construct from 3 column vectors.
320 template <typename T>
321 template <typename A, typename B, typename C>
TMat33(const TVec3<A> & v0,const TVec3<B> & v1,const TVec3<C> & v2)322 CONSTEXPR TMat33<T>::TMat33(const TVec3<A>& v0, const TVec3<B>& v1, const TVec3<C>& v2) {
323     m_value[0] = v0;
324     m_value[1] = v1;
325     m_value[2] = v2;
326 }
327 
328 // Construct from raw array, in column-major form.
329 template <typename T>
330 template <typename U>
TMat33(U const * rawArray)331 CONSTEXPR TMat33<T>::TMat33(U const* rawArray) {
332     for (size_t col = 0; col < NUM_COLS; ++col) {
333         for (size_t row = 0; row < NUM_ROWS; ++row) {
334             m_value[col][row] = *rawArray++;
335         }
336     }
337 }
338 
339 template <typename T>
340 template <typename U>
TMat33(const TQuaternion<U> & q)341 CONSTEXPR TMat33<T>::TMat33(const TQuaternion<U>& q) {
342     const U n = q.x*q.x + q.y*q.y + q.z*q.z + q.w*q.w;
343     const U s = n > 0 ? 2/n : 0;
344     const U x = s*q.x;
345     const U y = s*q.y;
346     const U z = s*q.z;
347     const U xx = x*q.x;
348     const U xy = x*q.y;
349     const U xz = x*q.z;
350     const U xw = x*q.w;
351     const U yy = y*q.y;
352     const U yz = y*q.z;
353     const U yw = y*q.w;
354     const U zz = z*q.z;
355     const U zw = z*q.w;
356     m_value[0] = col_type(1-yy-zz,    xy+zw,    xz-yw);  // NOLINT
357     m_value[1] = col_type(  xy-zw,  1-xx-zz,    yz+xw);  // NOLINT
358     m_value[2] = col_type(  xz+yw,    yz-xw,  1-xx-yy);  // NOLINT
359 }
360 
361 // ----------------------------------------------------------------------------------------
362 // Arithmetic operators outside of class
363 // ----------------------------------------------------------------------------------------
364 
365 /* We use non-friend functions here to prevent the compiler from using
366  * implicit conversions, for instance of a scalar to a vector. The result would
367  * not be what the caller expects.
368  *
369  * Also note that the order of the arguments in the inner loop is important since
370  * it determines the output type (only relevant when T != U).
371  */
372 
373 // matrix * column-vector, result is a vector of the same type than the input vector
374 template <typename T, typename U>
375 CONSTEXPR typename TMat33<U>::col_type PURE operator *(const TMat33<T>& lhs, const TVec3<U>& rhs) {
376     // Result is initialized to zero.
377     typename TMat33<U>::col_type result;
378     for (size_t col = 0; col < TMat33<T>::NUM_COLS; ++col) {
379         result += lhs[col] * rhs[col];
380     }
381     return result;
382 }
383 
384 // row-vector * matrix, result is a vector of the same type than the input vector
385 template <typename T, typename U>
386 CONSTEXPR typename TMat33<U>::row_type PURE operator *(const TVec3<U>& lhs, const TMat33<T>& rhs) {
387     typename TMat33<U>::row_type result(TMat33<U>::row_type::NO_INIT);
388     for (size_t col = 0; col < TMat33<T>::NUM_COLS; ++col) {
389         result[col] = dot(lhs, rhs[col]);
390     }
391     return result;
392 }
393 
394 // matrix * scalar, result is a matrix of the same type than the input matrix
395 template<typename T, typename U>
396 constexpr typename std::enable_if<std::is_arithmetic<U>::value, TMat33<T>>::type PURE
397 operator*(TMat33<T> lhs, U rhs) {
398     return lhs *= rhs;
399 }
400 
401 // scalar * matrix, result is a matrix of the same type than the input matrix
402 template<typename T, typename U>
403 constexpr typename std::enable_if<std::is_arithmetic<U>::value, TMat33<T>>::type PURE
404 operator*(U lhs, const TMat33<T>& rhs) {
405     return rhs * lhs;
406 }
407 
408 //------------------------------------------------------------------------------
409 template <typename T>
orthogonalize(const TMat33<T> & m)410 CONSTEXPR TMat33<T> orthogonalize(const TMat33<T>& m) {
411     TMat33<T> ret(TMat33<T>::NO_INIT);
412     ret[0] = normalize(m[0]);
413     ret[2] = normalize(cross(ret[0], m[1]));
414     ret[1] = normalize(cross(ret[2], ret[0]));
415     return ret;
416 }
417 
418 // ----------------------------------------------------------------------------------------
419 
420 /* FIXME: this should go into TMatSquareFunctions<> but for some reason
421  * BASE<T>::col_type is not accessible from there (???)
422  */
423 template<typename T>
diag(const TMat33<T> & m)424 CONSTEXPR typename TMat33<T>::col_type PURE diag(const TMat33<T>& m) {
425     return matrix::diag(m);
426 }
427 
428 }  // namespace details
429 
430 // ----------------------------------------------------------------------------------------
431 
432 typedef details::TMat33<double> mat3d;
433 typedef details::TMat33<float> mat3;
434 typedef details::TMat33<float> mat3f;
435 
436 // ----------------------------------------------------------------------------------------
437 }  // namespace android
438 
439 #undef PURE
440 #undef CONSTEXPR
441