• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (C) 2021 The Android Open Source Project
3  *
4  * Licensed under the Apache License, Version 2.0 (the "License");
5  * you may not use this file except in compliance with the License.
6  * You may obtain a copy of the License at
7  *
8  *      http://www.apache.org/licenses/LICENSE-2.0
9  *
10  * Unless required by applicable law or agreed to in writing, software
11  * distributed under the License is distributed on an "AS IS" BASIS,
12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13  * See the License for the specific language governing permissions and
14  * limitations under the License.
15  */
16 #include <aidl/Gtest.h>
17 #include <aidl/Vintf.h>
18 
19 #include <aidl/android/hardware/sensors/BnSensors.h>
20 #include <aidl/android/hardware/sensors/ISensors.h>
21 #include <android/binder_manager.h>
22 #include <binder/IServiceManager.h>
23 #include <binder/ProcessState.h>
24 #include <hardware/sensors.h>
25 #include <log/log.h>
26 #include <utils/SystemClock.h>
27 
28 #include "SensorsAidlEnvironment.h"
29 #include "SensorsAidlTestSharedMemory.h"
30 #include "sensors-vts-utils/SensorsVtsEnvironmentBase.h"
31 
32 #include <cinttypes>
33 #include <condition_variable>
34 #include <map>
35 #include <unordered_map>
36 #include <unordered_set>
37 #include <vector>
38 
39 using aidl::android::hardware::sensors::Event;
40 using aidl::android::hardware::sensors::ISensors;
41 using aidl::android::hardware::sensors::SensorInfo;
42 using aidl::android::hardware::sensors::SensorStatus;
43 using aidl::android::hardware::sensors::SensorType;
44 using android::ProcessState;
45 using std::chrono::duration_cast;
46 
47 constexpr size_t kEventSize =
48         static_cast<size_t>(ISensors::DIRECT_REPORT_SENSOR_EVENT_TOTAL_LENGTH);
49 
50 namespace {
51 
assertTypeMatchStringType(SensorType type,const std::string & stringType)52 static void assertTypeMatchStringType(SensorType type, const std::string& stringType) {
53     if (type >= SensorType::DEVICE_PRIVATE_BASE) {
54         return;
55     }
56 
57     switch (type) {
58 #define CHECK_TYPE_STRING_FOR_SENSOR_TYPE(type)                      \
59     case SensorType::type:                                           \
60         ASSERT_STREQ(SENSOR_STRING_TYPE_##type, stringType.c_str()); \
61         break;
62         CHECK_TYPE_STRING_FOR_SENSOR_TYPE(ACCELEROMETER);
63         CHECK_TYPE_STRING_FOR_SENSOR_TYPE(ACCELEROMETER_LIMITED_AXES);
64         CHECK_TYPE_STRING_FOR_SENSOR_TYPE(ACCELEROMETER_LIMITED_AXES_UNCALIBRATED);
65         CHECK_TYPE_STRING_FOR_SENSOR_TYPE(ACCELEROMETER_UNCALIBRATED);
66         CHECK_TYPE_STRING_FOR_SENSOR_TYPE(ADDITIONAL_INFO);
67         CHECK_TYPE_STRING_FOR_SENSOR_TYPE(AMBIENT_TEMPERATURE);
68         CHECK_TYPE_STRING_FOR_SENSOR_TYPE(DEVICE_ORIENTATION);
69         CHECK_TYPE_STRING_FOR_SENSOR_TYPE(DYNAMIC_SENSOR_META);
70         CHECK_TYPE_STRING_FOR_SENSOR_TYPE(GAME_ROTATION_VECTOR);
71         CHECK_TYPE_STRING_FOR_SENSOR_TYPE(GEOMAGNETIC_ROTATION_VECTOR);
72         CHECK_TYPE_STRING_FOR_SENSOR_TYPE(GLANCE_GESTURE);
73         CHECK_TYPE_STRING_FOR_SENSOR_TYPE(GRAVITY);
74         CHECK_TYPE_STRING_FOR_SENSOR_TYPE(GYROSCOPE);
75         CHECK_TYPE_STRING_FOR_SENSOR_TYPE(GYROSCOPE_LIMITED_AXES);
76         CHECK_TYPE_STRING_FOR_SENSOR_TYPE(GYROSCOPE_LIMITED_AXES_UNCALIBRATED);
77         CHECK_TYPE_STRING_FOR_SENSOR_TYPE(GYROSCOPE_UNCALIBRATED);
78         CHECK_TYPE_STRING_FOR_SENSOR_TYPE(HEADING);
79         CHECK_TYPE_STRING_FOR_SENSOR_TYPE(HEART_BEAT);
80         CHECK_TYPE_STRING_FOR_SENSOR_TYPE(HEART_RATE);
81         CHECK_TYPE_STRING_FOR_SENSOR_TYPE(LIGHT);
82         CHECK_TYPE_STRING_FOR_SENSOR_TYPE(LINEAR_ACCELERATION);
83         CHECK_TYPE_STRING_FOR_SENSOR_TYPE(LOW_LATENCY_OFFBODY_DETECT);
84         CHECK_TYPE_STRING_FOR_SENSOR_TYPE(MAGNETIC_FIELD);
85         CHECK_TYPE_STRING_FOR_SENSOR_TYPE(MAGNETIC_FIELD_UNCALIBRATED);
86         CHECK_TYPE_STRING_FOR_SENSOR_TYPE(MOTION_DETECT);
87         CHECK_TYPE_STRING_FOR_SENSOR_TYPE(ORIENTATION);
88         CHECK_TYPE_STRING_FOR_SENSOR_TYPE(PICK_UP_GESTURE);
89         CHECK_TYPE_STRING_FOR_SENSOR_TYPE(POSE_6DOF);
90         CHECK_TYPE_STRING_FOR_SENSOR_TYPE(PRESSURE);
91         CHECK_TYPE_STRING_FOR_SENSOR_TYPE(PROXIMITY);
92         CHECK_TYPE_STRING_FOR_SENSOR_TYPE(RELATIVE_HUMIDITY);
93         CHECK_TYPE_STRING_FOR_SENSOR_TYPE(ROTATION_VECTOR);
94         CHECK_TYPE_STRING_FOR_SENSOR_TYPE(SIGNIFICANT_MOTION);
95         CHECK_TYPE_STRING_FOR_SENSOR_TYPE(STATIONARY_DETECT);
96         CHECK_TYPE_STRING_FOR_SENSOR_TYPE(STEP_COUNTER);
97         CHECK_TYPE_STRING_FOR_SENSOR_TYPE(STEP_DETECTOR);
98         CHECK_TYPE_STRING_FOR_SENSOR_TYPE(TILT_DETECTOR);
99         CHECK_TYPE_STRING_FOR_SENSOR_TYPE(WAKE_GESTURE);
100         CHECK_TYPE_STRING_FOR_SENSOR_TYPE(WRIST_TILT_GESTURE);
101         CHECK_TYPE_STRING_FOR_SENSOR_TYPE(HINGE_ANGLE);
102         default:
103             FAIL() << "Type " << static_cast<int>(type)
104                    << " in android defined range is not checked, "
105                    << "stringType = " << stringType;
106 #undef CHECK_TYPE_STRING_FOR_SENSOR_TYPE
107     }
108 }
109 
isDirectChannelTypeSupported(SensorInfo sensor,ISensors::SharedMemInfo::SharedMemType type)110 bool isDirectChannelTypeSupported(SensorInfo sensor, ISensors::SharedMemInfo::SharedMemType type) {
111     switch (type) {
112         case ISensors::SharedMemInfo::SharedMemType::ASHMEM:
113             return (sensor.flags & SensorInfo::SENSOR_FLAG_BITS_DIRECT_CHANNEL_ASHMEM) != 0;
114         case ISensors::SharedMemInfo::SharedMemType::GRALLOC:
115             return (sensor.flags & SensorInfo::SENSOR_FLAG_BITS_DIRECT_CHANNEL_GRALLOC) != 0;
116         default:
117             return false;
118     }
119 }
120 
isDirectReportRateSupported(SensorInfo sensor,ISensors::RateLevel rate)121 bool isDirectReportRateSupported(SensorInfo sensor, ISensors::RateLevel rate) {
122     unsigned int r = static_cast<unsigned int>(sensor.flags &
123                                                SensorInfo::SENSOR_FLAG_BITS_MASK_DIRECT_REPORT) >>
124                      static_cast<unsigned int>(SensorInfo::SENSOR_FLAG_SHIFT_DIRECT_REPORT);
125     return r >= static_cast<unsigned int>(rate);
126 }
127 
expectedReportModeForType(SensorType type)128 int expectedReportModeForType(SensorType type) {
129     switch (type) {
130         case SensorType::ACCELEROMETER:
131         case SensorType::ACCELEROMETER_LIMITED_AXES:
132         case SensorType::ACCELEROMETER_UNCALIBRATED:
133         case SensorType::ACCELEROMETER_LIMITED_AXES_UNCALIBRATED:
134         case SensorType::GYROSCOPE:
135         case SensorType::GYROSCOPE_LIMITED_AXES:
136         case SensorType::MAGNETIC_FIELD:
137         case SensorType::ORIENTATION:
138         case SensorType::PRESSURE:
139         case SensorType::GRAVITY:
140         case SensorType::LINEAR_ACCELERATION:
141         case SensorType::ROTATION_VECTOR:
142         case SensorType::MAGNETIC_FIELD_UNCALIBRATED:
143         case SensorType::GAME_ROTATION_VECTOR:
144         case SensorType::GYROSCOPE_UNCALIBRATED:
145         case SensorType::GYROSCOPE_LIMITED_AXES_UNCALIBRATED:
146         case SensorType::GEOMAGNETIC_ROTATION_VECTOR:
147         case SensorType::POSE_6DOF:
148         case SensorType::HEART_BEAT:
149         case SensorType::HEADING:
150             return SensorInfo::SENSOR_FLAG_BITS_CONTINUOUS_MODE;
151 
152         case SensorType::LIGHT:
153         case SensorType::PROXIMITY:
154         case SensorType::RELATIVE_HUMIDITY:
155         case SensorType::AMBIENT_TEMPERATURE:
156         case SensorType::HEART_RATE:
157         case SensorType::DEVICE_ORIENTATION:
158         case SensorType::STEP_COUNTER:
159         case SensorType::LOW_LATENCY_OFFBODY_DETECT:
160             return SensorInfo::SENSOR_FLAG_BITS_ON_CHANGE_MODE;
161 
162         case SensorType::SIGNIFICANT_MOTION:
163         case SensorType::WAKE_GESTURE:
164         case SensorType::GLANCE_GESTURE:
165         case SensorType::PICK_UP_GESTURE:
166         case SensorType::MOTION_DETECT:
167         case SensorType::STATIONARY_DETECT:
168             return SensorInfo::SENSOR_FLAG_BITS_ONE_SHOT_MODE;
169 
170         case SensorType::STEP_DETECTOR:
171         case SensorType::TILT_DETECTOR:
172         case SensorType::WRIST_TILT_GESTURE:
173         case SensorType::DYNAMIC_SENSOR_META:
174             return SensorInfo::SENSOR_FLAG_BITS_SPECIAL_REPORTING_MODE;
175 
176         default:
177             ALOGW("Type %d is not implemented in expectedReportModeForType", (int)type);
178             return INT32_MAX;
179     }
180 }
181 
assertTypeMatchReportMode(SensorType type,int reportMode)182 void assertTypeMatchReportMode(SensorType type, int reportMode) {
183     if (type >= SensorType::DEVICE_PRIVATE_BASE) {
184         return;
185     }
186 
187     int expected = expectedReportModeForType(type);
188 
189     ASSERT_TRUE(expected == INT32_MAX || expected == reportMode)
190             << "reportMode=" << static_cast<int>(reportMode)
191             << "expected=" << static_cast<int>(expected);
192 }
193 
assertDelayMatchReportMode(int32_t minDelayUs,int32_t maxDelayUs,int reportMode)194 void assertDelayMatchReportMode(int32_t minDelayUs, int32_t maxDelayUs, int reportMode) {
195     switch (reportMode) {
196         case SensorInfo::SENSOR_FLAG_BITS_CONTINUOUS_MODE:
197             ASSERT_LT(0, minDelayUs);
198             ASSERT_LE(0, maxDelayUs);
199             break;
200         case SensorInfo::SENSOR_FLAG_BITS_ON_CHANGE_MODE:
201             ASSERT_LE(0, minDelayUs);
202             ASSERT_LE(0, maxDelayUs);
203             break;
204         case SensorInfo::SENSOR_FLAG_BITS_ONE_SHOT_MODE:
205             ASSERT_EQ(-1, minDelayUs);
206             ASSERT_EQ(0, maxDelayUs);
207             break;
208         case SensorInfo::SENSOR_FLAG_BITS_SPECIAL_REPORTING_MODE:
209             // do not enforce anything for special reporting mode
210             break;
211         default:
212             FAIL() << "Report mode " << static_cast<int>(reportMode) << " not checked";
213     }
214 }
215 
checkIsOk(ndk::ScopedAStatus status)216 void checkIsOk(ndk::ScopedAStatus status) {
217     ASSERT_TRUE(status.isOk());
218 }
219 
220 }  // namespace
221 
222 class EventCallback : public IEventCallback<Event> {
223   public:
reset()224     void reset() {
225         mFlushMap.clear();
226         mEventMap.clear();
227     }
228 
onEvent(const Event & event)229     void onEvent(const Event& event) override {
230         if (event.sensorType == SensorType::META_DATA &&
231             event.payload.get<Event::EventPayload::Tag::meta>().what ==
232                     Event::EventPayload::MetaData::MetaDataEventType::META_DATA_FLUSH_COMPLETE) {
233             std::unique_lock<std::recursive_mutex> lock(mFlushMutex);
234             mFlushMap[event.sensorHandle]++;
235             mFlushCV.notify_all();
236         } else if (event.sensorType != SensorType::ADDITIONAL_INFO) {
237             std::unique_lock<std::recursive_mutex> lock(mEventMutex);
238             mEventMap[event.sensorHandle].push_back(event);
239             mEventCV.notify_all();
240         }
241     }
242 
getFlushCount(int32_t sensorHandle)243     int32_t getFlushCount(int32_t sensorHandle) {
244         std::unique_lock<std::recursive_mutex> lock(mFlushMutex);
245         return mFlushMap[sensorHandle];
246     }
247 
waitForFlushEvents(const std::vector<SensorInfo> & sensorsToWaitFor,int32_t numCallsToFlush,std::chrono::milliseconds timeout)248     void waitForFlushEvents(const std::vector<SensorInfo>& sensorsToWaitFor,
249                             int32_t numCallsToFlush, std::chrono::milliseconds timeout) {
250         std::unique_lock<std::recursive_mutex> lock(mFlushMutex);
251         mFlushCV.wait_for(lock, timeout,
252                           [&] { return flushesReceived(sensorsToWaitFor, numCallsToFlush); });
253     }
254 
getEvents(int32_t sensorHandle)255     const std::vector<Event> getEvents(int32_t sensorHandle) {
256         std::unique_lock<std::recursive_mutex> lock(mEventMutex);
257         return mEventMap[sensorHandle];
258     }
259 
waitForEvents(const std::vector<SensorInfo> & sensorsToWaitFor,std::chrono::milliseconds timeout)260     void waitForEvents(const std::vector<SensorInfo>& sensorsToWaitFor,
261                        std::chrono::milliseconds timeout) {
262         std::unique_lock<std::recursive_mutex> lock(mEventMutex);
263         mEventCV.wait_for(lock, timeout, [&] { return eventsReceived(sensorsToWaitFor); });
264     }
265 
266   protected:
flushesReceived(const std::vector<SensorInfo> & sensorsToWaitFor,int32_t numCallsToFlush)267     bool flushesReceived(const std::vector<SensorInfo>& sensorsToWaitFor, int32_t numCallsToFlush) {
268         for (const SensorInfo& sensor : sensorsToWaitFor) {
269             if (getFlushCount(sensor.sensorHandle) < numCallsToFlush) {
270                 return false;
271             }
272         }
273         return true;
274     }
275 
eventsReceived(const std::vector<SensorInfo> & sensorsToWaitFor)276     bool eventsReceived(const std::vector<SensorInfo>& sensorsToWaitFor) {
277         for (const SensorInfo& sensor : sensorsToWaitFor) {
278             if (getEvents(sensor.sensorHandle).size() == 0) {
279                 return false;
280             }
281         }
282         return true;
283     }
284 
285     std::map<int32_t, int32_t> mFlushMap;
286     std::recursive_mutex mFlushMutex;
287     std::condition_variable_any mFlushCV;
288 
289     std::map<int32_t, std::vector<Event>> mEventMap;
290     std::recursive_mutex mEventMutex;
291     std::condition_variable_any mEventCV;
292 };
293 
294 class SensorsAidlTest : public testing::TestWithParam<std::string> {
295   public:
SetUp()296     virtual void SetUp() override {
297         mEnvironment = new SensorsAidlEnvironment(GetParam());
298         mEnvironment->SetUp();
299 
300         // Ensure that we have a valid environment before performing tests
301         ASSERT_NE(getSensors(), nullptr);
302     }
303 
TearDown()304     virtual void TearDown() override {
305         for (int32_t handle : mSensorHandles) {
306             activate(handle, false);
307         }
308         mSensorHandles.clear();
309 
310         mEnvironment->TearDown();
311         delete mEnvironment;
312         mEnvironment = nullptr;
313     }
314 
315   protected:
316     std::vector<SensorInfo> getNonOneShotSensors();
317     std::vector<SensorInfo> getNonOneShotAndNonSpecialSensors();
318     std::vector<SensorInfo> getNonOneShotAndNonOnChangeAndNonSpecialSensors();
319     std::vector<SensorInfo> getOneShotSensors();
320     std::vector<SensorInfo> getInjectEventSensors();
321 
322     void verifyDirectChannel(ISensors::SharedMemInfo::SharedMemType memType);
323 
324     void verifyRegisterDirectChannel(
325             std::shared_ptr<SensorsAidlTestSharedMemory<SensorType, Event>> mem,
326             int32_t* directChannelHandle, bool supportsSharedMemType,
327             bool supportsAnyDirectChannel);
328 
329     void verifyConfigure(const SensorInfo& sensor, ISensors::SharedMemInfo::SharedMemType memType,
330                          int32_t directChannelHandle, bool directChannelSupported);
331 
332     void queryDirectChannelSupport(ISensors::SharedMemInfo::SharedMemType memType,
333                                    bool* supportsSharedMemType, bool* supportsAnyDirectChannel);
334 
335     void verifyUnregisterDirectChannel(int32_t* directChannelHandle, bool supportsAnyDirectChannel);
336 
337     void checkRateLevel(const SensorInfo& sensor, int32_t directChannelHandle,
338                         ISensors::RateLevel rateLevel, int32_t* reportToken);
339 
getSensors()340     inline std::shared_ptr<ISensors>& getSensors() { return mEnvironment->mSensors; }
341 
getEnvironment()342     inline SensorsAidlEnvironment* getEnvironment() { return mEnvironment; }
343 
isValidType(SensorType sensorType)344     inline bool isValidType(SensorType sensorType) { return (int)sensorType > 0; }
345 
346     std::vector<SensorInfo> getSensorsList();
347 
getInvalidSensorHandle()348     int32_t getInvalidSensorHandle() {
349         // Find a sensor handle that does not exist in the sensor list
350         int32_t maxHandle = 0;
351         for (const SensorInfo& sensor : getSensorsList()) {
352             maxHandle = std::max(maxHandle, sensor.sensorHandle);
353         }
354         return maxHandle + 1;
355     }
356 
357     ndk::ScopedAStatus activate(int32_t sensorHandle, bool enable);
358     void activateAllSensors(bool enable);
359 
batch(int32_t sensorHandle,int64_t samplingPeriodNs,int64_t maxReportLatencyNs)360     ndk::ScopedAStatus batch(int32_t sensorHandle, int64_t samplingPeriodNs,
361                              int64_t maxReportLatencyNs) {
362         return getSensors()->batch(sensorHandle, samplingPeriodNs, maxReportLatencyNs);
363     }
364 
flush(int32_t sensorHandle)365     ndk::ScopedAStatus flush(int32_t sensorHandle) { return getSensors()->flush(sensorHandle); }
366 
367     ndk::ScopedAStatus registerDirectChannel(const ISensors::SharedMemInfo& mem,
368                                              int32_t* aidlReturn);
369 
unregisterDirectChannel(int32_t * channelHandle)370     ndk::ScopedAStatus unregisterDirectChannel(int32_t* channelHandle) {
371         return getSensors()->unregisterDirectChannel(*channelHandle);
372     }
373 
configDirectReport(int32_t sensorHandle,int32_t channelHandle,ISensors::RateLevel rate,int32_t * reportToken)374     ndk::ScopedAStatus configDirectReport(int32_t sensorHandle, int32_t channelHandle,
375                                           ISensors::RateLevel rate, int32_t* reportToken) {
376         return getSensors()->configDirectReport(sensorHandle, channelHandle, rate, reportToken);
377     }
378 
379     void runSingleFlushTest(const std::vector<SensorInfo>& sensors, bool activateSensor,
380                             int32_t expectedFlushCount, bool expectedResult);
381 
382     void runFlushTest(const std::vector<SensorInfo>& sensors, bool activateSensor,
383                       int32_t flushCalls, int32_t expectedFlushCount, bool expectedResult);
384 
extractReportMode(int32_t flag)385     inline static int32_t extractReportMode(int32_t flag) {
386         return (flag & (SensorInfo::SENSOR_FLAG_BITS_CONTINUOUS_MODE |
387                         SensorInfo::SENSOR_FLAG_BITS_ON_CHANGE_MODE |
388                         SensorInfo::SENSOR_FLAG_BITS_ONE_SHOT_MODE |
389                         SensorInfo::SENSOR_FLAG_BITS_SPECIAL_REPORTING_MODE));
390     }
391 
392     // All sensors and direct channnels used
393     std::unordered_set<int32_t> mSensorHandles;
394     std::unordered_set<int32_t> mDirectChannelHandles;
395 
396   private:
397     SensorsAidlEnvironment* mEnvironment;
398 };
399 
registerDirectChannel(const ISensors::SharedMemInfo & mem,int32_t * aidlReturn)400 ndk::ScopedAStatus SensorsAidlTest::registerDirectChannel(const ISensors::SharedMemInfo& mem,
401                                                           int32_t* aidlReturn) {
402     // If registeration of a channel succeeds, add the handle of channel to a set so that it can be
403     // unregistered when test fails. Unregister a channel does not remove the handle on purpose.
404     // Unregistering a channel more than once should not have negative effect.
405 
406     ndk::ScopedAStatus status = getSensors()->registerDirectChannel(mem, aidlReturn);
407     if (status.isOk()) {
408         mDirectChannelHandles.insert(*aidlReturn);
409     }
410     return status;
411 }
412 
getSensorsList()413 std::vector<SensorInfo> SensorsAidlTest::getSensorsList() {
414     std::vector<SensorInfo> sensorInfoList;
415     checkIsOk(getSensors()->getSensorsList(&sensorInfoList));
416     return sensorInfoList;
417 }
418 
activate(int32_t sensorHandle,bool enable)419 ndk::ScopedAStatus SensorsAidlTest::activate(int32_t sensorHandle, bool enable) {
420     // If activating a sensor, add the handle in a set so that when test fails it can be turned off.
421     // The handle is not removed when it is deactivating on purpose so that it is not necessary to
422     // check the return value of deactivation. Deactivating a sensor more than once does not have
423     // negative effect.
424     if (enable) {
425         mSensorHandles.insert(sensorHandle);
426     }
427     return getSensors()->activate(sensorHandle, enable);
428 }
429 
activateAllSensors(bool enable)430 void SensorsAidlTest::activateAllSensors(bool enable) {
431     for (const SensorInfo& sensorInfo : getSensorsList()) {
432         if (isValidType(sensorInfo.type)) {
433             checkIsOk(batch(sensorInfo.sensorHandle, sensorInfo.minDelayUs,
434                             0 /* maxReportLatencyNs */));
435             checkIsOk(activate(sensorInfo.sensorHandle, enable));
436         }
437     }
438 }
439 
getNonOneShotSensors()440 std::vector<SensorInfo> SensorsAidlTest::getNonOneShotSensors() {
441     std::vector<SensorInfo> sensors;
442     for (const SensorInfo& info : getSensorsList()) {
443         if (extractReportMode(info.flags) != SensorInfo::SENSOR_FLAG_BITS_ONE_SHOT_MODE) {
444             sensors.push_back(info);
445         }
446     }
447     return sensors;
448 }
449 
getNonOneShotAndNonSpecialSensors()450 std::vector<SensorInfo> SensorsAidlTest::getNonOneShotAndNonSpecialSensors() {
451     std::vector<SensorInfo> sensors;
452     for (const SensorInfo& info : getSensorsList()) {
453         int reportMode = extractReportMode(info.flags);
454         if (reportMode != SensorInfo::SENSOR_FLAG_BITS_ONE_SHOT_MODE &&
455             reportMode != SensorInfo::SENSOR_FLAG_BITS_SPECIAL_REPORTING_MODE) {
456             sensors.push_back(info);
457         }
458     }
459     return sensors;
460 }
461 
getNonOneShotAndNonOnChangeAndNonSpecialSensors()462 std::vector<SensorInfo> SensorsAidlTest::getNonOneShotAndNonOnChangeAndNonSpecialSensors() {
463     std::vector<SensorInfo> sensors;
464     for (const SensorInfo& info : getSensorsList()) {
465         int reportMode = extractReportMode(info.flags);
466         if (reportMode != SensorInfo::SENSOR_FLAG_BITS_ONE_SHOT_MODE &&
467             reportMode != SensorInfo::SENSOR_FLAG_BITS_ON_CHANGE_MODE &&
468             reportMode != SensorInfo::SENSOR_FLAG_BITS_SPECIAL_REPORTING_MODE) {
469             sensors.push_back(info);
470         }
471     }
472     return sensors;
473 }
474 
getOneShotSensors()475 std::vector<SensorInfo> SensorsAidlTest::getOneShotSensors() {
476     std::vector<SensorInfo> sensors;
477     for (const SensorInfo& info : getSensorsList()) {
478         if (extractReportMode(info.flags) == SensorInfo::SENSOR_FLAG_BITS_ONE_SHOT_MODE) {
479             sensors.push_back(info);
480         }
481     }
482     return sensors;
483 }
484 
getInjectEventSensors()485 std::vector<SensorInfo> SensorsAidlTest::getInjectEventSensors() {
486     std::vector<SensorInfo> out;
487     std::vector<SensorInfo> sensorInfoList = getSensorsList();
488     for (const SensorInfo& info : sensorInfoList) {
489         if (info.flags & SensorInfo::SENSOR_FLAG_BITS_DATA_INJECTION) {
490             out.push_back(info);
491         }
492     }
493     return out;
494 }
495 
runSingleFlushTest(const std::vector<SensorInfo> & sensors,bool activateSensor,int32_t expectedFlushCount,bool expectedResult)496 void SensorsAidlTest::runSingleFlushTest(const std::vector<SensorInfo>& sensors,
497                                          bool activateSensor, int32_t expectedFlushCount,
498                                          bool expectedResult) {
499     runFlushTest(sensors, activateSensor, 1 /* flushCalls */, expectedFlushCount, expectedResult);
500 }
501 
runFlushTest(const std::vector<SensorInfo> & sensors,bool activateSensor,int32_t flushCalls,int32_t expectedFlushCount,bool expectedResult)502 void SensorsAidlTest::runFlushTest(const std::vector<SensorInfo>& sensors, bool activateSensor,
503                                    int32_t flushCalls, int32_t expectedFlushCount,
504                                    bool expectedResult) {
505     EventCallback callback;
506     getEnvironment()->registerCallback(&callback);
507 
508     for (const SensorInfo& sensor : sensors) {
509         // Configure and activate the sensor
510         batch(sensor.sensorHandle, sensor.maxDelayUs, 0 /* maxReportLatencyNs */);
511         activate(sensor.sensorHandle, activateSensor);
512 
513         // Flush the sensor
514         for (int32_t i = 0; i < flushCalls; i++) {
515             SCOPED_TRACE(::testing::Message()
516                          << "Flush " << i << "/" << flushCalls << ": "
517                          << " handle=0x" << std::hex << std::setw(8) << std::setfill('0')
518                          << sensor.sensorHandle << std::dec
519                          << " type=" << static_cast<int>(sensor.type) << " name=" << sensor.name);
520 
521             EXPECT_EQ(flush(sensor.sensorHandle).isOk(), expectedResult);
522         }
523     }
524 
525     // Wait up to one second for the flush events
526     callback.waitForFlushEvents(sensors, flushCalls, std::chrono::milliseconds(1000) /* timeout */);
527 
528     // Deactivate all sensors after waiting for flush events so pending flush events are not
529     // abandoned by the HAL.
530     for (const SensorInfo& sensor : sensors) {
531         activate(sensor.sensorHandle, false);
532     }
533     getEnvironment()->unregisterCallback();
534 
535     // Check that the correct number of flushes are present for each sensor
536     for (const SensorInfo& sensor : sensors) {
537         SCOPED_TRACE(::testing::Message()
538                      << " handle=0x" << std::hex << std::setw(8) << std::setfill('0')
539                      << sensor.sensorHandle << std::dec << " type=" << static_cast<int>(sensor.type)
540                      << " name=" << sensor.name);
541         ASSERT_EQ(callback.getFlushCount(sensor.sensorHandle), expectedFlushCount);
542     }
543 }
544 
TEST_P(SensorsAidlTest,SensorListValid)545 TEST_P(SensorsAidlTest, SensorListValid) {
546     std::vector<SensorInfo> sensorInfoList = getSensorsList();
547     std::unordered_map<int32_t, std::vector<std::string>> sensorTypeNameMap;
548     for (size_t i = 0; i < sensorInfoList.size(); ++i) {
549         const SensorInfo& info = sensorInfoList[i];
550         SCOPED_TRACE(::testing::Message()
551                      << i << "/" << sensorInfoList.size() << ": "
552                      << " handle=0x" << std::hex << std::setw(8) << std::setfill('0')
553                      << info.sensorHandle << std::dec << " type=" << static_cast<int>(info.type)
554                      << " name=" << info.name);
555 
556         // Test type string non-empty only for private sensor typeinfo.
557         if (info.type >= SensorType::DEVICE_PRIVATE_BASE) {
558             EXPECT_FALSE(info.typeAsString.empty());
559         } else if (!info.typeAsString.empty()) {
560             // Test type string matches framework string if specified for non-private typeinfo.
561             EXPECT_NO_FATAL_FAILURE(assertTypeMatchStringType(info.type, info.typeAsString));
562         }
563 
564         // Test if all sensors have name and vendor
565         EXPECT_FALSE(info.name.empty());
566         EXPECT_FALSE(info.vendor.empty());
567 
568         // Make sure that the sensor handle is not within the reserved range for runtime
569         // sensors.
570         EXPECT_FALSE(ISensors::RUNTIME_SENSORS_HANDLE_BASE <= info.sensorHandle &&
571                      info.sensorHandle <= ISensors::RUNTIME_SENSORS_HANDLE_END);
572 
573         // Make sure that sensors of the same type have a unique name.
574         std::vector<std::string>& v = sensorTypeNameMap[static_cast<int32_t>(info.type)];
575         bool isUniqueName = std::find(v.begin(), v.end(), info.name) == v.end();
576         EXPECT_TRUE(isUniqueName) << "Duplicate sensor Name: " << info.name;
577         if (isUniqueName) {
578             v.push_back(info.name);
579         }
580 
581         EXPECT_LE(0, info.power);
582         EXPECT_LT(0, info.maxRange);
583 
584         // Info type, should have no sensor
585         EXPECT_FALSE(info.type == SensorType::ADDITIONAL_INFO ||
586                      info.type == SensorType::META_DATA);
587 
588         EXPECT_GE(info.fifoMaxEventCount, info.fifoReservedEventCount);
589 
590         // Test Reporting mode valid
591         EXPECT_NO_FATAL_FAILURE(
592                 assertTypeMatchReportMode(info.type, extractReportMode(info.flags)));
593 
594         // Test min max are in the right order
595         EXPECT_LE(info.minDelayUs, info.maxDelayUs);
596         // Test min/max delay matches reporting mode
597         EXPECT_NO_FATAL_FAILURE(assertDelayMatchReportMode(info.minDelayUs, info.maxDelayUs,
598                                                            extractReportMode(info.flags)));
599     }
600 }
601 
TEST_P(SensorsAidlTest,SetOperationMode)602 TEST_P(SensorsAidlTest, SetOperationMode) {
603     if (getInjectEventSensors().size() > 0) {
604         ASSERT_TRUE(getSensors()->setOperationMode(ISensors::OperationMode::NORMAL).isOk());
605         ASSERT_TRUE(getSensors()->setOperationMode(ISensors::OperationMode::DATA_INJECTION).isOk());
606         ASSERT_TRUE(getSensors()->setOperationMode(ISensors::OperationMode::NORMAL).isOk());
607     } else {
608       int errorCode =
609           getSensors()
610               ->setOperationMode(ISensors::OperationMode::DATA_INJECTION)
611               .getExceptionCode();
612       ASSERT_TRUE((errorCode == EX_UNSUPPORTED_OPERATION) ||
613                   (errorCode == EX_ILLEGAL_ARGUMENT));
614     }
615 }
616 
TEST_P(SensorsAidlTest,InjectSensorEventData)617 TEST_P(SensorsAidlTest, InjectSensorEventData) {
618     std::vector<SensorInfo> sensors = getInjectEventSensors();
619     if (sensors.size() == 0) {
620         return;
621     }
622 
623     ASSERT_TRUE(getSensors()->setOperationMode(ISensors::OperationMode::DATA_INJECTION).isOk());
624 
625     EventCallback callback;
626     getEnvironment()->registerCallback(&callback);
627 
628     // AdditionalInfo event should not be sent to Event FMQ
629     Event additionalInfoEvent;
630     additionalInfoEvent.sensorType = SensorType::ADDITIONAL_INFO;
631     additionalInfoEvent.timestamp = android::elapsedRealtimeNano();
632 
633     Event injectedEvent;
634     injectedEvent.timestamp = android::elapsedRealtimeNano();
635     Event::EventPayload::Vec3 data = {1, 2, 3, SensorStatus::ACCURACY_HIGH};
636     injectedEvent.payload.set<Event::EventPayload::Tag::vec3>(data);
637 
638     for (const auto& s : sensors) {
639         additionalInfoEvent.sensorHandle = s.sensorHandle;
640         ASSERT_TRUE(getSensors()->injectSensorData(additionalInfoEvent).isOk());
641 
642         injectedEvent.sensorType = s.type;
643         injectedEvent.sensorHandle = s.sensorHandle;
644         ASSERT_TRUE(getSensors()->injectSensorData(injectedEvent).isOk());
645     }
646 
647     // Wait for events to be written back to the Event FMQ
648     callback.waitForEvents(sensors, std::chrono::milliseconds(1000) /* timeout */);
649     getEnvironment()->unregisterCallback();
650 
651     for (const auto& s : sensors) {
652         auto events = callback.getEvents(s.sensorHandle);
653         if (events.empty()) {
654             FAIL() << "Received no events";
655         } else {
656             auto lastEvent = events.back();
657             SCOPED_TRACE(::testing::Message()
658                          << " handle=0x" << std::hex << std::setw(8) << std::setfill('0')
659                          << s.sensorHandle << std::dec << " type=" << static_cast<int>(s.type)
660                          << " name=" << s.name);
661 
662             // Verify that only a single event has been received
663             ASSERT_EQ(events.size(), 1);
664 
665             // Verify that the event received matches the event injected and is not the additional
666             // info event
667             ASSERT_EQ(lastEvent.sensorType, s.type);
668             ASSERT_EQ(lastEvent.timestamp, injectedEvent.timestamp);
669             ASSERT_EQ(lastEvent.payload.get<Event::EventPayload::Tag::vec3>().x,
670                       injectedEvent.payload.get<Event::EventPayload::Tag::vec3>().x);
671             ASSERT_EQ(lastEvent.payload.get<Event::EventPayload::Tag::vec3>().y,
672                       injectedEvent.payload.get<Event::EventPayload::Tag::vec3>().y);
673             ASSERT_EQ(lastEvent.payload.get<Event::EventPayload::Tag::vec3>().z,
674                       injectedEvent.payload.get<Event::EventPayload::Tag::vec3>().z);
675             ASSERT_EQ(lastEvent.payload.get<Event::EventPayload::Tag::vec3>().status,
676                       injectedEvent.payload.get<Event::EventPayload::Tag::vec3>().status);
677         }
678     }
679 
680     ASSERT_TRUE(getSensors()->setOperationMode(ISensors::OperationMode::NORMAL).isOk());
681 }
682 
TEST_P(SensorsAidlTest,CallInitializeTwice)683 TEST_P(SensorsAidlTest, CallInitializeTwice) {
684     // Create a helper class so that a second environment is able to be instantiated
685     class SensorsAidlEnvironmentTest : public SensorsAidlEnvironment {
686       public:
687         SensorsAidlEnvironmentTest(const std::string& service_name)
688             : SensorsAidlEnvironment(service_name) {}
689     };
690 
691     if (getSensorsList().size() == 0) {
692         // No sensors
693         return;
694     }
695 
696     constexpr useconds_t kCollectionTimeoutUs = 1000 * 1000;  // 1s
697     constexpr int32_t kNumEvents = 1;
698 
699     // Create a new environment that calls initialize()
700     std::unique_ptr<SensorsAidlEnvironmentTest> newEnv =
701             std::make_unique<SensorsAidlEnvironmentTest>(GetParam());
702     newEnv->SetUp();
703     if (HasFatalFailure()) {
704         return;  // Exit early if setting up the new environment failed
705     }
706 
707     activateAllSensors(true);
708     // Verify that the old environment does not receive any events
709     EXPECT_EQ(getEnvironment()->collectEvents(kCollectionTimeoutUs, kNumEvents).size(), 0);
710     // Verify that the new event queue receives sensor events
711     EXPECT_GE(newEnv.get()->collectEvents(kCollectionTimeoutUs, kNumEvents).size(), kNumEvents);
712     activateAllSensors(false);
713 
714     // Cleanup the test environment
715     newEnv->TearDown();
716 
717     // Restore the test environment for future tests
718     getEnvironment()->TearDown();
719     getEnvironment()->SetUp();
720     if (HasFatalFailure()) {
721         return;  // Exit early if resetting the environment failed
722     }
723 
724     // Ensure that the original environment is receiving events
725     activateAllSensors(true);
726     EXPECT_GE(getEnvironment()->collectEvents(kCollectionTimeoutUs, kNumEvents).size(), kNumEvents);
727     activateAllSensors(false);
728 }
729 
TEST_P(SensorsAidlTest,CleanupConnectionsOnInitialize)730 TEST_P(SensorsAidlTest, CleanupConnectionsOnInitialize) {
731     activateAllSensors(true);
732 
733     // Verify that events are received
734     constexpr useconds_t kCollectionTimeoutUs = 1000 * 1000;  // 1s
735     constexpr int32_t kNumEvents = 1;
736     ASSERT_GE(getEnvironment()->collectEvents(kCollectionTimeoutUs, kNumEvents).size(), kNumEvents);
737 
738     // Clear the active sensor handles so they are not disabled during TearDown
739     auto handles = mSensorHandles;
740     mSensorHandles.clear();
741     getEnvironment()->TearDown();
742     getEnvironment()->SetUp();
743     if (HasFatalFailure()) {
744         return;  // Exit early if resetting the environment failed
745     }
746 
747     // Verify no events are received until sensors are re-activated
748     ASSERT_EQ(getEnvironment()->collectEvents(kCollectionTimeoutUs, kNumEvents).size(), 0);
749     activateAllSensors(true);
750     ASSERT_GE(getEnvironment()->collectEvents(kCollectionTimeoutUs, kNumEvents).size(), kNumEvents);
751 
752     // Disable sensors
753     activateAllSensors(false);
754 
755     // Restore active sensors prior to clearing the environment
756     mSensorHandles = handles;
757 }
758 
TEST_P(SensorsAidlTest,FlushSensor)759 TEST_P(SensorsAidlTest, FlushSensor) {
760     std::vector<SensorInfo> sensors = getNonOneShotSensors();
761     if (sensors.size() == 0) {
762         return;
763     }
764 
765     constexpr int32_t kFlushes = 5;
766     runSingleFlushTest(sensors, true /* activateSensor */, 1 /* expectedFlushCount */,
767                        true /* expectedResult */);
768     runFlushTest(sensors, true /* activateSensor */, kFlushes, kFlushes, true /* expectedResult */);
769 }
770 
TEST_P(SensorsAidlTest,FlushOneShotSensor)771 TEST_P(SensorsAidlTest, FlushOneShotSensor) {
772     // Find a sensor that is a one-shot sensor
773     std::vector<SensorInfo> sensors = getOneShotSensors();
774     if (sensors.size() == 0) {
775         return;
776     }
777 
778     runSingleFlushTest(sensors, true /* activateSensor */, 0 /* expectedFlushCount */,
779                        false /* expectedResult */);
780 }
781 
TEST_P(SensorsAidlTest,FlushInactiveSensor)782 TEST_P(SensorsAidlTest, FlushInactiveSensor) {
783     // Attempt to find a non-one shot sensor, then a one-shot sensor if necessary
784     std::vector<SensorInfo> sensors = getNonOneShotSensors();
785     if (sensors.size() == 0) {
786         sensors = getOneShotSensors();
787         if (sensors.size() == 0) {
788             return;
789         }
790     }
791 
792     runSingleFlushTest(sensors, false /* activateSensor */, 0 /* expectedFlushCount */,
793                        false /* expectedResult */);
794 }
795 
TEST_P(SensorsAidlTest,Batch)796 TEST_P(SensorsAidlTest, Batch) {
797     if (getSensorsList().size() == 0) {
798         return;
799     }
800 
801     activateAllSensors(false /* enable */);
802     for (const SensorInfo& sensor : getSensorsList()) {
803         SCOPED_TRACE(::testing::Message()
804                      << " handle=0x" << std::hex << std::setw(8) << std::setfill('0')
805                      << sensor.sensorHandle << std::dec << " type=" << static_cast<int>(sensor.type)
806                      << " name=" << sensor.name);
807 
808         // Call batch on inactive sensor
809         // One shot sensors have minDelay set to -1 which is an invalid
810         // parameter. Use 0 instead to avoid errors.
811         int64_t samplingPeriodNs =
812                 extractReportMode(sensor.flags) == SensorInfo::SENSOR_FLAG_BITS_ONE_SHOT_MODE
813                         ? 0
814                         : sensor.minDelayUs;
815         checkIsOk(batch(sensor.sensorHandle, samplingPeriodNs, 0 /* maxReportLatencyNs */));
816 
817         // Activate the sensor
818         activate(sensor.sensorHandle, true /* enabled */);
819 
820         // Call batch on an active sensor
821         checkIsOk(batch(sensor.sensorHandle, sensor.maxDelayUs, 0 /* maxReportLatencyNs */));
822     }
823     activateAllSensors(false /* enable */);
824 
825     // Call batch on an invalid sensor
826     SensorInfo sensor = getSensorsList().front();
827     sensor.sensorHandle = getInvalidSensorHandle();
828     ASSERT_EQ(batch(sensor.sensorHandle, sensor.minDelayUs, 0 /* maxReportLatencyNs */)
829                       .getExceptionCode(),
830               EX_ILLEGAL_ARGUMENT);
831 }
832 
TEST_P(SensorsAidlTest,Activate)833 TEST_P(SensorsAidlTest, Activate) {
834     if (getSensorsList().size() == 0) {
835         return;
836     }
837 
838     // Verify that sensor events are generated when activate is called
839     for (const SensorInfo& sensor : getSensorsList()) {
840         SCOPED_TRACE(::testing::Message()
841                      << " handle=0x" << std::hex << std::setw(8) << std::setfill('0')
842                      << sensor.sensorHandle << std::dec << " type=" << static_cast<int>(sensor.type)
843                      << " name=" << sensor.name);
844 
845         checkIsOk(batch(sensor.sensorHandle, sensor.minDelayUs, 0 /* maxReportLatencyNs */));
846         checkIsOk(activate(sensor.sensorHandle, true));
847 
848         // Call activate on a sensor that is already activated
849         checkIsOk(activate(sensor.sensorHandle, true));
850 
851         // Deactivate the sensor
852         checkIsOk(activate(sensor.sensorHandle, false));
853 
854         // Call deactivate on a sensor that is already deactivated
855         checkIsOk(activate(sensor.sensorHandle, false));
856     }
857 
858     // Attempt to activate an invalid sensor
859     int32_t invalidHandle = getInvalidSensorHandle();
860     ASSERT_EQ(activate(invalidHandle, true).getExceptionCode(), EX_ILLEGAL_ARGUMENT);
861     ASSERT_EQ(activate(invalidHandle, false).getExceptionCode(), EX_ILLEGAL_ARGUMENT);
862 }
863 
TEST_P(SensorsAidlTest,NoStaleEvents)864 TEST_P(SensorsAidlTest, NoStaleEvents) {
865     constexpr std::chrono::milliseconds kFiveHundredMs(500);
866     constexpr std::chrono::milliseconds kOneSecond(1000);
867 
868     // Register the callback to receive sensor events
869     EventCallback callback;
870     getEnvironment()->registerCallback(&callback);
871 
872     // This test is not valid for one-shot, on-change or special-report-mode sensors
873     const std::vector<SensorInfo> sensors = getNonOneShotAndNonOnChangeAndNonSpecialSensors();
874     std::chrono::milliseconds maxMinDelay(0);
875     for (const SensorInfo& sensor : sensors) {
876         std::chrono::milliseconds minDelay = duration_cast<std::chrono::milliseconds>(
877                 std::chrono::microseconds(sensor.minDelayUs));
878         maxMinDelay = std::chrono::milliseconds(std::max(maxMinDelay.count(), minDelay.count()));
879     }
880 
881     // Activate the sensors so that they start generating events
882     activateAllSensors(true);
883 
884     // According to the CDD, the first sample must be generated within 400ms + 2 * sample_time
885     // and the maximum reporting latency is 100ms + 2 * sample_time. Wait a sufficient amount
886     // of time to guarantee that a sample has arrived.
887     callback.waitForEvents(sensors, kFiveHundredMs + (5 * maxMinDelay));
888     activateAllSensors(false);
889 
890     // Save the last received event for each sensor
891     std::map<int32_t, int64_t> lastEventTimestampMap;
892     for (const SensorInfo& sensor : sensors) {
893         SCOPED_TRACE(::testing::Message()
894                      << " handle=0x" << std::hex << std::setw(8) << std::setfill('0')
895                      << sensor.sensorHandle << std::dec << " type=" << static_cast<int>(sensor.type)
896                      << " name=" << sensor.name);
897 
898         if (callback.getEvents(sensor.sensorHandle).size() >= 1) {
899             lastEventTimestampMap[sensor.sensorHandle] =
900                     callback.getEvents(sensor.sensorHandle).back().timestamp;
901         }
902     }
903 
904     // Allow some time to pass, reset the callback, then reactivate the sensors
905     usleep(duration_cast<std::chrono::microseconds>(kOneSecond + (5 * maxMinDelay)).count());
906     callback.reset();
907     activateAllSensors(true);
908     callback.waitForEvents(sensors, kFiveHundredMs + (5 * maxMinDelay));
909     activateAllSensors(false);
910 
911     getEnvironment()->unregisterCallback();
912 
913     for (const SensorInfo& sensor : sensors) {
914         SCOPED_TRACE(::testing::Message()
915                      << " handle=0x" << std::hex << std::setw(8) << std::setfill('0')
916                      << sensor.sensorHandle << std::dec << " type=" << static_cast<int>(sensor.type)
917                      << " name=" << sensor.name);
918 
919         // Skip sensors that did not previously report an event
920         if (lastEventTimestampMap.find(sensor.sensorHandle) == lastEventTimestampMap.end()) {
921             continue;
922         }
923 
924         // Ensure that the first event received is not stale by ensuring that its timestamp is
925         // sufficiently different from the previous event
926         const Event newEvent = callback.getEvents(sensor.sensorHandle).front();
927         std::chrono::milliseconds delta =
928                 duration_cast<std::chrono::milliseconds>(std::chrono::nanoseconds(
929                         newEvent.timestamp - lastEventTimestampMap[sensor.sensorHandle]));
930         std::chrono::milliseconds sensorMinDelay = duration_cast<std::chrono::milliseconds>(
931                 std::chrono::microseconds(sensor.minDelayUs));
932         ASSERT_GE(delta, kFiveHundredMs + (3 * sensorMinDelay));
933     }
934 }
935 
checkRateLevel(const SensorInfo & sensor,int32_t directChannelHandle,ISensors::RateLevel rateLevel,int32_t * reportToken)936 void SensorsAidlTest::checkRateLevel(const SensorInfo& sensor, int32_t directChannelHandle,
937                                      ISensors::RateLevel rateLevel, int32_t* reportToken) {
938     ndk::ScopedAStatus status =
939             configDirectReport(sensor.sensorHandle, directChannelHandle, rateLevel, reportToken);
940 
941     SCOPED_TRACE(::testing::Message()
942                  << " handle=0x" << std::hex << std::setw(8) << std::setfill('0')
943                  << sensor.sensorHandle << std::dec << " type=" << static_cast<int>(sensor.type)
944                  << " name=" << sensor.name);
945 
946     if (isDirectReportRateSupported(sensor, rateLevel)) {
947         ASSERT_TRUE(status.isOk());
948         if (rateLevel != ISensors::RateLevel::STOP) {
949           ASSERT_GT(*reportToken, 0);
950         }
951     } else {
952       ASSERT_EQ(status.getExceptionCode(), EX_ILLEGAL_ARGUMENT);
953     }
954 }
955 
queryDirectChannelSupport(ISensors::SharedMemInfo::SharedMemType memType,bool * supportsSharedMemType,bool * supportsAnyDirectChannel)956 void SensorsAidlTest::queryDirectChannelSupport(ISensors::SharedMemInfo::SharedMemType memType,
957                                                 bool* supportsSharedMemType,
958                                                 bool* supportsAnyDirectChannel) {
959     *supportsSharedMemType = false;
960     *supportsAnyDirectChannel = false;
961     for (const SensorInfo& curSensor : getSensorsList()) {
962         if (isDirectChannelTypeSupported(curSensor, memType)) {
963             *supportsSharedMemType = true;
964         }
965         if (isDirectChannelTypeSupported(curSensor,
966                                          ISensors::SharedMemInfo::SharedMemType::ASHMEM) ||
967             isDirectChannelTypeSupported(curSensor,
968                                          ISensors::SharedMemInfo::SharedMemType::GRALLOC)) {
969             *supportsAnyDirectChannel = true;
970         }
971 
972         if (*supportsSharedMemType && *supportsAnyDirectChannel) {
973             break;
974         }
975     }
976 }
977 
verifyRegisterDirectChannel(std::shared_ptr<SensorsAidlTestSharedMemory<SensorType,Event>> mem,int32_t * directChannelHandle,bool supportsSharedMemType,bool supportsAnyDirectChannel)978 void SensorsAidlTest::verifyRegisterDirectChannel(
979         std::shared_ptr<SensorsAidlTestSharedMemory<SensorType, Event>> mem,
980         int32_t* directChannelHandle, bool supportsSharedMemType, bool supportsAnyDirectChannel) {
981     char* buffer = mem->getBuffer();
982     size_t size = mem->getSize();
983 
984     if (supportsSharedMemType) {
985         memset(buffer, 0xff, size);
986     }
987 
988     int32_t channelHandle;
989 
990     ::ndk::ScopedAStatus status = registerDirectChannel(mem->getSharedMemInfo(), &channelHandle);
991     if (supportsSharedMemType) {
992         ASSERT_TRUE(status.isOk());
993         ASSERT_GT(channelHandle, 0);
994 
995         // Verify that the memory has been zeroed
996         for (size_t i = 0; i < mem->getSize(); i++) {
997           ASSERT_EQ(buffer[i], 0x00);
998         }
999     } else {
1000         int32_t error = supportsAnyDirectChannel ? EX_ILLEGAL_ARGUMENT : EX_UNSUPPORTED_OPERATION;
1001         ASSERT_EQ(status.getExceptionCode(), error);
1002     }
1003     *directChannelHandle = channelHandle;
1004 }
1005 
verifyUnregisterDirectChannel(int32_t * channelHandle,bool supportsAnyDirectChannel)1006 void SensorsAidlTest::verifyUnregisterDirectChannel(int32_t* channelHandle,
1007                                                     bool supportsAnyDirectChannel) {
1008     int result = supportsAnyDirectChannel ? EX_NONE : EX_UNSUPPORTED_OPERATION;
1009     ndk::ScopedAStatus status = unregisterDirectChannel(channelHandle);
1010     ASSERT_EQ(status.getExceptionCode(), result);
1011 }
1012 
verifyDirectChannel(ISensors::SharedMemInfo::SharedMemType memType)1013 void SensorsAidlTest::verifyDirectChannel(ISensors::SharedMemInfo::SharedMemType memType) {
1014     constexpr size_t kNumEvents = 1;
1015     constexpr size_t kMemSize = kNumEvents * kEventSize;
1016 
1017     std::shared_ptr<SensorsAidlTestSharedMemory<SensorType, Event>> mem(
1018             SensorsAidlTestSharedMemory<SensorType, Event>::create(memType, kMemSize));
1019     ASSERT_NE(mem, nullptr);
1020 
1021     bool supportsSharedMemType;
1022     bool supportsAnyDirectChannel;
1023     queryDirectChannelSupport(memType, &supportsSharedMemType, &supportsAnyDirectChannel);
1024 
1025     for (const SensorInfo& sensor : getSensorsList()) {
1026         int32_t directChannelHandle = 0;
1027         verifyRegisterDirectChannel(mem, &directChannelHandle, supportsSharedMemType,
1028                                     supportsAnyDirectChannel);
1029         verifyConfigure(sensor, memType, directChannelHandle, supportsAnyDirectChannel);
1030         verifyUnregisterDirectChannel(&directChannelHandle, supportsAnyDirectChannel);
1031     }
1032 }
1033 
verifyConfigure(const SensorInfo & sensor,ISensors::SharedMemInfo::SharedMemType memType,int32_t directChannelHandle,bool supportsAnyDirectChannel)1034 void SensorsAidlTest::verifyConfigure(const SensorInfo& sensor,
1035                                       ISensors::SharedMemInfo::SharedMemType memType,
1036                                       int32_t directChannelHandle, bool supportsAnyDirectChannel) {
1037     SCOPED_TRACE(::testing::Message()
1038                  << " handle=0x" << std::hex << std::setw(8) << std::setfill('0')
1039                  << sensor.sensorHandle << std::dec << " type=" << static_cast<int>(sensor.type)
1040                  << " name=" << sensor.name);
1041 
1042     int32_t reportToken = 0;
1043     if (isDirectChannelTypeSupported(sensor, memType)) {
1044         // Verify that each rate level is properly supported
1045         checkRateLevel(sensor, directChannelHandle, ISensors::RateLevel::NORMAL, &reportToken);
1046         checkRateLevel(sensor, directChannelHandle, ISensors::RateLevel::FAST, &reportToken);
1047         checkRateLevel(sensor, directChannelHandle, ISensors::RateLevel::VERY_FAST, &reportToken);
1048         checkRateLevel(sensor, directChannelHandle, ISensors::RateLevel::STOP, &reportToken);
1049 
1050         // Verify that a sensor handle of -1 is only acceptable when using RateLevel::STOP
1051         ndk::ScopedAStatus status = configDirectReport(-1 /* sensorHandle */, directChannelHandle,
1052                                                        ISensors::RateLevel::NORMAL, &reportToken);
1053         ASSERT_EQ(status.getExceptionCode(), EX_ILLEGAL_ARGUMENT);
1054 
1055         status = configDirectReport(-1 /* sensorHandle */, directChannelHandle,
1056                                     ISensors::RateLevel::STOP, &reportToken);
1057         ASSERT_TRUE(status.isOk());
1058     } else {
1059         // directChannelHandle will be -1 here, HAL should either reject it as a bad value if there
1060         // is some level of direct channel report, otherwise return INVALID_OPERATION if direct
1061         // channel is not supported at all
1062         int error = supportsAnyDirectChannel ? EX_ILLEGAL_ARGUMENT : EX_UNSUPPORTED_OPERATION;
1063         ndk::ScopedAStatus status = configDirectReport(sensor.sensorHandle, directChannelHandle,
1064                                                        ISensors::RateLevel::NORMAL, &reportToken);
1065         ASSERT_EQ(status.getExceptionCode(), error);
1066     }
1067 }
1068 
TEST_P(SensorsAidlTest,DirectChannelAshmem)1069 TEST_P(SensorsAidlTest, DirectChannelAshmem) {
1070     verifyDirectChannel(ISensors::SharedMemInfo::SharedMemType::ASHMEM);
1071 }
1072 
TEST_P(SensorsAidlTest,DirectChannelGralloc)1073 TEST_P(SensorsAidlTest, DirectChannelGralloc) {
1074     verifyDirectChannel(ISensors::SharedMemInfo::SharedMemType::GRALLOC);
1075 }
1076 
1077 GTEST_ALLOW_UNINSTANTIATED_PARAMETERIZED_TEST(SensorsAidlTest);
1078 INSTANTIATE_TEST_SUITE_P(Sensors, SensorsAidlTest,
1079                          testing::ValuesIn(android::getAidlHalInstanceNames(ISensors::descriptor)),
1080                          android::PrintInstanceNameToString);
1081 
main(int argc,char ** argv)1082 int main(int argc, char** argv) {
1083     ::testing::InitGoogleTest(&argc, argv);
1084     ProcessState::self()->setThreadPoolMaxThreadCount(1);
1085     ProcessState::self()->startThreadPool();
1086     return RUN_ALL_TESTS();
1087 }
1088