1 /*
2 * Copyright 2019 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17 #include <SurfaceFlingerProperties.sysprop.h>
18 #include <android-base/stringprintf.h>
19 #include <compositionengine/CompositionEngine.h>
20 #include <compositionengine/CompositionRefreshArgs.h>
21 #include <compositionengine/DisplayColorProfile.h>
22 #include <compositionengine/LayerFE.h>
23 #include <compositionengine/LayerFECompositionState.h>
24 #include <compositionengine/RenderSurface.h>
25 #include <compositionengine/impl/HwcAsyncWorker.h>
26 #include <compositionengine/impl/Output.h>
27 #include <compositionengine/impl/OutputCompositionState.h>
28 #include <compositionengine/impl/OutputLayer.h>
29 #include <compositionengine/impl/OutputLayerCompositionState.h>
30 #include <compositionengine/impl/planner/Planner.h>
31 #include <ftl/future.h>
32 #include <gui/TraceUtils.h>
33
34 #include <optional>
35 #include <thread>
36
37 #include "renderengine/ExternalTexture.h"
38
39 // TODO(b/129481165): remove the #pragma below and fix conversion issues
40 #pragma clang diagnostic push
41 #pragma clang diagnostic ignored "-Wconversion"
42
43 #include <renderengine/DisplaySettings.h>
44 #include <renderengine/RenderEngine.h>
45
46 // TODO(b/129481165): remove the #pragma below and fix conversion issues
47 #pragma clang diagnostic pop // ignored "-Wconversion"
48
49 #include <android-base/properties.h>
50 #include <ui/DebugUtils.h>
51 #include <ui/HdrCapabilities.h>
52 #include <utils/Trace.h>
53
54 #include "TracedOrdinal.h"
55
56 using aidl::android::hardware::graphics::composer3::Composition;
57
58 namespace android::compositionengine {
59
60 Output::~Output() = default;
61
62 namespace impl {
63 using CompositionStrategyPredictionState =
64 OutputCompositionState::CompositionStrategyPredictionState;
65 namespace {
66
67 template <typename T>
68 class Reversed {
69 public:
Reversed(const T & container)70 explicit Reversed(const T& container) : mContainer(container) {}
begin()71 auto begin() { return mContainer.rbegin(); }
end()72 auto end() { return mContainer.rend(); }
73
74 private:
75 const T& mContainer;
76 };
77
78 // Helper for enumerating over a container in reverse order
79 template <typename T>
reversed(const T & c)80 Reversed<T> reversed(const T& c) {
81 return Reversed<T>(c);
82 }
83
84 struct ScaleVector {
85 float x;
86 float y;
87 };
88
89 // Returns a ScaleVector (x, y) such that from.scale(x, y) = to',
90 // where to' will have the same size as "to". In the case where "from" and "to"
91 // start at the origin to'=to.
getScale(const Rect & from,const Rect & to)92 ScaleVector getScale(const Rect& from, const Rect& to) {
93 return {.x = static_cast<float>(to.width()) / from.width(),
94 .y = static_cast<float>(to.height()) / from.height()};
95 }
96
97 } // namespace
98
createOutput(const compositionengine::CompositionEngine & compositionEngine)99 std::shared_ptr<Output> createOutput(
100 const compositionengine::CompositionEngine& compositionEngine) {
101 return createOutputTemplated<Output>(compositionEngine);
102 }
103
104 Output::~Output() = default;
105
isValid() const106 bool Output::isValid() const {
107 return mDisplayColorProfile && mDisplayColorProfile->isValid() && mRenderSurface &&
108 mRenderSurface->isValid();
109 }
110
getDisplayId() const111 std::optional<DisplayId> Output::getDisplayId() const {
112 return {};
113 }
114
getName() const115 const std::string& Output::getName() const {
116 return mName;
117 }
118
setName(const std::string & name)119 void Output::setName(const std::string& name) {
120 mName = name;
121 auto displayIdOpt = getDisplayId();
122 mNamePlusId = displayIdOpt ? base::StringPrintf("%s (%s)", mName.c_str(),
123 to_string(*displayIdOpt).c_str())
124 : mName;
125 }
126
setCompositionEnabled(bool enabled)127 void Output::setCompositionEnabled(bool enabled) {
128 auto& outputState = editState();
129 if (outputState.isEnabled == enabled) {
130 return;
131 }
132
133 outputState.isEnabled = enabled;
134 dirtyEntireOutput();
135 }
136
setLayerCachingEnabled(bool enabled)137 void Output::setLayerCachingEnabled(bool enabled) {
138 if (enabled == (mPlanner != nullptr)) {
139 return;
140 }
141
142 if (enabled) {
143 mPlanner = std::make_unique<planner::Planner>(getCompositionEngine().getRenderEngine());
144 if (mRenderSurface) {
145 mPlanner->setDisplaySize(mRenderSurface->getSize());
146 }
147 } else {
148 mPlanner.reset();
149 }
150
151 for (auto* outputLayer : getOutputLayersOrderedByZ()) {
152 if (!outputLayer) {
153 continue;
154 }
155
156 outputLayer->editState().overrideInfo = {};
157 }
158 }
159
setLayerCachingTexturePoolEnabled(bool enabled)160 void Output::setLayerCachingTexturePoolEnabled(bool enabled) {
161 if (mPlanner) {
162 mPlanner->setTexturePoolEnabled(enabled);
163 }
164 }
165
setProjection(ui::Rotation orientation,const Rect & layerStackSpaceRect,const Rect & orientedDisplaySpaceRect)166 void Output::setProjection(ui::Rotation orientation, const Rect& layerStackSpaceRect,
167 const Rect& orientedDisplaySpaceRect) {
168 auto& outputState = editState();
169
170 outputState.displaySpace.setOrientation(orientation);
171 LOG_FATAL_IF(outputState.displaySpace.getBoundsAsRect() == Rect::INVALID_RECT,
172 "The display bounds are unknown.");
173
174 // Compute orientedDisplaySpace
175 ui::Size orientedSize = outputState.displaySpace.getBounds();
176 if (orientation == ui::ROTATION_90 || orientation == ui::ROTATION_270) {
177 std::swap(orientedSize.width, orientedSize.height);
178 }
179 outputState.orientedDisplaySpace.setBounds(orientedSize);
180 outputState.orientedDisplaySpace.setContent(orientedDisplaySpaceRect);
181
182 // Compute displaySpace.content
183 const uint32_t transformOrientationFlags = ui::Transform::toRotationFlags(orientation);
184 ui::Transform rotation;
185 if (transformOrientationFlags != ui::Transform::ROT_INVALID) {
186 const auto displaySize = outputState.displaySpace.getBoundsAsRect();
187 rotation.set(transformOrientationFlags, displaySize.width(), displaySize.height());
188 }
189 outputState.displaySpace.setContent(rotation.transform(orientedDisplaySpaceRect));
190
191 // Compute framebufferSpace
192 outputState.framebufferSpace.setOrientation(orientation);
193 LOG_FATAL_IF(outputState.framebufferSpace.getBoundsAsRect() == Rect::INVALID_RECT,
194 "The framebuffer bounds are unknown.");
195 const auto scale = getScale(outputState.displaySpace.getBoundsAsRect(),
196 outputState.framebufferSpace.getBoundsAsRect());
197 outputState.framebufferSpace.setContent(
198 outputState.displaySpace.getContent().scale(scale.x, scale.y));
199
200 // Compute layerStackSpace
201 outputState.layerStackSpace.setContent(layerStackSpaceRect);
202 outputState.layerStackSpace.setBounds(
203 ui::Size(layerStackSpaceRect.getWidth(), layerStackSpaceRect.getHeight()));
204
205 outputState.transform = outputState.layerStackSpace.getTransform(outputState.displaySpace);
206 outputState.needsFiltering = outputState.transform.needsBilinearFiltering();
207 dirtyEntireOutput();
208 }
209
setNextBrightness(float brightness)210 void Output::setNextBrightness(float brightness) {
211 editState().displayBrightness = brightness;
212 }
213
setDisplaySize(const ui::Size & size)214 void Output::setDisplaySize(const ui::Size& size) {
215 mRenderSurface->setDisplaySize(size);
216
217 auto& state = editState();
218
219 // Update framebuffer space
220 const ui::Size newBounds(size);
221 state.framebufferSpace.setBounds(newBounds);
222
223 // Update display space
224 state.displaySpace.setBounds(newBounds);
225 state.transform = state.layerStackSpace.getTransform(state.displaySpace);
226
227 // Update oriented display space
228 const auto orientation = state.displaySpace.getOrientation();
229 ui::Size orientedSize = size;
230 if (orientation == ui::ROTATION_90 || orientation == ui::ROTATION_270) {
231 std::swap(orientedSize.width, orientedSize.height);
232 }
233 const ui::Size newOrientedBounds(orientedSize);
234 state.orientedDisplaySpace.setBounds(newOrientedBounds);
235
236 if (mPlanner) {
237 mPlanner->setDisplaySize(size);
238 }
239
240 dirtyEntireOutput();
241 }
242
getTransformHint() const243 ui::Transform::RotationFlags Output::getTransformHint() const {
244 return static_cast<ui::Transform::RotationFlags>(getState().transform.getOrientation());
245 }
246
setLayerFilter(ui::LayerFilter filter)247 void Output::setLayerFilter(ui::LayerFilter filter) {
248 editState().layerFilter = filter;
249 dirtyEntireOutput();
250 }
251
setColorTransform(const compositionengine::CompositionRefreshArgs & args)252 void Output::setColorTransform(const compositionengine::CompositionRefreshArgs& args) {
253 auto& colorTransformMatrix = editState().colorTransformMatrix;
254 if (!args.colorTransformMatrix || colorTransformMatrix == args.colorTransformMatrix) {
255 return;
256 }
257
258 colorTransformMatrix = *args.colorTransformMatrix;
259
260 dirtyEntireOutput();
261 }
262
setColorProfile(const ColorProfile & colorProfile)263 void Output::setColorProfile(const ColorProfile& colorProfile) {
264 ui::Dataspace targetDataspace =
265 getDisplayColorProfile()->getTargetDataspace(colorProfile.mode, colorProfile.dataspace,
266 colorProfile.colorSpaceAgnosticDataspace);
267
268 auto& outputState = editState();
269 if (outputState.colorMode == colorProfile.mode &&
270 outputState.dataspace == colorProfile.dataspace &&
271 outputState.renderIntent == colorProfile.renderIntent &&
272 outputState.targetDataspace == targetDataspace) {
273 return;
274 }
275
276 outputState.colorMode = colorProfile.mode;
277 outputState.dataspace = colorProfile.dataspace;
278 outputState.renderIntent = colorProfile.renderIntent;
279 outputState.targetDataspace = targetDataspace;
280
281 mRenderSurface->setBufferDataspace(colorProfile.dataspace);
282
283 ALOGV("Set active color mode: %s (%d), active render intent: %s (%d)",
284 decodeColorMode(colorProfile.mode).c_str(), colorProfile.mode,
285 decodeRenderIntent(colorProfile.renderIntent).c_str(), colorProfile.renderIntent);
286
287 dirtyEntireOutput();
288 }
289
setDisplayBrightness(float sdrWhitePointNits,float displayBrightnessNits)290 void Output::setDisplayBrightness(float sdrWhitePointNits, float displayBrightnessNits) {
291 auto& outputState = editState();
292 if (outputState.sdrWhitePointNits == sdrWhitePointNits &&
293 outputState.displayBrightnessNits == displayBrightnessNits) {
294 // Nothing changed
295 return;
296 }
297 outputState.sdrWhitePointNits = sdrWhitePointNits;
298 outputState.displayBrightnessNits = displayBrightnessNits;
299 dirtyEntireOutput();
300 }
301
dump(std::string & out) const302 void Output::dump(std::string& out) const {
303 base::StringAppendF(&out, "Output \"%s\"", mName.c_str());
304 out.append("\n Composition Output State:\n");
305
306 dumpBase(out);
307 }
308
dumpBase(std::string & out) const309 void Output::dumpBase(std::string& out) const {
310 dumpState(out);
311 out += '\n';
312
313 if (mDisplayColorProfile) {
314 mDisplayColorProfile->dump(out);
315 } else {
316 out.append(" No display color profile!\n");
317 }
318
319 out += '\n';
320
321 if (mRenderSurface) {
322 mRenderSurface->dump(out);
323 } else {
324 out.append(" No render surface!\n");
325 }
326
327 base::StringAppendF(&out, "\n %zu Layers\n", getOutputLayerCount());
328 for (const auto* outputLayer : getOutputLayersOrderedByZ()) {
329 if (!outputLayer) {
330 continue;
331 }
332 outputLayer->dump(out);
333 }
334 }
335
dumpPlannerInfo(const Vector<String16> & args,std::string & out) const336 void Output::dumpPlannerInfo(const Vector<String16>& args, std::string& out) const {
337 if (!mPlanner) {
338 out.append("Planner is disabled\n");
339 return;
340 }
341 base::StringAppendF(&out, "Planner info for display [%s]\n", mName.c_str());
342 mPlanner->dump(args, out);
343 }
344
getDisplayColorProfile() const345 compositionengine::DisplayColorProfile* Output::getDisplayColorProfile() const {
346 return mDisplayColorProfile.get();
347 }
348
setDisplayColorProfile(std::unique_ptr<compositionengine::DisplayColorProfile> mode)349 void Output::setDisplayColorProfile(std::unique_ptr<compositionengine::DisplayColorProfile> mode) {
350 mDisplayColorProfile = std::move(mode);
351 }
352
getReleasedLayersForTest() const353 const Output::ReleasedLayers& Output::getReleasedLayersForTest() const {
354 return mReleasedLayers;
355 }
356
setDisplayColorProfileForTest(std::unique_ptr<compositionengine::DisplayColorProfile> mode)357 void Output::setDisplayColorProfileForTest(
358 std::unique_ptr<compositionengine::DisplayColorProfile> mode) {
359 mDisplayColorProfile = std::move(mode);
360 }
361
getRenderSurface() const362 compositionengine::RenderSurface* Output::getRenderSurface() const {
363 return mRenderSurface.get();
364 }
365
setRenderSurface(std::unique_ptr<compositionengine::RenderSurface> surface)366 void Output::setRenderSurface(std::unique_ptr<compositionengine::RenderSurface> surface) {
367 mRenderSurface = std::move(surface);
368 const auto size = mRenderSurface->getSize();
369 editState().framebufferSpace.setBounds(size);
370 if (mPlanner) {
371 mPlanner->setDisplaySize(size);
372 }
373 dirtyEntireOutput();
374 }
375
cacheClientCompositionRequests(uint32_t cacheSize)376 void Output::cacheClientCompositionRequests(uint32_t cacheSize) {
377 if (cacheSize == 0) {
378 mClientCompositionRequestCache.reset();
379 } else {
380 mClientCompositionRequestCache = std::make_unique<ClientCompositionRequestCache>(cacheSize);
381 }
382 };
383
setRenderSurfaceForTest(std::unique_ptr<compositionengine::RenderSurface> surface)384 void Output::setRenderSurfaceForTest(std::unique_ptr<compositionengine::RenderSurface> surface) {
385 mRenderSurface = std::move(surface);
386 }
387
getDirtyRegion() const388 Region Output::getDirtyRegion() const {
389 const auto& outputState = getState();
390 return outputState.dirtyRegion.intersect(outputState.layerStackSpace.getContent());
391 }
392
includesLayer(ui::LayerFilter filter) const393 bool Output::includesLayer(ui::LayerFilter filter) const {
394 return getState().layerFilter.includes(filter);
395 }
396
includesLayer(const sp<LayerFE> & layerFE) const397 bool Output::includesLayer(const sp<LayerFE>& layerFE) const {
398 const auto* layerFEState = layerFE->getCompositionState();
399 return layerFEState && includesLayer(layerFEState->outputFilter);
400 }
401
createOutputLayer(const sp<LayerFE> & layerFE) const402 std::unique_ptr<compositionengine::OutputLayer> Output::createOutputLayer(
403 const sp<LayerFE>& layerFE) const {
404 return impl::createOutputLayer(*this, layerFE);
405 }
406
getOutputLayerForLayer(const sp<LayerFE> & layerFE) const407 compositionengine::OutputLayer* Output::getOutputLayerForLayer(const sp<LayerFE>& layerFE) const {
408 auto index = findCurrentOutputLayerForLayer(layerFE);
409 return index ? getOutputLayerOrderedByZByIndex(*index) : nullptr;
410 }
411
findCurrentOutputLayerForLayer(const sp<compositionengine::LayerFE> & layer) const412 std::optional<size_t> Output::findCurrentOutputLayerForLayer(
413 const sp<compositionengine::LayerFE>& layer) const {
414 for (size_t i = 0; i < getOutputLayerCount(); i++) {
415 auto outputLayer = getOutputLayerOrderedByZByIndex(i);
416 if (outputLayer && &outputLayer->getLayerFE() == layer.get()) {
417 return i;
418 }
419 }
420 return std::nullopt;
421 }
422
setReleasedLayers(Output::ReleasedLayers && layers)423 void Output::setReleasedLayers(Output::ReleasedLayers&& layers) {
424 mReleasedLayers = std::move(layers);
425 }
426
prepare(const compositionengine::CompositionRefreshArgs & refreshArgs,LayerFESet & geomSnapshots)427 void Output::prepare(const compositionengine::CompositionRefreshArgs& refreshArgs,
428 LayerFESet& geomSnapshots) {
429 ATRACE_CALL();
430 ALOGV(__FUNCTION__);
431
432 rebuildLayerStacks(refreshArgs, geomSnapshots);
433 uncacheBuffers(refreshArgs.bufferIdsToUncache);
434 }
435
present(const compositionengine::CompositionRefreshArgs & refreshArgs)436 void Output::present(const compositionengine::CompositionRefreshArgs& refreshArgs) {
437 ATRACE_FORMAT("%s for %s", __func__, mNamePlusId.c_str());
438 ALOGV(__FUNCTION__);
439
440 updateColorProfile(refreshArgs);
441 updateCompositionState(refreshArgs);
442 planComposition();
443 writeCompositionState(refreshArgs);
444 setColorTransform(refreshArgs);
445 beginFrame();
446
447 GpuCompositionResult result;
448 const bool predictCompositionStrategy = canPredictCompositionStrategy(refreshArgs);
449 if (predictCompositionStrategy) {
450 result = prepareFrameAsync();
451 } else {
452 prepareFrame();
453 }
454
455 devOptRepaintFlash(refreshArgs);
456 finishFrame(std::move(result));
457 postFramebuffer();
458 renderCachedSets(refreshArgs);
459 }
460
uncacheBuffers(std::vector<uint64_t> const & bufferIdsToUncache)461 void Output::uncacheBuffers(std::vector<uint64_t> const& bufferIdsToUncache) {
462 if (bufferIdsToUncache.empty()) {
463 return;
464 }
465 for (auto outputLayer : getOutputLayersOrderedByZ()) {
466 outputLayer->uncacheBuffers(bufferIdsToUncache);
467 }
468 }
469
rebuildLayerStacks(const compositionengine::CompositionRefreshArgs & refreshArgs,LayerFESet & layerFESet)470 void Output::rebuildLayerStacks(const compositionengine::CompositionRefreshArgs& refreshArgs,
471 LayerFESet& layerFESet) {
472 ATRACE_CALL();
473 ALOGV(__FUNCTION__);
474
475 auto& outputState = editState();
476
477 // Do nothing if this output is not enabled or there is no need to perform this update
478 if (!outputState.isEnabled || CC_LIKELY(!refreshArgs.updatingOutputGeometryThisFrame)) {
479 return;
480 }
481
482 // Process the layers to determine visibility and coverage
483 compositionengine::Output::CoverageState coverage{layerFESet};
484 coverage.aboveCoveredLayersExcludingOverlays = refreshArgs.hasTrustedPresentationListener
485 ? std::make_optional<Region>()
486 : std::nullopt;
487 collectVisibleLayers(refreshArgs, coverage);
488
489 // Compute the resulting coverage for this output, and store it for later
490 const ui::Transform& tr = outputState.transform;
491 Region undefinedRegion{outputState.displaySpace.getBoundsAsRect()};
492 undefinedRegion.subtractSelf(tr.transform(coverage.aboveOpaqueLayers));
493
494 outputState.undefinedRegion = undefinedRegion;
495 outputState.dirtyRegion.orSelf(coverage.dirtyRegion);
496 }
497
collectVisibleLayers(const compositionengine::CompositionRefreshArgs & refreshArgs,compositionengine::Output::CoverageState & coverage)498 void Output::collectVisibleLayers(const compositionengine::CompositionRefreshArgs& refreshArgs,
499 compositionengine::Output::CoverageState& coverage) {
500 // Evaluate the layers from front to back to determine what is visible. This
501 // also incrementally calculates the coverage information for each layer as
502 // well as the entire output.
503 for (auto layer : reversed(refreshArgs.layers)) {
504 // Incrementally process the coverage for each layer
505 ensureOutputLayerIfVisible(layer, coverage);
506
507 // TODO(b/121291683): Stop early if the output is completely covered and
508 // no more layers could even be visible underneath the ones on top.
509 }
510
511 setReleasedLayers(refreshArgs);
512
513 finalizePendingOutputLayers();
514 }
515
ensureOutputLayerIfVisible(sp<compositionengine::LayerFE> & layerFE,compositionengine::Output::CoverageState & coverage)516 void Output::ensureOutputLayerIfVisible(sp<compositionengine::LayerFE>& layerFE,
517 compositionengine::Output::CoverageState& coverage) {
518 // Ensure we have a snapshot of the basic geometry layer state. Limit the
519 // snapshots to once per frame for each candidate layer, as layers may
520 // appear on multiple outputs.
521 if (!coverage.latchedLayers.count(layerFE)) {
522 coverage.latchedLayers.insert(layerFE);
523 }
524
525 // Only consider the layers on this output
526 if (!includesLayer(layerFE)) {
527 return;
528 }
529
530 // Obtain a read-only pointer to the front-end layer state
531 const auto* layerFEState = layerFE->getCompositionState();
532 if (CC_UNLIKELY(!layerFEState)) {
533 return;
534 }
535
536 // handle hidden surfaces by setting the visible region to empty
537 if (CC_UNLIKELY(!layerFEState->isVisible)) {
538 return;
539 }
540
541 bool computeAboveCoveredExcludingOverlays = coverage.aboveCoveredLayersExcludingOverlays &&
542 !layerFEState->outputFilter.toInternalDisplay;
543
544 /*
545 * opaqueRegion: area of a surface that is fully opaque.
546 */
547 Region opaqueRegion;
548
549 /*
550 * visibleRegion: area of a surface that is visible on screen and not fully
551 * transparent. This is essentially the layer's footprint minus the opaque
552 * regions above it. Areas covered by a translucent surface are considered
553 * visible.
554 */
555 Region visibleRegion;
556
557 /*
558 * coveredRegion: area of a surface that is covered by all visible regions
559 * above it (which includes the translucent areas).
560 */
561 Region coveredRegion;
562
563 /*
564 * transparentRegion: area of a surface that is hinted to be completely
565 * transparent.
566 * This is used to tell when the layer has no visible non-transparent
567 * regions and can be removed from the layer list. It does not affect the
568 * visibleRegion of this layer or any layers beneath it. The hint may not
569 * be correct if apps don't respect the SurfaceView restrictions (which,
570 * sadly, some don't).
571 *
572 * In addition, it is used on DISPLAY_DECORATION layers to specify the
573 * blockingRegion, allowing the DPU to skip it to save power. Once we have
574 * hardware that supports a blockingRegion on frames with AFBC, it may be
575 * useful to use this for other layers, too, so long as we can prevent
576 * regressions on b/7179570.
577 */
578 Region transparentRegion;
579
580 /*
581 * shadowRegion: Region cast by the layer's shadow.
582 */
583 Region shadowRegion;
584
585 /**
586 * covered region above excluding internal display overlay layers
587 */
588 std::optional<Region> coveredRegionExcludingDisplayOverlays = std::nullopt;
589
590 const ui::Transform& tr = layerFEState->geomLayerTransform;
591
592 // Get the visible region
593 // TODO(b/121291683): Is it worth creating helper methods on LayerFEState
594 // for computations like this?
595 const Rect visibleRect(tr.transform(layerFEState->geomLayerBounds));
596 visibleRegion.set(visibleRect);
597
598 if (layerFEState->shadowRadius > 0.0f) {
599 // if the layer casts a shadow, offset the layers visible region and
600 // calculate the shadow region.
601 const auto inset = static_cast<int32_t>(ceilf(layerFEState->shadowRadius) * -1.0f);
602 Rect visibleRectWithShadows(visibleRect);
603 visibleRectWithShadows.inset(inset, inset, inset, inset);
604 visibleRegion.set(visibleRectWithShadows);
605 shadowRegion = visibleRegion.subtract(visibleRect);
606 }
607
608 if (visibleRegion.isEmpty()) {
609 return;
610 }
611
612 // Remove the transparent area from the visible region
613 if (!layerFEState->isOpaque) {
614 if (tr.preserveRects()) {
615 // Clip the transparent region to geomLayerBounds first
616 // The transparent region may be influenced by applications, for
617 // instance, by overriding ViewGroup#gatherTransparentRegion with a
618 // custom view. Once the layer stack -> display mapping is known, we
619 // must guard against very wrong inputs to prevent underflow or
620 // overflow errors. We do this here by constraining the transparent
621 // region to be within the pre-transform layer bounds, since the
622 // layer bounds are expected to play nicely with the full
623 // transform.
624 const Region clippedTransparentRegionHint =
625 layerFEState->transparentRegionHint.intersect(
626 Rect(layerFEState->geomLayerBounds));
627
628 if (clippedTransparentRegionHint.isEmpty()) {
629 if (!layerFEState->transparentRegionHint.isEmpty()) {
630 ALOGD("Layer: %s had an out of bounds transparent region",
631 layerFE->getDebugName());
632 layerFEState->transparentRegionHint.dump("transparentRegionHint");
633 }
634 transparentRegion.clear();
635 } else {
636 transparentRegion = tr.transform(clippedTransparentRegionHint);
637 }
638 } else {
639 // transformation too complex, can't do the
640 // transparent region optimization.
641 transparentRegion.clear();
642 }
643 }
644
645 // compute the opaque region
646 const auto layerOrientation = tr.getOrientation();
647 if (layerFEState->isOpaque && ((layerOrientation & ui::Transform::ROT_INVALID) == 0)) {
648 // If we one of the simple category of transforms (0/90/180/270 rotation
649 // + any flip), then the opaque region is the layer's footprint.
650 // Otherwise we don't try and compute the opaque region since there may
651 // be errors at the edges, and we treat the entire layer as
652 // translucent.
653 opaqueRegion.set(visibleRect);
654 }
655
656 // Clip the covered region to the visible region
657 coveredRegion = coverage.aboveCoveredLayers.intersect(visibleRegion);
658
659 // Update accumAboveCoveredLayers for next (lower) layer
660 coverage.aboveCoveredLayers.orSelf(visibleRegion);
661
662 if (CC_UNLIKELY(computeAboveCoveredExcludingOverlays)) {
663 coveredRegionExcludingDisplayOverlays =
664 coverage.aboveCoveredLayersExcludingOverlays->intersect(visibleRegion);
665 coverage.aboveCoveredLayersExcludingOverlays->orSelf(visibleRegion);
666 }
667
668 // subtract the opaque region covered by the layers above us
669 visibleRegion.subtractSelf(coverage.aboveOpaqueLayers);
670
671 if (visibleRegion.isEmpty()) {
672 return;
673 }
674
675 // Get coverage information for the layer as previously displayed,
676 // also taking over ownership from mOutputLayersorderedByZ.
677 auto prevOutputLayerIndex = findCurrentOutputLayerForLayer(layerFE);
678 auto prevOutputLayer =
679 prevOutputLayerIndex ? getOutputLayerOrderedByZByIndex(*prevOutputLayerIndex) : nullptr;
680
681 // Get coverage information for the layer as previously displayed
682 // TODO(b/121291683): Define kEmptyRegion as a constant in Region.h
683 const Region kEmptyRegion;
684 const Region& oldVisibleRegion =
685 prevOutputLayer ? prevOutputLayer->getState().visibleRegion : kEmptyRegion;
686 const Region& oldCoveredRegion =
687 prevOutputLayer ? prevOutputLayer->getState().coveredRegion : kEmptyRegion;
688
689 // compute this layer's dirty region
690 Region dirty;
691 if (layerFEState->contentDirty) {
692 // we need to invalidate the whole region
693 dirty = visibleRegion;
694 // as well, as the old visible region
695 dirty.orSelf(oldVisibleRegion);
696 } else {
697 /* compute the exposed region:
698 * the exposed region consists of two components:
699 * 1) what's VISIBLE now and was COVERED before
700 * 2) what's EXPOSED now less what was EXPOSED before
701 *
702 * note that (1) is conservative, we start with the whole visible region
703 * but only keep what used to be covered by something -- which mean it
704 * may have been exposed.
705 *
706 * (2) handles areas that were not covered by anything but got exposed
707 * because of a resize.
708 *
709 */
710 const Region newExposed = visibleRegion - coveredRegion;
711 const Region oldExposed = oldVisibleRegion - oldCoveredRegion;
712 dirty = (visibleRegion & oldCoveredRegion) | (newExposed - oldExposed);
713 }
714 dirty.subtractSelf(coverage.aboveOpaqueLayers);
715
716 // accumulate to the screen dirty region
717 coverage.dirtyRegion.orSelf(dirty);
718
719 // Update accumAboveOpaqueLayers for next (lower) layer
720 coverage.aboveOpaqueLayers.orSelf(opaqueRegion);
721
722 // Compute the visible non-transparent region
723 Region visibleNonTransparentRegion = visibleRegion.subtract(transparentRegion);
724
725 // Perform the final check to see if this layer is visible on this output
726 // TODO(b/121291683): Why does this not use visibleRegion? (see outputSpaceVisibleRegion below)
727 const auto& outputState = getState();
728 Region drawRegion(outputState.transform.transform(visibleNonTransparentRegion));
729 drawRegion.andSelf(outputState.displaySpace.getBoundsAsRect());
730 if (drawRegion.isEmpty()) {
731 return;
732 }
733
734 Region visibleNonShadowRegion = visibleRegion.subtract(shadowRegion);
735
736 // The layer is visible. Either reuse the existing outputLayer if we have
737 // one, or create a new one if we do not.
738 auto result = ensureOutputLayer(prevOutputLayerIndex, layerFE);
739
740 // Store the layer coverage information into the layer state as some of it
741 // is useful later.
742 auto& outputLayerState = result->editState();
743 outputLayerState.visibleRegion = visibleRegion;
744 outputLayerState.visibleNonTransparentRegion = visibleNonTransparentRegion;
745 outputLayerState.coveredRegion = coveredRegion;
746 outputLayerState.outputSpaceVisibleRegion = outputState.transform.transform(
747 visibleNonShadowRegion.intersect(outputState.layerStackSpace.getContent()));
748 outputLayerState.shadowRegion = shadowRegion;
749 outputLayerState.outputSpaceBlockingRegionHint =
750 layerFEState->compositionType == Composition::DISPLAY_DECORATION
751 ? outputState.transform.transform(
752 transparentRegion.intersect(outputState.layerStackSpace.getContent()))
753 : Region();
754 if (CC_UNLIKELY(computeAboveCoveredExcludingOverlays)) {
755 outputLayerState.coveredRegionExcludingDisplayOverlays =
756 std::move(coveredRegionExcludingDisplayOverlays);
757 }
758 }
759
setReleasedLayers(const compositionengine::CompositionRefreshArgs &)760 void Output::setReleasedLayers(const compositionengine::CompositionRefreshArgs&) {
761 // The base class does nothing with this call.
762 }
763
updateCompositionState(const compositionengine::CompositionRefreshArgs & refreshArgs)764 void Output::updateCompositionState(const compositionengine::CompositionRefreshArgs& refreshArgs) {
765 ATRACE_CALL();
766 ALOGV(__FUNCTION__);
767
768 if (!getState().isEnabled) {
769 return;
770 }
771
772 mLayerRequestingBackgroundBlur = findLayerRequestingBackgroundComposition();
773 bool forceClientComposition = mLayerRequestingBackgroundBlur != nullptr;
774
775 for (auto* layer : getOutputLayersOrderedByZ()) {
776 layer->updateCompositionState(refreshArgs.updatingGeometryThisFrame,
777 refreshArgs.devOptForceClientComposition ||
778 forceClientComposition,
779 refreshArgs.internalDisplayRotationFlags);
780
781 if (mLayerRequestingBackgroundBlur == layer) {
782 forceClientComposition = false;
783 }
784 }
785
786 updateCompositionStateForBorder(refreshArgs);
787 }
788
updateCompositionStateForBorder(const compositionengine::CompositionRefreshArgs & refreshArgs)789 void Output::updateCompositionStateForBorder(
790 const compositionengine::CompositionRefreshArgs& refreshArgs) {
791 std::unordered_map<int32_t, const Region*> layerVisibleRegionMap;
792 // Store a map of layerId to their computed visible region.
793 for (auto* layer : getOutputLayersOrderedByZ()) {
794 int layerId = (layer->getLayerFE()).getSequence();
795 layerVisibleRegionMap[layerId] = &((layer->getState()).visibleRegion);
796 }
797 OutputCompositionState& outputCompositionState = editState();
798 outputCompositionState.borderInfoList.clear();
799 bool clientComposeTopLayer = false;
800 for (const auto& borderInfo : refreshArgs.borderInfoList) {
801 renderengine::BorderRenderInfo info;
802 for (const auto& id : borderInfo.layerIds) {
803 info.combinedRegion.orSelf(*(layerVisibleRegionMap[id]));
804 }
805
806 if (!info.combinedRegion.isEmpty()) {
807 info.width = borderInfo.width;
808 info.color = borderInfo.color;
809 outputCompositionState.borderInfoList.emplace_back(std::move(info));
810 clientComposeTopLayer = true;
811 }
812 }
813
814 // In this situation we must client compose the top layer instead of using hwc
815 // because we want to draw the border above all else.
816 // This could potentially cause a bit of a performance regression if the top
817 // layer would have been rendered using hwc originally.
818 // TODO(b/227656283): Measure system's performance before enabling the border feature
819 if (clientComposeTopLayer) {
820 auto topLayer = getOutputLayerOrderedByZByIndex(getOutputLayerCount() - 1);
821 (topLayer->editState()).forceClientComposition = true;
822 }
823 }
824
planComposition()825 void Output::planComposition() {
826 if (!mPlanner || !getState().isEnabled) {
827 return;
828 }
829
830 ATRACE_CALL();
831 ALOGV(__FUNCTION__);
832
833 mPlanner->plan(getOutputLayersOrderedByZ());
834 }
835
writeCompositionState(const compositionengine::CompositionRefreshArgs & refreshArgs)836 void Output::writeCompositionState(const compositionengine::CompositionRefreshArgs& refreshArgs) {
837 ATRACE_CALL();
838 ALOGV(__FUNCTION__);
839
840 if (!getState().isEnabled) {
841 return;
842 }
843
844 editState().earliestPresentTime = refreshArgs.earliestPresentTime;
845 editState().expectedPresentTime = refreshArgs.expectedPresentTime;
846 editState().powerCallback = refreshArgs.powerCallback;
847
848 compositionengine::OutputLayer* peekThroughLayer = nullptr;
849 sp<GraphicBuffer> previousOverride = nullptr;
850 bool includeGeometry = refreshArgs.updatingGeometryThisFrame;
851 uint32_t z = 0;
852 bool overrideZ = false;
853 uint64_t outputLayerHash = 0;
854 for (auto* layer : getOutputLayersOrderedByZ()) {
855 if (layer == peekThroughLayer) {
856 // No longer needed, although it should not show up again, so
857 // resetting it is not truly needed either.
858 peekThroughLayer = nullptr;
859
860 // peekThroughLayer was already drawn ahead of its z order.
861 continue;
862 }
863 bool skipLayer = false;
864 const auto& overrideInfo = layer->getState().overrideInfo;
865 if (overrideInfo.buffer != nullptr) {
866 if (previousOverride && overrideInfo.buffer->getBuffer() == previousOverride) {
867 ALOGV("Skipping redundant buffer");
868 skipLayer = true;
869 } else {
870 // First layer with the override buffer.
871 if (overrideInfo.peekThroughLayer) {
872 peekThroughLayer = overrideInfo.peekThroughLayer;
873
874 // Draw peekThroughLayer first.
875 overrideZ = true;
876 includeGeometry = true;
877 constexpr bool isPeekingThrough = true;
878 peekThroughLayer->writeStateToHWC(includeGeometry, false, z++, overrideZ,
879 isPeekingThrough);
880 outputLayerHash ^= android::hashCombine(
881 reinterpret_cast<uint64_t>(&peekThroughLayer->getLayerFE()),
882 z, includeGeometry, overrideZ, isPeekingThrough,
883 peekThroughLayer->requiresClientComposition());
884 }
885
886 previousOverride = overrideInfo.buffer->getBuffer();
887 }
888 }
889
890 constexpr bool isPeekingThrough = false;
891 layer->writeStateToHWC(includeGeometry, skipLayer, z++, overrideZ, isPeekingThrough);
892 if (!skipLayer) {
893 outputLayerHash ^= android::hashCombine(
894 reinterpret_cast<uint64_t>(&layer->getLayerFE()),
895 z, includeGeometry, overrideZ, isPeekingThrough,
896 layer->requiresClientComposition());
897 }
898 }
899 editState().outputLayerHash = outputLayerHash;
900 }
901
findLayerRequestingBackgroundComposition() const902 compositionengine::OutputLayer* Output::findLayerRequestingBackgroundComposition() const {
903 compositionengine::OutputLayer* layerRequestingBgComposition = nullptr;
904 for (auto* layer : getOutputLayersOrderedByZ()) {
905 auto* compState = layer->getLayerFE().getCompositionState();
906
907 // If any layer has a sideband stream, we will disable blurs. In that case, we don't
908 // want to force client composition because of the blur.
909 if (compState->sidebandStream != nullptr) {
910 return nullptr;
911 }
912 if (compState->isOpaque) {
913 continue;
914 }
915 if (compState->backgroundBlurRadius > 0 || compState->blurRegions.size() > 0) {
916 layerRequestingBgComposition = layer;
917 }
918 }
919 return layerRequestingBgComposition;
920 }
921
updateColorProfile(const compositionengine::CompositionRefreshArgs & refreshArgs)922 void Output::updateColorProfile(const compositionengine::CompositionRefreshArgs& refreshArgs) {
923 setColorProfile(pickColorProfile(refreshArgs));
924 }
925
926 // Returns a data space that fits all visible layers. The returned data space
927 // can only be one of
928 // - Dataspace::SRGB (use legacy dataspace and let HWC saturate when colors are enhanced)
929 // - Dataspace::DISPLAY_P3
930 // - Dataspace::DISPLAY_BT2020
931 // The returned HDR data space is one of
932 // - Dataspace::UNKNOWN
933 // - Dataspace::BT2020_HLG
934 // - Dataspace::BT2020_PQ
getBestDataspace(ui::Dataspace * outHdrDataSpace,bool * outIsHdrClientComposition) const935 ui::Dataspace Output::getBestDataspace(ui::Dataspace* outHdrDataSpace,
936 bool* outIsHdrClientComposition) const {
937 ui::Dataspace bestDataSpace = ui::Dataspace::V0_SRGB;
938 *outHdrDataSpace = ui::Dataspace::UNKNOWN;
939
940 // An Output's layers may be stale when it is disabled. As a consequence, the layers returned by
941 // getOutputLayersOrderedByZ may not be in a valid state and it is not safe to access their
942 // properties. Return a default dataspace value in this case.
943 if (!getState().isEnabled) {
944 return ui::Dataspace::V0_SRGB;
945 }
946
947 for (const auto* layer : getOutputLayersOrderedByZ()) {
948 switch (layer->getLayerFE().getCompositionState()->dataspace) {
949 case ui::Dataspace::V0_SCRGB:
950 case ui::Dataspace::V0_SCRGB_LINEAR:
951 case ui::Dataspace::BT2020:
952 case ui::Dataspace::BT2020_ITU:
953 case ui::Dataspace::BT2020_LINEAR:
954 case ui::Dataspace::DISPLAY_BT2020:
955 bestDataSpace = ui::Dataspace::DISPLAY_BT2020;
956 break;
957 case ui::Dataspace::DISPLAY_P3:
958 bestDataSpace = ui::Dataspace::DISPLAY_P3;
959 break;
960 case ui::Dataspace::BT2020_PQ:
961 case ui::Dataspace::BT2020_ITU_PQ:
962 bestDataSpace = ui::Dataspace::DISPLAY_P3;
963 *outHdrDataSpace = ui::Dataspace::BT2020_PQ;
964 *outIsHdrClientComposition =
965 layer->getLayerFE().getCompositionState()->forceClientComposition;
966 break;
967 case ui::Dataspace::BT2020_HLG:
968 case ui::Dataspace::BT2020_ITU_HLG:
969 bestDataSpace = ui::Dataspace::DISPLAY_P3;
970 // When there's mixed PQ content and HLG content, we set the HDR
971 // data space to be BT2020_PQ and convert HLG to PQ.
972 if (*outHdrDataSpace == ui::Dataspace::UNKNOWN) {
973 *outHdrDataSpace = ui::Dataspace::BT2020_HLG;
974 }
975 break;
976 default:
977 break;
978 }
979 }
980
981 return bestDataSpace;
982 }
983
pickColorProfile(const compositionengine::CompositionRefreshArgs & refreshArgs) const984 compositionengine::Output::ColorProfile Output::pickColorProfile(
985 const compositionengine::CompositionRefreshArgs& refreshArgs) const {
986 if (refreshArgs.outputColorSetting == OutputColorSetting::kUnmanaged) {
987 return ColorProfile{ui::ColorMode::NATIVE, ui::Dataspace::UNKNOWN,
988 ui::RenderIntent::COLORIMETRIC,
989 refreshArgs.colorSpaceAgnosticDataspace};
990 }
991
992 ui::Dataspace hdrDataSpace;
993 bool isHdrClientComposition = false;
994 ui::Dataspace bestDataSpace = getBestDataspace(&hdrDataSpace, &isHdrClientComposition);
995
996 switch (refreshArgs.forceOutputColorMode) {
997 case ui::ColorMode::SRGB:
998 bestDataSpace = ui::Dataspace::V0_SRGB;
999 break;
1000 case ui::ColorMode::DISPLAY_P3:
1001 bestDataSpace = ui::Dataspace::DISPLAY_P3;
1002 break;
1003 default:
1004 break;
1005 }
1006
1007 // respect hdrDataSpace only when there is no legacy HDR support
1008 const bool isHdr = hdrDataSpace != ui::Dataspace::UNKNOWN &&
1009 !mDisplayColorProfile->hasLegacyHdrSupport(hdrDataSpace) && !isHdrClientComposition;
1010 if (isHdr) {
1011 bestDataSpace = hdrDataSpace;
1012 }
1013
1014 ui::RenderIntent intent;
1015 switch (refreshArgs.outputColorSetting) {
1016 case OutputColorSetting::kManaged:
1017 case OutputColorSetting::kUnmanaged:
1018 intent = isHdr ? ui::RenderIntent::TONE_MAP_COLORIMETRIC
1019 : ui::RenderIntent::COLORIMETRIC;
1020 break;
1021 case OutputColorSetting::kEnhanced:
1022 intent = isHdr ? ui::RenderIntent::TONE_MAP_ENHANCE : ui::RenderIntent::ENHANCE;
1023 break;
1024 default: // vendor display color setting
1025 intent = static_cast<ui::RenderIntent>(refreshArgs.outputColorSetting);
1026 break;
1027 }
1028
1029 ui::ColorMode outMode;
1030 ui::Dataspace outDataSpace;
1031 ui::RenderIntent outRenderIntent;
1032 mDisplayColorProfile->getBestColorMode(bestDataSpace, intent, &outDataSpace, &outMode,
1033 &outRenderIntent);
1034
1035 return ColorProfile{outMode, outDataSpace, outRenderIntent,
1036 refreshArgs.colorSpaceAgnosticDataspace};
1037 }
1038
beginFrame()1039 void Output::beginFrame() {
1040 auto& outputState = editState();
1041 const bool dirty = !getDirtyRegion().isEmpty();
1042 const bool empty = getOutputLayerCount() == 0;
1043 const bool wasEmpty = !outputState.lastCompositionHadVisibleLayers;
1044
1045 // If nothing has changed (!dirty), don't recompose.
1046 // If something changed, but we don't currently have any visible layers,
1047 // and didn't when we last did a composition, then skip it this time.
1048 // The second rule does two things:
1049 // - When all layers are removed from a display, we'll emit one black
1050 // frame, then nothing more until we get new layers.
1051 // - When a display is created with a private layer stack, we won't
1052 // emit any black frames until a layer is added to the layer stack.
1053 mMustRecompose = dirty && !(empty && wasEmpty);
1054
1055 const char flagPrefix[] = {'-', '+'};
1056 static_cast<void>(flagPrefix);
1057 ALOGV("%s: %s composition for %s (%cdirty %cempty %cwasEmpty)", __func__,
1058 mMustRecompose ? "doing" : "skipping", getName().c_str(), flagPrefix[dirty],
1059 flagPrefix[empty], flagPrefix[wasEmpty]);
1060
1061 mRenderSurface->beginFrame(mMustRecompose);
1062
1063 if (mMustRecompose) {
1064 outputState.lastCompositionHadVisibleLayers = !empty;
1065 }
1066 }
1067
prepareFrame()1068 void Output::prepareFrame() {
1069 ATRACE_CALL();
1070 ALOGV(__FUNCTION__);
1071
1072 auto& outputState = editState();
1073 if (!outputState.isEnabled) {
1074 return;
1075 }
1076
1077 std::optional<android::HWComposer::DeviceRequestedChanges> changes;
1078 bool success = chooseCompositionStrategy(&changes);
1079 resetCompositionStrategy();
1080 outputState.strategyPrediction = CompositionStrategyPredictionState::DISABLED;
1081 outputState.previousDeviceRequestedChanges = changes;
1082 outputState.previousDeviceRequestedSuccess = success;
1083 if (success) {
1084 applyCompositionStrategy(changes);
1085 }
1086 finishPrepareFrame();
1087 }
1088
chooseCompositionStrategyAsync(std::optional<android::HWComposer::DeviceRequestedChanges> * changes)1089 std::future<bool> Output::chooseCompositionStrategyAsync(
1090 std::optional<android::HWComposer::DeviceRequestedChanges>* changes) {
1091 return mHwComposerAsyncWorker->send(
1092 [&, changes]() { return chooseCompositionStrategy(changes); });
1093 }
1094
prepareFrameAsync()1095 GpuCompositionResult Output::prepareFrameAsync() {
1096 ATRACE_CALL();
1097 ALOGV(__FUNCTION__);
1098 auto& state = editState();
1099 const auto& previousChanges = state.previousDeviceRequestedChanges;
1100 std::optional<android::HWComposer::DeviceRequestedChanges> changes;
1101 resetCompositionStrategy();
1102 auto hwcResult = chooseCompositionStrategyAsync(&changes);
1103 if (state.previousDeviceRequestedSuccess) {
1104 applyCompositionStrategy(previousChanges);
1105 }
1106 finishPrepareFrame();
1107
1108 base::unique_fd bufferFence;
1109 std::shared_ptr<renderengine::ExternalTexture> buffer;
1110 updateProtectedContentState();
1111 const bool dequeueSucceeded = dequeueRenderBuffer(&bufferFence, &buffer);
1112 GpuCompositionResult compositionResult;
1113 if (dequeueSucceeded) {
1114 std::optional<base::unique_fd> optFd =
1115 composeSurfaces(Region::INVALID_REGION, buffer, bufferFence);
1116 if (optFd) {
1117 compositionResult.fence = std::move(*optFd);
1118 }
1119 }
1120
1121 auto chooseCompositionSuccess = hwcResult.get();
1122 const bool predictionSucceeded = dequeueSucceeded && changes == previousChanges;
1123 state.strategyPrediction = predictionSucceeded ? CompositionStrategyPredictionState::SUCCESS
1124 : CompositionStrategyPredictionState::FAIL;
1125 if (!predictionSucceeded) {
1126 ATRACE_NAME("CompositionStrategyPredictionMiss");
1127 resetCompositionStrategy();
1128 if (chooseCompositionSuccess) {
1129 applyCompositionStrategy(changes);
1130 }
1131 finishPrepareFrame();
1132 // Track the dequeued buffer to reuse so we don't need to dequeue another one.
1133 compositionResult.buffer = buffer;
1134 } else {
1135 ATRACE_NAME("CompositionStrategyPredictionHit");
1136 }
1137 state.previousDeviceRequestedChanges = std::move(changes);
1138 state.previousDeviceRequestedSuccess = chooseCompositionSuccess;
1139 return compositionResult;
1140 }
1141
devOptRepaintFlash(const compositionengine::CompositionRefreshArgs & refreshArgs)1142 void Output::devOptRepaintFlash(const compositionengine::CompositionRefreshArgs& refreshArgs) {
1143 if (CC_LIKELY(!refreshArgs.devOptFlashDirtyRegionsDelay)) {
1144 return;
1145 }
1146
1147 if (getState().isEnabled) {
1148 if (const auto dirtyRegion = getDirtyRegion(); !dirtyRegion.isEmpty()) {
1149 base::unique_fd bufferFence;
1150 std::shared_ptr<renderengine::ExternalTexture> buffer;
1151 updateProtectedContentState();
1152 dequeueRenderBuffer(&bufferFence, &buffer);
1153 static_cast<void>(composeSurfaces(dirtyRegion, buffer, bufferFence));
1154 mRenderSurface->queueBuffer(base::unique_fd());
1155 }
1156 }
1157
1158 postFramebuffer();
1159
1160 std::this_thread::sleep_for(*refreshArgs.devOptFlashDirtyRegionsDelay);
1161
1162 prepareFrame();
1163 }
1164
finishFrame(GpuCompositionResult && result)1165 void Output::finishFrame(GpuCompositionResult&& result) {
1166 ATRACE_CALL();
1167 ALOGV(__FUNCTION__);
1168 const auto& outputState = getState();
1169 if (!outputState.isEnabled) {
1170 return;
1171 }
1172
1173 std::optional<base::unique_fd> optReadyFence;
1174 std::shared_ptr<renderengine::ExternalTexture> buffer;
1175 base::unique_fd bufferFence;
1176 if (outputState.strategyPrediction == CompositionStrategyPredictionState::SUCCESS) {
1177 optReadyFence = std::move(result.fence);
1178 } else {
1179 if (result.bufferAvailable()) {
1180 buffer = std::move(result.buffer);
1181 bufferFence = std::move(result.fence);
1182 } else {
1183 updateProtectedContentState();
1184 if (!dequeueRenderBuffer(&bufferFence, &buffer)) {
1185 return;
1186 }
1187 }
1188 // Repaint the framebuffer (if needed), getting the optional fence for when
1189 // the composition completes.
1190 optReadyFence = composeSurfaces(Region::INVALID_REGION, buffer, bufferFence);
1191 }
1192 if (!optReadyFence) {
1193 return;
1194 }
1195
1196 if (isPowerHintSessionEnabled()) {
1197 // get fence end time to know when gpu is complete in display
1198 setHintSessionGpuFence(
1199 std::make_unique<FenceTime>(sp<Fence>::make(dup(optReadyFence->get()))));
1200 }
1201 // swap buffers (presentation)
1202 mRenderSurface->queueBuffer(std::move(*optReadyFence));
1203 }
1204
updateProtectedContentState()1205 void Output::updateProtectedContentState() {
1206 const auto& outputState = getState();
1207 auto& renderEngine = getCompositionEngine().getRenderEngine();
1208 const bool supportsProtectedContent = renderEngine.supportsProtectedContent();
1209
1210 // If we the display is secure, protected content support is enabled, and at
1211 // least one layer has protected content, we need to use a secure back
1212 // buffer.
1213 if (outputState.isSecure && supportsProtectedContent) {
1214 auto layers = getOutputLayersOrderedByZ();
1215 bool needsProtected = std::any_of(layers.begin(), layers.end(), [](auto* layer) {
1216 return layer->getLayerFE().getCompositionState()->hasProtectedContent;
1217 });
1218 if (needsProtected != mRenderSurface->isProtected()) {
1219 mRenderSurface->setProtected(needsProtected);
1220 }
1221 }
1222 }
1223
dequeueRenderBuffer(base::unique_fd * bufferFence,std::shared_ptr<renderengine::ExternalTexture> * tex)1224 bool Output::dequeueRenderBuffer(base::unique_fd* bufferFence,
1225 std::shared_ptr<renderengine::ExternalTexture>* tex) {
1226 const auto& outputState = getState();
1227
1228 // If we aren't doing client composition on this output, but do have a
1229 // flipClientTarget request for this frame on this output, we still need to
1230 // dequeue a buffer.
1231 if (outputState.usesClientComposition || outputState.flipClientTarget) {
1232 *tex = mRenderSurface->dequeueBuffer(bufferFence);
1233 if (*tex == nullptr) {
1234 ALOGW("Dequeuing buffer for display [%s] failed, bailing out of "
1235 "client composition for this frame",
1236 mName.c_str());
1237 return false;
1238 }
1239 }
1240 return true;
1241 }
1242
composeSurfaces(const Region & debugRegion,std::shared_ptr<renderengine::ExternalTexture> tex,base::unique_fd & fd)1243 std::optional<base::unique_fd> Output::composeSurfaces(
1244 const Region& debugRegion, std::shared_ptr<renderengine::ExternalTexture> tex,
1245 base::unique_fd& fd) {
1246 ATRACE_CALL();
1247 ALOGV(__FUNCTION__);
1248
1249 const auto& outputState = getState();
1250 const TracedOrdinal<bool> hasClientComposition = {
1251 base::StringPrintf("hasClientComposition %s", mNamePlusId.c_str()),
1252 outputState.usesClientComposition};
1253 if (!hasClientComposition) {
1254 setExpensiveRenderingExpected(false);
1255 return base::unique_fd();
1256 }
1257
1258 if (tex == nullptr) {
1259 ALOGW("Buffer not valid for display [%s], bailing out of "
1260 "client composition for this frame",
1261 mName.c_str());
1262 return {};
1263 }
1264
1265 ALOGV("hasClientComposition");
1266
1267 renderengine::DisplaySettings clientCompositionDisplay =
1268 generateClientCompositionDisplaySettings();
1269
1270 // Generate the client composition requests for the layers on this output.
1271 auto& renderEngine = getCompositionEngine().getRenderEngine();
1272 const bool supportsProtectedContent = renderEngine.supportsProtectedContent();
1273 std::vector<LayerFE*> clientCompositionLayersFE;
1274 std::vector<LayerFE::LayerSettings> clientCompositionLayers =
1275 generateClientCompositionRequests(supportsProtectedContent,
1276 clientCompositionDisplay.outputDataspace,
1277 clientCompositionLayersFE);
1278 appendRegionFlashRequests(debugRegion, clientCompositionLayers);
1279
1280 OutputCompositionState& outputCompositionState = editState();
1281 // Check if the client composition requests were rendered into the provided graphic buffer. If
1282 // so, we can reuse the buffer and avoid client composition.
1283 if (mClientCompositionRequestCache) {
1284 if (mClientCompositionRequestCache->exists(tex->getBuffer()->getId(),
1285 clientCompositionDisplay,
1286 clientCompositionLayers)) {
1287 ATRACE_NAME("ClientCompositionCacheHit");
1288 outputCompositionState.reusedClientComposition = true;
1289 setExpensiveRenderingExpected(false);
1290 // b/239944175 pass the fence associated with the buffer.
1291 return base::unique_fd(std::move(fd));
1292 }
1293 ATRACE_NAME("ClientCompositionCacheMiss");
1294 mClientCompositionRequestCache->add(tex->getBuffer()->getId(), clientCompositionDisplay,
1295 clientCompositionLayers);
1296 }
1297
1298 // We boost GPU frequency here because there will be color spaces conversion
1299 // or complex GPU shaders and it's expensive. We boost the GPU frequency so that
1300 // GPU composition can finish in time. We must reset GPU frequency afterwards,
1301 // because high frequency consumes extra battery.
1302 const bool expensiveRenderingExpected =
1303 std::any_of(clientCompositionLayers.begin(), clientCompositionLayers.end(),
1304 [outputDataspace =
1305 clientCompositionDisplay.outputDataspace](const auto& layer) {
1306 return layer.sourceDataspace != outputDataspace;
1307 });
1308 if (expensiveRenderingExpected) {
1309 setExpensiveRenderingExpected(true);
1310 }
1311
1312 std::vector<renderengine::LayerSettings> clientRenderEngineLayers;
1313 clientRenderEngineLayers.reserve(clientCompositionLayers.size());
1314 std::transform(clientCompositionLayers.begin(), clientCompositionLayers.end(),
1315 std::back_inserter(clientRenderEngineLayers),
1316 [](LayerFE::LayerSettings& settings) -> renderengine::LayerSettings {
1317 return settings;
1318 });
1319
1320 const nsecs_t renderEngineStart = systemTime();
1321 // Only use the framebuffer cache when rendering to an internal display
1322 // TODO(b/173560331): This is only to help mitigate memory leaks from virtual displays because
1323 // right now we don't have a concrete eviction policy for output buffers: GLESRenderEngine
1324 // bounds its framebuffer cache but Skia RenderEngine has no current policy. The best fix is
1325 // probably to encapsulate the output buffer into a structure that dispatches resource cleanup
1326 // over to RenderEngine, in which case this flag can be removed from the drawLayers interface.
1327 const bool useFramebufferCache = outputState.layerFilter.toInternalDisplay;
1328
1329 auto fenceResult = renderEngine
1330 .drawLayers(clientCompositionDisplay, clientRenderEngineLayers, tex,
1331 useFramebufferCache, std::move(fd))
1332 .get();
1333
1334 if (mClientCompositionRequestCache && fenceStatus(fenceResult) != NO_ERROR) {
1335 // If rendering was not successful, remove the request from the cache.
1336 mClientCompositionRequestCache->remove(tex->getBuffer()->getId());
1337 }
1338
1339 const auto fence = std::move(fenceResult).value_or(Fence::NO_FENCE);
1340
1341 if (auto timeStats = getCompositionEngine().getTimeStats()) {
1342 if (fence->isValid()) {
1343 timeStats->recordRenderEngineDuration(renderEngineStart,
1344 std::make_shared<FenceTime>(fence));
1345 } else {
1346 timeStats->recordRenderEngineDuration(renderEngineStart, systemTime());
1347 }
1348 }
1349
1350 for (auto* clientComposedLayer : clientCompositionLayersFE) {
1351 clientComposedLayer->setWasClientComposed(fence);
1352 }
1353
1354 return base::unique_fd(fence->dup());
1355 }
1356
generateClientCompositionDisplaySettings() const1357 renderengine::DisplaySettings Output::generateClientCompositionDisplaySettings() const {
1358 const auto& outputState = getState();
1359
1360 renderengine::DisplaySettings clientCompositionDisplay;
1361 clientCompositionDisplay.namePlusId = mNamePlusId;
1362 clientCompositionDisplay.physicalDisplay = outputState.framebufferSpace.getContent();
1363 clientCompositionDisplay.clip = outputState.layerStackSpace.getContent();
1364 clientCompositionDisplay.orientation =
1365 ui::Transform::toRotationFlags(outputState.displaySpace.getOrientation());
1366 clientCompositionDisplay.outputDataspace = mDisplayColorProfile->hasWideColorGamut()
1367 ? outputState.dataspace
1368 : ui::Dataspace::UNKNOWN;
1369
1370 // If we have a valid current display brightness use that, otherwise fall back to the
1371 // display's max desired
1372 clientCompositionDisplay.currentLuminanceNits = outputState.displayBrightnessNits > 0.f
1373 ? outputState.displayBrightnessNits
1374 : mDisplayColorProfile->getHdrCapabilities().getDesiredMaxLuminance();
1375 clientCompositionDisplay.maxLuminance =
1376 mDisplayColorProfile->getHdrCapabilities().getDesiredMaxLuminance();
1377 clientCompositionDisplay.targetLuminanceNits =
1378 outputState.clientTargetBrightness * outputState.displayBrightnessNits;
1379 clientCompositionDisplay.dimmingStage = outputState.clientTargetDimmingStage;
1380 clientCompositionDisplay.renderIntent =
1381 static_cast<aidl::android::hardware::graphics::composer3::RenderIntent>(
1382 outputState.renderIntent);
1383
1384 // Compute the global color transform matrix.
1385 clientCompositionDisplay.colorTransform = outputState.colorTransformMatrix;
1386 for (auto& info : outputState.borderInfoList) {
1387 renderengine::BorderRenderInfo borderInfo;
1388 borderInfo.width = info.width;
1389 borderInfo.color = info.color;
1390 borderInfo.combinedRegion = info.combinedRegion;
1391 clientCompositionDisplay.borderInfoList.emplace_back(std::move(borderInfo));
1392 }
1393 clientCompositionDisplay.deviceHandlesColorTransform =
1394 outputState.usesDeviceComposition || getSkipColorTransform();
1395 return clientCompositionDisplay;
1396 }
1397
generateClientCompositionRequests(bool supportsProtectedContent,ui::Dataspace outputDataspace,std::vector<LayerFE * > & outLayerFEs)1398 std::vector<LayerFE::LayerSettings> Output::generateClientCompositionRequests(
1399 bool supportsProtectedContent, ui::Dataspace outputDataspace, std::vector<LayerFE*>& outLayerFEs) {
1400 std::vector<LayerFE::LayerSettings> clientCompositionLayers;
1401 ALOGV("Rendering client layers");
1402
1403 const auto& outputState = getState();
1404 const Region viewportRegion(outputState.layerStackSpace.getContent());
1405 bool firstLayer = true;
1406
1407 bool disableBlurs = false;
1408 uint64_t previousOverrideBufferId = 0;
1409
1410 for (auto* layer : getOutputLayersOrderedByZ()) {
1411 const auto& layerState = layer->getState();
1412 const auto* layerFEState = layer->getLayerFE().getCompositionState();
1413 auto& layerFE = layer->getLayerFE();
1414 layerFE.setWasClientComposed(nullptr);
1415
1416 const Region clip(viewportRegion.intersect(layerState.visibleRegion));
1417 ALOGV("Layer: %s", layerFE.getDebugName());
1418 if (clip.isEmpty()) {
1419 ALOGV(" Skipping for empty clip");
1420 firstLayer = false;
1421 continue;
1422 }
1423
1424 disableBlurs |= layerFEState->sidebandStream != nullptr;
1425
1426 const bool clientComposition = layer->requiresClientComposition();
1427
1428 // We clear the client target for non-client composed layers if
1429 // requested by the HWC. We skip this if the layer is not an opaque
1430 // rectangle, as by definition the layer must blend with whatever is
1431 // underneath. We also skip the first layer as the buffer target is
1432 // guaranteed to start out cleared.
1433 const bool clearClientComposition =
1434 layerState.clearClientTarget && layerFEState->isOpaque && !firstLayer;
1435
1436 ALOGV(" Composition type: client %d clear %d", clientComposition, clearClientComposition);
1437
1438 // If the layer casts a shadow but the content casting the shadow is occluded, skip
1439 // composing the non-shadow content and only draw the shadows.
1440 const bool realContentIsVisible = clientComposition &&
1441 !layerState.visibleRegion.subtract(layerState.shadowRegion).isEmpty();
1442
1443 if (clientComposition || clearClientComposition) {
1444 if (auto overrideSettings = layer->getOverrideCompositionSettings()) {
1445 if (overrideSettings->bufferId != previousOverrideBufferId) {
1446 previousOverrideBufferId = overrideSettings->bufferId;
1447 clientCompositionLayers.push_back(std::move(*overrideSettings));
1448 ALOGV("Replacing [%s] with override in RE", layer->getLayerFE().getDebugName());
1449 } else {
1450 ALOGV("Skipping redundant override buffer for [%s] in RE",
1451 layer->getLayerFE().getDebugName());
1452 }
1453 } else {
1454 LayerFE::ClientCompositionTargetSettings::BlurSetting blurSetting = disableBlurs
1455 ? LayerFE::ClientCompositionTargetSettings::BlurSetting::Disabled
1456 : (layer->getState().overrideInfo.disableBackgroundBlur
1457 ? LayerFE::ClientCompositionTargetSettings::BlurSetting::
1458 BlurRegionsOnly
1459 : LayerFE::ClientCompositionTargetSettings::BlurSetting::
1460 Enabled);
1461 compositionengine::LayerFE::ClientCompositionTargetSettings
1462 targetSettings{.clip = clip,
1463 .needsFiltering = layer->needsFiltering() ||
1464 outputState.needsFiltering,
1465 .isSecure = outputState.isSecure,
1466 .supportsProtectedContent = supportsProtectedContent,
1467 .viewport = outputState.layerStackSpace.getContent(),
1468 .dataspace = outputDataspace,
1469 .realContentIsVisible = realContentIsVisible,
1470 .clearContent = !clientComposition,
1471 .blurSetting = blurSetting,
1472 .whitePointNits = layerState.whitePointNits,
1473 .treat170mAsSrgb = outputState.treat170mAsSrgb};
1474 if (auto clientCompositionSettings =
1475 layerFE.prepareClientComposition(targetSettings)) {
1476 clientCompositionLayers.push_back(std::move(*clientCompositionSettings));
1477 if (realContentIsVisible) {
1478 layer->editState().clientCompositionTimestamp = systemTime();
1479 }
1480 }
1481 }
1482
1483 if (clientComposition) {
1484 outLayerFEs.push_back(&layerFE);
1485 }
1486 }
1487
1488 firstLayer = false;
1489 }
1490
1491 return clientCompositionLayers;
1492 }
1493
appendRegionFlashRequests(const Region & flashRegion,std::vector<LayerFE::LayerSettings> & clientCompositionLayers)1494 void Output::appendRegionFlashRequests(
1495 const Region& flashRegion, std::vector<LayerFE::LayerSettings>& clientCompositionLayers) {
1496 if (flashRegion.isEmpty()) {
1497 return;
1498 }
1499
1500 LayerFE::LayerSettings layerSettings;
1501 layerSettings.source.buffer.buffer = nullptr;
1502 layerSettings.source.solidColor = half3(1.0, 0.0, 1.0);
1503 layerSettings.alpha = half(1.0);
1504
1505 for (const auto& rect : flashRegion) {
1506 layerSettings.geometry.boundaries = rect.toFloatRect();
1507 clientCompositionLayers.push_back(layerSettings);
1508 }
1509 }
1510
setExpensiveRenderingExpected(bool)1511 void Output::setExpensiveRenderingExpected(bool) {
1512 // The base class does nothing with this call.
1513 }
1514
setHintSessionGpuFence(std::unique_ptr<FenceTime> &&)1515 void Output::setHintSessionGpuFence(std::unique_ptr<FenceTime>&&) {
1516 // The base class does nothing with this call.
1517 }
1518
isPowerHintSessionEnabled()1519 bool Output::isPowerHintSessionEnabled() {
1520 return false;
1521 }
1522
postFramebuffer()1523 void Output::postFramebuffer() {
1524 ATRACE_FORMAT("%s for %s", __func__, mNamePlusId.c_str());
1525 ALOGV(__FUNCTION__);
1526
1527 if (!getState().isEnabled) {
1528 return;
1529 }
1530
1531 auto& outputState = editState();
1532 outputState.dirtyRegion.clear();
1533
1534 auto frame = presentAndGetFrameFences();
1535
1536 mRenderSurface->onPresentDisplayCompleted();
1537
1538 for (auto* layer : getOutputLayersOrderedByZ()) {
1539 // The layer buffer from the previous frame (if any) is released
1540 // by HWC only when the release fence from this frame (if any) is
1541 // signaled. Always get the release fence from HWC first.
1542 sp<Fence> releaseFence = Fence::NO_FENCE;
1543
1544 if (auto hwcLayer = layer->getHwcLayer()) {
1545 if (auto f = frame.layerFences.find(hwcLayer); f != frame.layerFences.end()) {
1546 releaseFence = f->second;
1547 }
1548 }
1549
1550 // If the layer was client composited in the previous frame, we
1551 // need to merge with the previous client target acquire fence.
1552 // Since we do not track that, always merge with the current
1553 // client target acquire fence when it is available, even though
1554 // this is suboptimal.
1555 // TODO(b/121291683): Track previous frame client target acquire fence.
1556 if (outputState.usesClientComposition) {
1557 releaseFence =
1558 Fence::merge("LayerRelease", releaseFence, frame.clientTargetAcquireFence);
1559 }
1560 layer->getLayerFE()
1561 .onLayerDisplayed(ftl::yield<FenceResult>(std::move(releaseFence)).share(),
1562 outputState.layerFilter.layerStack);
1563 }
1564
1565 // We've got a list of layers needing fences, that are disjoint with
1566 // OutputLayersOrderedByZ. The best we can do is to
1567 // supply them with the present fence.
1568 for (auto& weakLayer : mReleasedLayers) {
1569 if (const auto layer = weakLayer.promote()) {
1570 layer->onLayerDisplayed(ftl::yield<FenceResult>(frame.presentFence).share(),
1571 outputState.layerFilter.layerStack);
1572 }
1573 }
1574
1575 // Clear out the released layers now that we're done with them.
1576 mReleasedLayers.clear();
1577 }
1578
renderCachedSets(const CompositionRefreshArgs & refreshArgs)1579 void Output::renderCachedSets(const CompositionRefreshArgs& refreshArgs) {
1580 const auto& outputState = getState();
1581 if (mPlanner && outputState.isEnabled) {
1582 mPlanner->renderCachedSets(outputState, refreshArgs.scheduledFrameTime,
1583 outputState.usesDeviceComposition || getSkipColorTransform());
1584 }
1585 }
1586
dirtyEntireOutput()1587 void Output::dirtyEntireOutput() {
1588 auto& outputState = editState();
1589 outputState.dirtyRegion.set(outputState.displaySpace.getBoundsAsRect());
1590 }
1591
resetCompositionStrategy()1592 void Output::resetCompositionStrategy() {
1593 // The base output implementation can only do client composition
1594 auto& outputState = editState();
1595 outputState.usesClientComposition = true;
1596 outputState.usesDeviceComposition = false;
1597 outputState.reusedClientComposition = false;
1598 }
1599
getSkipColorTransform() const1600 bool Output::getSkipColorTransform() const {
1601 return true;
1602 }
1603
presentAndGetFrameFences()1604 compositionengine::Output::FrameFences Output::presentAndGetFrameFences() {
1605 compositionengine::Output::FrameFences result;
1606 if (getState().usesClientComposition) {
1607 result.clientTargetAcquireFence = mRenderSurface->getClientTargetAcquireFence();
1608 }
1609 return result;
1610 }
1611
setPredictCompositionStrategy(bool predict)1612 void Output::setPredictCompositionStrategy(bool predict) {
1613 if (predict) {
1614 mHwComposerAsyncWorker = std::make_unique<HwcAsyncWorker>();
1615 } else {
1616 mHwComposerAsyncWorker.reset(nullptr);
1617 }
1618 }
1619
setTreat170mAsSrgb(bool enable)1620 void Output::setTreat170mAsSrgb(bool enable) {
1621 editState().treat170mAsSrgb = enable;
1622 }
1623
canPredictCompositionStrategy(const CompositionRefreshArgs & refreshArgs)1624 bool Output::canPredictCompositionStrategy(const CompositionRefreshArgs& refreshArgs) {
1625 uint64_t lastOutputLayerHash = getState().lastOutputLayerHash;
1626 uint64_t outputLayerHash = getState().outputLayerHash;
1627 editState().lastOutputLayerHash = outputLayerHash;
1628
1629 if (!getState().isEnabled || !mHwComposerAsyncWorker) {
1630 ALOGV("canPredictCompositionStrategy disabled");
1631 return false;
1632 }
1633
1634 if (!getState().previousDeviceRequestedChanges) {
1635 ALOGV("canPredictCompositionStrategy previous changes not available");
1636 return false;
1637 }
1638
1639 if (!mRenderSurface->supportsCompositionStrategyPrediction()) {
1640 ALOGV("canPredictCompositionStrategy surface does not support");
1641 return false;
1642 }
1643
1644 if (refreshArgs.devOptFlashDirtyRegionsDelay) {
1645 ALOGV("canPredictCompositionStrategy devOptFlashDirtyRegionsDelay");
1646 return false;
1647 }
1648
1649 if (lastOutputLayerHash != outputLayerHash) {
1650 ALOGV("canPredictCompositionStrategy output layers changed");
1651 return false;
1652 }
1653
1654 // If no layer uses clientComposition, then don't predict composition strategy
1655 // because we have less work to do in parallel.
1656 if (!anyLayersRequireClientComposition()) {
1657 ALOGV("canPredictCompositionStrategy no layer uses clientComposition");
1658 return false;
1659 }
1660
1661 return true;
1662 }
1663
anyLayersRequireClientComposition() const1664 bool Output::anyLayersRequireClientComposition() const {
1665 const auto layers = getOutputLayersOrderedByZ();
1666 return std::any_of(layers.begin(), layers.end(),
1667 [](const auto& layer) { return layer->requiresClientComposition(); });
1668 }
1669
finishPrepareFrame()1670 void Output::finishPrepareFrame() {
1671 const auto& state = getState();
1672 if (mPlanner) {
1673 mPlanner->reportFinalPlan(getOutputLayersOrderedByZ());
1674 }
1675 mRenderSurface->prepareFrame(state.usesClientComposition, state.usesDeviceComposition);
1676 }
1677
mustRecompose() const1678 bool Output::mustRecompose() const {
1679 return mMustRecompose;
1680 }
1681
1682 } // namespace impl
1683 } // namespace android::compositionengine
1684