• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (C) 2019 The Android Open Source Project
3  *
4  * Licensed under the Apache License, Version 2.0 (the "License");
5  * you may not use this file except in compliance with the License.
6  * You may obtain a copy of the License at
7  *
8  *      http://www.apache.org/licenses/LICENSE-2.0
9  *
10  * Unless required by applicable law or agreed to in writing, software
11  * distributed under the License is distributed on an "AS IS" BASIS,
12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13  * See the License for the specific language governing permissions and
14  * limitations under the License.
15  */
16 #include <aidl/Gtest.h>
17 #include <aidl/Vintf.h>
18 #include <android/hardware/vibrator/BnVibratorCallback.h>
19 #include <android/hardware/vibrator/IVibrator.h>
20 #include <android/hardware/vibrator/IVibratorManager.h>
21 #include <binder/IServiceManager.h>
22 #include <binder/ProcessState.h>
23 
24 #include <cmath>
25 #include <future>
26 
27 using android::ProcessState;
28 using android::sp;
29 using android::String16;
30 using android::binder::Status;
31 using android::hardware::vibrator::ActivePwle;
32 using android::hardware::vibrator::BnVibratorCallback;
33 using android::hardware::vibrator::Braking;
34 using android::hardware::vibrator::BrakingPwle;
35 using android::hardware::vibrator::CompositeEffect;
36 using android::hardware::vibrator::CompositePrimitive;
37 using android::hardware::vibrator::Effect;
38 using android::hardware::vibrator::EffectStrength;
39 using android::hardware::vibrator::IVibrator;
40 using android::hardware::vibrator::IVibratorManager;
41 using android::hardware::vibrator::PrimitivePwle;
42 using std::chrono::high_resolution_clock;
43 
44 const std::vector<Effect> kEffects{android::enum_range<Effect>().begin(),
45                                    android::enum_range<Effect>().end()};
46 const std::vector<EffectStrength> kEffectStrengths{android::enum_range<EffectStrength>().begin(),
47                                                    android::enum_range<EffectStrength>().end()};
48 
49 const std::vector<Effect> kInvalidEffects = {
50     static_cast<Effect>(static_cast<int32_t>(kEffects.front()) - 1),
51     static_cast<Effect>(static_cast<int32_t>(kEffects.back()) + 1),
52 };
53 
54 const std::vector<EffectStrength> kInvalidEffectStrengths = {
55     static_cast<EffectStrength>(static_cast<int8_t>(kEffectStrengths.front()) - 1),
56     static_cast<EffectStrength>(static_cast<int8_t>(kEffectStrengths.back()) + 1),
57 };
58 
59 const std::vector<CompositePrimitive> kCompositePrimitives{
60     android::enum_range<CompositePrimitive>().begin(),
61     android::enum_range<CompositePrimitive>().end()};
62 
63 const std::vector<CompositePrimitive> kRequiredPrimitives = {
64         CompositePrimitive::CLICK,      CompositePrimitive::LIGHT_TICK,
65         CompositePrimitive::QUICK_RISE, CompositePrimitive::SLOW_RISE,
66         CompositePrimitive::QUICK_FALL,
67 };
68 
69 const std::vector<CompositePrimitive> kInvalidPrimitives = {
70     static_cast<CompositePrimitive>(static_cast<int32_t>(kCompositePrimitives.front()) - 1),
71     static_cast<CompositePrimitive>(static_cast<int32_t>(kCompositePrimitives.back()) + 1),
72 };
73 
74 class CompletionCallback : public BnVibratorCallback {
75   public:
CompletionCallback(const std::function<void ()> & callback)76     CompletionCallback(const std::function<void()> &callback) : mCallback(callback) {}
onComplete()77     Status onComplete() override {
78         mCallback();
79         return Status::ok();
80     }
81 
82   private:
83     std::function<void()> mCallback;
84 };
85 
86 class VibratorAidl : public testing::TestWithParam<std::tuple<int32_t, int32_t>> {
87   public:
SetUp()88     virtual void SetUp() override {
89         int32_t managerIdx = std::get<0>(GetParam());
90         int32_t vibratorId = std::get<1>(GetParam());
91         auto managerAidlNames = android::getAidlHalInstanceNames(IVibratorManager::descriptor);
92 
93         if (managerIdx < 0) {
94             // Testing a unmanaged vibrator, using vibratorId as index from registered HALs
95             auto vibratorAidlNames = android::getAidlHalInstanceNames(IVibrator::descriptor);
96             ASSERT_LT(vibratorId, vibratorAidlNames.size());
97             auto vibratorName = String16(vibratorAidlNames[vibratorId].c_str());
98             vibrator = android::waitForDeclaredService<IVibrator>(vibratorName);
99         } else {
100             // Testing a managed vibrator, using vibratorId to retrieve it from the manager
101             ASSERT_LT(managerIdx, managerAidlNames.size());
102             auto managerName = String16(managerAidlNames[managerIdx].c_str());
103             auto vibratorManager = android::waitForDeclaredService<IVibratorManager>(managerName);
104             auto vibratorResult = vibratorManager->getVibrator(vibratorId, &vibrator);
105             ASSERT_TRUE(vibratorResult.isOk());
106         }
107 
108         ASSERT_NE(vibrator, nullptr);
109         ASSERT_TRUE(vibrator->getCapabilities(&capabilities).isOk());
110     }
111 
112     sp<IVibrator> vibrator;
113     int32_t capabilities;
114 };
115 
isUnknownOrUnsupported(Status status)116 inline bool isUnknownOrUnsupported(Status status) {
117     return status.exceptionCode() == Status::EX_UNSUPPORTED_OPERATION ||
118            status.transactionError() == android::UNKNOWN_TRANSACTION;
119 }
120 
getResonantFrequencyHz(sp<IVibrator> vibrator,int32_t capabilities)121 static float getResonantFrequencyHz(sp<IVibrator> vibrator, int32_t capabilities) {
122     float resonantFrequencyHz;
123     Status status = vibrator->getResonantFrequency(&resonantFrequencyHz);
124     if (capabilities & IVibrator::CAP_GET_RESONANT_FREQUENCY) {
125         EXPECT_GT(resonantFrequencyHz, 0);
126         EXPECT_EQ(status.exceptionCode(), Status::EX_NONE);
127     } else {
128         EXPECT_TRUE(isUnknownOrUnsupported(status)) << status;
129     }
130     return resonantFrequencyHz;
131 }
132 
getFrequencyResolutionHz(sp<IVibrator> vibrator,int32_t capabilities)133 static float getFrequencyResolutionHz(sp<IVibrator> vibrator, int32_t capabilities) {
134     float freqResolutionHz;
135     Status status = vibrator->getFrequencyResolution(&freqResolutionHz);
136     if (capabilities & IVibrator::CAP_FREQUENCY_CONTROL) {
137         EXPECT_GT(freqResolutionHz, 0);
138         EXPECT_EQ(status.exceptionCode(), Status::EX_NONE);
139     } else {
140         EXPECT_TRUE(isUnknownOrUnsupported(status)) << status;
141     }
142     return freqResolutionHz;
143 }
144 
getFrequencyMinimumHz(sp<IVibrator> vibrator,int32_t capabilities)145 static float getFrequencyMinimumHz(sp<IVibrator> vibrator, int32_t capabilities) {
146     float freqMinimumHz;
147     Status status = vibrator->getFrequencyMinimum(&freqMinimumHz);
148     if (capabilities & IVibrator::CAP_FREQUENCY_CONTROL) {
149         EXPECT_EQ(status.exceptionCode(), Status::EX_NONE);
150 
151         float resonantFrequencyHz = getResonantFrequencyHz(vibrator, capabilities);
152 
153         EXPECT_GT(freqMinimumHz, 0);
154         EXPECT_LE(freqMinimumHz, resonantFrequencyHz);
155     } else {
156         EXPECT_TRUE(isUnknownOrUnsupported(status)) << status;
157     }
158     return freqMinimumHz;
159 }
160 
getFrequencyMaximumHz(sp<IVibrator> vibrator,int32_t capabilities)161 static float getFrequencyMaximumHz(sp<IVibrator> vibrator, int32_t capabilities) {
162     std::vector<float> bandwidthAmplitudeMap;
163     Status status = vibrator->getBandwidthAmplitudeMap(&bandwidthAmplitudeMap);
164     if (capabilities & IVibrator::CAP_FREQUENCY_CONTROL) {
165         EXPECT_EQ(status.exceptionCode(), Status::EX_NONE);
166     } else {
167         EXPECT_TRUE(isUnknownOrUnsupported(status)) << status;
168     }
169 
170     float freqMaximumHz = ((bandwidthAmplitudeMap.size() - 1) *
171                            getFrequencyResolutionHz(vibrator, capabilities)) +
172                           getFrequencyMinimumHz(vibrator, capabilities);
173     return freqMaximumHz;
174 }
175 
getAmplitudeMin()176 static float getAmplitudeMin() {
177     return 0.0;
178 }
179 
getAmplitudeMax()180 static float getAmplitudeMax() {
181     return 1.0;
182 }
183 
composeValidActivePwle(sp<IVibrator> vibrator,int32_t capabilities)184 static ActivePwle composeValidActivePwle(sp<IVibrator> vibrator, int32_t capabilities) {
185     float frequencyHz;
186     if (capabilities & IVibrator::CAP_GET_RESONANT_FREQUENCY) {
187         frequencyHz = getResonantFrequencyHz(vibrator, capabilities);
188     } else if (capabilities & IVibrator::CAP_FREQUENCY_CONTROL) {
189         frequencyHz = getFrequencyMinimumHz(vibrator, capabilities);
190     } else {
191         frequencyHz = 150.0;  // default value commonly used
192     }
193 
194     ActivePwle active;
195     active.startAmplitude = (getAmplitudeMin() + getAmplitudeMax()) / 2;
196     active.startFrequency = frequencyHz;
197     active.endAmplitude = (getAmplitudeMin() + getAmplitudeMax()) / 2;
198     active.endFrequency = frequencyHz;
199     vibrator->getPwlePrimitiveDurationMax(&(active.duration));
200 
201     return active;
202 }
203 
TEST_P(VibratorAidl,OnThenOffBeforeTimeout)204 TEST_P(VibratorAidl, OnThenOffBeforeTimeout) {
205     EXPECT_TRUE(vibrator->on(2000, nullptr /*callback*/).isOk());
206     sleep(1);
207     EXPECT_TRUE(vibrator->off().isOk());
208 }
209 
TEST_P(VibratorAidl,OnWithCallback)210 TEST_P(VibratorAidl, OnWithCallback) {
211     if (!(capabilities & IVibrator::CAP_ON_CALLBACK))
212         return;
213 
214     std::promise<void> completionPromise;
215     std::future<void> completionFuture{completionPromise.get_future()};
216     sp<CompletionCallback> callback =
217         new CompletionCallback([&completionPromise] { completionPromise.set_value(); });
218     uint32_t durationMs = 250;
219     std::chrono::milliseconds timeout{durationMs * 2};
220     EXPECT_TRUE(vibrator->on(durationMs, callback).isOk());
221     EXPECT_EQ(completionFuture.wait_for(timeout), std::future_status::ready);
222     EXPECT_TRUE(vibrator->off().isOk());
223 }
224 
TEST_P(VibratorAidl,OnCallbackNotSupported)225 TEST_P(VibratorAidl, OnCallbackNotSupported) {
226     if (!(capabilities & IVibrator::CAP_ON_CALLBACK)) {
227         sp<CompletionCallback> callback = new CompletionCallback([] {});
228         Status status = vibrator->on(250, callback);
229         EXPECT_TRUE(isUnknownOrUnsupported(status)) << status;
230     }
231 }
232 
TEST_P(VibratorAidl,ValidateEffect)233 TEST_P(VibratorAidl, ValidateEffect) {
234     std::vector<Effect> supported;
235     ASSERT_TRUE(vibrator->getSupportedEffects(&supported).isOk());
236 
237     for (Effect effect : kEffects) {
238         bool isEffectSupported =
239             std::find(supported.begin(), supported.end(), effect) != supported.end();
240 
241         for (EffectStrength strength : kEffectStrengths) {
242             int32_t lengthMs = 0;
243             Status status = vibrator->perform(effect, strength, nullptr /*callback*/, &lengthMs);
244 
245             if (isEffectSupported) {
246                 EXPECT_TRUE(status.isOk()) << toString(effect) << " " << toString(strength);
247                 EXPECT_GT(lengthMs, 0);
248                 usleep(lengthMs * 1000);
249             } else {
250                 EXPECT_TRUE(isUnknownOrUnsupported(status))
251                         << status << " " << toString(effect) << " " << toString(strength);
252             }
253         }
254     }
255 }
256 
TEST_P(VibratorAidl,ValidateEffectWithCallback)257 TEST_P(VibratorAidl, ValidateEffectWithCallback) {
258     if (!(capabilities & IVibrator::CAP_PERFORM_CALLBACK))
259         return;
260 
261     std::vector<Effect> supported;
262     ASSERT_TRUE(vibrator->getSupportedEffects(&supported).isOk());
263 
264     for (Effect effect : kEffects) {
265         bool isEffectSupported =
266             std::find(supported.begin(), supported.end(), effect) != supported.end();
267 
268         for (EffectStrength strength : kEffectStrengths) {
269             std::promise<void> completionPromise;
270             std::future<void> completionFuture{completionPromise.get_future()};
271             sp<CompletionCallback> callback =
272                 new CompletionCallback([&completionPromise] { completionPromise.set_value(); });
273             int lengthMs = 0;
274             Status status = vibrator->perform(effect, strength, callback, &lengthMs);
275 
276             if (isEffectSupported) {
277                 EXPECT_TRUE(status.isOk());
278                 EXPECT_GT(lengthMs, 0);
279             } else {
280                 EXPECT_TRUE(isUnknownOrUnsupported(status)) << status;
281             }
282 
283             if (!status.isOk())
284                 continue;
285 
286             //TODO(b/187207798): revert back to conservative timeout values once
287             //latencies have been fixed
288             std::chrono::milliseconds timeout{lengthMs * 8};
289             EXPECT_EQ(completionFuture.wait_for(timeout), std::future_status::ready);
290         }
291     }
292 }
293 
TEST_P(VibratorAidl,ValidateEffectWithCallbackNotSupported)294 TEST_P(VibratorAidl, ValidateEffectWithCallbackNotSupported) {
295     if (capabilities & IVibrator::CAP_PERFORM_CALLBACK)
296         return;
297 
298     for (Effect effect : kEffects) {
299         for (EffectStrength strength : kEffectStrengths) {
300             sp<CompletionCallback> callback = new CompletionCallback([] {});
301             int lengthMs;
302             Status status = vibrator->perform(effect, strength, callback, &lengthMs);
303             EXPECT_TRUE(isUnknownOrUnsupported(status)) << status;
304         }
305     }
306 }
307 
TEST_P(VibratorAidl,InvalidEffectsUnsupported)308 TEST_P(VibratorAidl, InvalidEffectsUnsupported) {
309     for (Effect effect : kInvalidEffects) {
310         for (EffectStrength strength : kEffectStrengths) {
311             int32_t lengthMs;
312             Status status = vibrator->perform(effect, strength, nullptr /*callback*/, &lengthMs);
313             EXPECT_TRUE(isUnknownOrUnsupported(status))
314                     << status << toString(effect) << " " << toString(strength);
315         }
316     }
317     for (Effect effect : kEffects) {
318         for (EffectStrength strength : kInvalidEffectStrengths) {
319             int32_t lengthMs;
320             Status status = vibrator->perform(effect, strength, nullptr /*callback*/, &lengthMs);
321             EXPECT_TRUE(isUnknownOrUnsupported(status))
322                     << status << " " << toString(effect) << " " << toString(strength);
323         }
324     }
325 }
326 
TEST_P(VibratorAidl,ChangeVibrationAmplitude)327 TEST_P(VibratorAidl, ChangeVibrationAmplitude) {
328     if (capabilities & IVibrator::CAP_AMPLITUDE_CONTROL) {
329         EXPECT_EQ(Status::EX_NONE, vibrator->setAmplitude(0.1f).exceptionCode());
330         EXPECT_TRUE(vibrator->on(2000, nullptr /*callback*/).isOk());
331         EXPECT_EQ(Status::EX_NONE, vibrator->setAmplitude(0.5f).exceptionCode());
332         sleep(1);
333         EXPECT_EQ(Status::EX_NONE, vibrator->setAmplitude(1.0f).exceptionCode());
334         sleep(1);
335         EXPECT_TRUE(vibrator->off().isOk());
336     }
337 }
338 
TEST_P(VibratorAidl,AmplitudeOutsideRangeFails)339 TEST_P(VibratorAidl, AmplitudeOutsideRangeFails) {
340     if (capabilities & IVibrator::CAP_AMPLITUDE_CONTROL) {
341         EXPECT_EQ(Status::EX_ILLEGAL_ARGUMENT, vibrator->setAmplitude(-1).exceptionCode());
342         EXPECT_EQ(Status::EX_ILLEGAL_ARGUMENT, vibrator->setAmplitude(0).exceptionCode());
343         EXPECT_EQ(Status::EX_ILLEGAL_ARGUMENT, vibrator->setAmplitude(1.1).exceptionCode());
344     }
345 }
346 
TEST_P(VibratorAidl,AmplitudeReturnsUnsupportedMatchingCapabilities)347 TEST_P(VibratorAidl, AmplitudeReturnsUnsupportedMatchingCapabilities) {
348     if ((capabilities & IVibrator::CAP_AMPLITUDE_CONTROL) == 0) {
349         Status status = vibrator->setAmplitude(1);
350         EXPECT_TRUE(isUnknownOrUnsupported(status)) << status;
351     }
352 }
353 
TEST_P(VibratorAidl,ChangeVibrationExternalControl)354 TEST_P(VibratorAidl, ChangeVibrationExternalControl) {
355     if (capabilities & IVibrator::CAP_EXTERNAL_CONTROL) {
356         EXPECT_TRUE(vibrator->setExternalControl(true).isOk());
357         sleep(1);
358         EXPECT_TRUE(vibrator->setExternalControl(false).isOk());
359         sleep(1);
360     }
361 }
362 
TEST_P(VibratorAidl,ExternalAmplitudeControl)363 TEST_P(VibratorAidl, ExternalAmplitudeControl) {
364     const bool supportsExternalAmplitudeControl =
365         (capabilities & IVibrator::CAP_EXTERNAL_AMPLITUDE_CONTROL) > 0;
366 
367     if (capabilities & IVibrator::CAP_EXTERNAL_CONTROL) {
368         EXPECT_TRUE(vibrator->setExternalControl(true).isOk());
369 
370         Status amplitudeStatus = vibrator->setAmplitude(0.5);
371         if (supportsExternalAmplitudeControl) {
372             EXPECT_TRUE(amplitudeStatus.isOk());
373         } else {
374             EXPECT_TRUE(isUnknownOrUnsupported(amplitudeStatus)) << amplitudeStatus;
375         }
376         EXPECT_TRUE(vibrator->setExternalControl(false).isOk());
377     } else {
378         EXPECT_FALSE(supportsExternalAmplitudeControl);
379     }
380 }
381 
TEST_P(VibratorAidl,ExternalControlUnsupportedMatchingCapabilities)382 TEST_P(VibratorAidl, ExternalControlUnsupportedMatchingCapabilities) {
383     if ((capabilities & IVibrator::CAP_EXTERNAL_CONTROL) == 0) {
384         Status status = vibrator->setExternalControl(true);
385         EXPECT_TRUE(isUnknownOrUnsupported(status)) << status;
386     }
387 }
388 
TEST_P(VibratorAidl,GetSupportedPrimitives)389 TEST_P(VibratorAidl, GetSupportedPrimitives) {
390     if (capabilities & IVibrator::CAP_COMPOSE_EFFECTS) {
391         std::vector<CompositePrimitive> supported;
392 
393         EXPECT_EQ(Status::EX_NONE, vibrator->getSupportedPrimitives(&supported).exceptionCode());
394 
395         for (auto primitive : kCompositePrimitives) {
396             bool isPrimitiveSupported =
397                 std::find(supported.begin(), supported.end(), primitive) != supported.end();
398             bool isPrimitiveRequired =
399                     std::find(kRequiredPrimitives.begin(), kRequiredPrimitives.end(), primitive) !=
400                     kRequiredPrimitives.end();
401 
402             EXPECT_TRUE(isPrimitiveSupported || !isPrimitiveRequired) << toString(primitive);
403         }
404     }
405 }
406 
TEST_P(VibratorAidl,GetPrimitiveDuration)407 TEST_P(VibratorAidl, GetPrimitiveDuration) {
408     if (capabilities & IVibrator::CAP_COMPOSE_EFFECTS) {
409         std::vector<CompositePrimitive> supported;
410         ASSERT_TRUE(vibrator->getSupportedPrimitives(&supported).isOk());
411 
412         for (auto primitive : kCompositePrimitives) {
413             bool isPrimitiveSupported =
414                 std::find(supported.begin(), supported.end(), primitive) != supported.end();
415             int32_t duration;
416 
417             Status status = vibrator->getPrimitiveDuration(primitive, &duration);
418 
419             if (isPrimitiveSupported) {
420                 EXPECT_EQ(Status::EX_NONE, status.exceptionCode());
421                 if (primitive != CompositePrimitive::NOOP) {
422                     ASSERT_GT(duration, 0) << toString(primitive) << " " << duration;
423                 }
424             } else {
425                 EXPECT_TRUE(isUnknownOrUnsupported(status)) << status;
426             }
427         }
428     }
429 }
430 
TEST_P(VibratorAidl,ComposeValidPrimitives)431 TEST_P(VibratorAidl, ComposeValidPrimitives) {
432     if (capabilities & IVibrator::CAP_COMPOSE_EFFECTS) {
433         std::vector<CompositePrimitive> supported;
434         int32_t maxDelay, maxSize;
435 
436         ASSERT_TRUE(vibrator->getSupportedPrimitives(&supported).isOk());
437         EXPECT_EQ(Status::EX_NONE, vibrator->getCompositionDelayMax(&maxDelay).exceptionCode());
438         EXPECT_EQ(Status::EX_NONE, vibrator->getCompositionSizeMax(&maxSize).exceptionCode());
439 
440         std::vector<CompositeEffect> composite;
441 
442         for (auto primitive : supported) {
443             CompositeEffect effect;
444 
445             effect.delayMs = std::rand() % (maxDelay + 1);
446             effect.primitive = primitive;
447             effect.scale = static_cast<float>(std::rand()) / static_cast<float>(RAND_MAX);
448             composite.emplace_back(effect);
449 
450             if (composite.size() == maxSize) {
451                 EXPECT_EQ(Status::EX_NONE, vibrator->compose(composite, nullptr).exceptionCode());
452                 composite.clear();
453                 vibrator->off();
454             }
455         }
456 
457         if (composite.size() != 0) {
458             EXPECT_EQ(Status::EX_NONE, vibrator->compose(composite, nullptr).exceptionCode());
459             vibrator->off();
460         }
461     }
462 }
463 
TEST_P(VibratorAidl,ComposeUnsupportedPrimitives)464 TEST_P(VibratorAidl, ComposeUnsupportedPrimitives) {
465     if (capabilities & IVibrator::CAP_COMPOSE_EFFECTS) {
466         auto unsupported = kInvalidPrimitives;
467         std::vector<CompositePrimitive> supported;
468 
469         ASSERT_TRUE(vibrator->getSupportedPrimitives(&supported).isOk());
470 
471         for (auto primitive : kCompositePrimitives) {
472             bool isPrimitiveSupported =
473                 std::find(supported.begin(), supported.end(), primitive) != supported.end();
474 
475             if (!isPrimitiveSupported) {
476                 unsupported.push_back(primitive);
477             }
478         }
479 
480         for (auto primitive : unsupported) {
481             std::vector<CompositeEffect> composite(1);
482 
483             for (auto &effect : composite) {
484                 effect.delayMs = 0;
485                 effect.primitive = primitive;
486                 effect.scale = 1.0f;
487             }
488             Status status = vibrator->compose(composite, nullptr);
489             EXPECT_TRUE(isUnknownOrUnsupported(status)) << status;
490             vibrator->off();
491         }
492     }
493 }
494 
TEST_P(VibratorAidl,ComposeScaleBoundary)495 TEST_P(VibratorAidl, ComposeScaleBoundary) {
496     if (capabilities & IVibrator::CAP_COMPOSE_EFFECTS) {
497         std::vector<CompositeEffect> composite(1);
498         CompositeEffect &effect = composite[0];
499 
500         effect.delayMs = 0;
501         effect.primitive = CompositePrimitive::CLICK;
502 
503         effect.scale = std::nextafter(0.0f, -1.0f);
504         EXPECT_EQ(Status::EX_ILLEGAL_ARGUMENT,
505                   vibrator->compose(composite, nullptr).exceptionCode());
506 
507         effect.scale = 0.0f;
508         EXPECT_EQ(Status::EX_NONE, vibrator->compose(composite, nullptr).exceptionCode());
509 
510         effect.scale = 1.0f;
511         EXPECT_EQ(Status::EX_NONE, vibrator->compose(composite, nullptr).exceptionCode());
512 
513         effect.scale = std::nextafter(1.0f, 2.0f);
514         EXPECT_EQ(Status::EX_ILLEGAL_ARGUMENT,
515                   vibrator->compose(composite, nullptr).exceptionCode());
516 
517         vibrator->off();
518     }
519 }
520 
TEST_P(VibratorAidl,ComposeDelayBoundary)521 TEST_P(VibratorAidl, ComposeDelayBoundary) {
522     if (capabilities & IVibrator::CAP_COMPOSE_EFFECTS) {
523         int32_t maxDelay;
524 
525         EXPECT_EQ(Status::EX_NONE, vibrator->getCompositionDelayMax(&maxDelay).exceptionCode());
526 
527         std::vector<CompositeEffect> composite(1);
528         CompositeEffect effect;
529 
530         effect.delayMs = 1;
531         effect.primitive = CompositePrimitive::CLICK;
532         effect.scale = 1.0f;
533 
534         std::fill(composite.begin(), composite.end(), effect);
535         EXPECT_EQ(Status::EX_NONE, vibrator->compose(composite, nullptr).exceptionCode());
536 
537         effect.delayMs = maxDelay + 1;
538 
539         std::fill(composite.begin(), composite.end(), effect);
540         EXPECT_EQ(Status::EX_ILLEGAL_ARGUMENT,
541                   vibrator->compose(composite, nullptr).exceptionCode());
542         vibrator->off();
543     }
544 }
545 
TEST_P(VibratorAidl,ComposeSizeBoundary)546 TEST_P(VibratorAidl, ComposeSizeBoundary) {
547     if (capabilities & IVibrator::CAP_COMPOSE_EFFECTS) {
548         int32_t maxSize;
549 
550         EXPECT_EQ(Status::EX_NONE, vibrator->getCompositionSizeMax(&maxSize).exceptionCode());
551 
552         std::vector<CompositeEffect> composite(maxSize);
553         CompositeEffect effect;
554 
555         effect.delayMs = 1;
556         effect.primitive = CompositePrimitive::CLICK;
557         effect.scale = 1.0f;
558 
559         std::fill(composite.begin(), composite.end(), effect);
560         EXPECT_EQ(Status::EX_NONE, vibrator->compose(composite, nullptr).exceptionCode());
561 
562         composite.emplace_back(effect);
563         EXPECT_EQ(Status::EX_ILLEGAL_ARGUMENT,
564                   vibrator->compose(composite, nullptr).exceptionCode());
565         vibrator->off();
566     }
567 }
568 
TEST_P(VibratorAidl,ComposeCallback)569 TEST_P(VibratorAidl, ComposeCallback) {
570     if (capabilities & IVibrator::CAP_COMPOSE_EFFECTS) {
571         std::vector<CompositePrimitive> supported;
572 
573         ASSERT_TRUE(vibrator->getSupportedPrimitives(&supported).isOk());
574 
575         for (auto primitive : supported) {
576             if (primitive == CompositePrimitive::NOOP) {
577                 continue;
578             }
579 
580             std::promise<void> completionPromise;
581             std::future<void> completionFuture{completionPromise.get_future()};
582             sp<CompletionCallback> callback =
583                 new CompletionCallback([&completionPromise] { completionPromise.set_value(); });
584             CompositeEffect effect;
585             std::vector<CompositeEffect> composite;
586             int32_t durationMs;
587             std::chrono::milliseconds duration;
588             std::chrono::time_point<high_resolution_clock> start, end;
589             std::chrono::milliseconds elapsed;
590 
591             effect.delayMs = 0;
592             effect.primitive = primitive;
593             effect.scale = 1.0f;
594             composite.emplace_back(effect);
595 
596             EXPECT_EQ(Status::EX_NONE,
597                       vibrator->getPrimitiveDuration(primitive, &durationMs).exceptionCode())
598                 << toString(primitive);
599             duration = std::chrono::milliseconds(durationMs);
600 
601             start = high_resolution_clock::now();
602             EXPECT_EQ(Status::EX_NONE, vibrator->compose(composite, callback).exceptionCode())
603                 << toString(primitive);
604 
605             // TODO(b/261130361): Investigate why latency from driver and hardware will cause test
606             // to fail when wait duration is ~40ms or less.
607             EXPECT_EQ(completionFuture.wait_for(duration + std::chrono::milliseconds(50)),
608                       std::future_status::ready)
609                     << toString(primitive);
610             end = high_resolution_clock::now();
611 
612             elapsed = std::chrono::duration_cast<std::chrono::milliseconds>(end - start);
613             EXPECT_GE(elapsed.count(), duration.count()) << toString(primitive);
614         }
615     }
616 }
617 
TEST_P(VibratorAidl,AlwaysOn)618 TEST_P(VibratorAidl, AlwaysOn) {
619     if (capabilities & IVibrator::CAP_ALWAYS_ON_CONTROL) {
620         std::vector<Effect> supported;
621         ASSERT_TRUE(vibrator->getSupportedAlwaysOnEffects(&supported).isOk());
622 
623         for (Effect effect : kEffects) {
624             bool isEffectSupported =
625                 std::find(supported.begin(), supported.end(), effect) != supported.end();
626 
627             for (EffectStrength strength : kEffectStrengths) {
628                 Status status = vibrator->alwaysOnEnable(0, effect, strength);
629 
630                 if (isEffectSupported) {
631                     EXPECT_EQ(Status::EX_NONE, status.exceptionCode())
632                         << toString(effect) << " " << toString(strength);
633                 } else {
634                     EXPECT_TRUE(isUnknownOrUnsupported(status))
635                             << status << " " << toString(effect) << " " << toString(strength);
636                 }
637             }
638         }
639 
640         EXPECT_EQ(Status::EX_NONE, vibrator->alwaysOnDisable(0).exceptionCode());
641     }
642 }
643 
TEST_P(VibratorAidl,GetResonantFrequency)644 TEST_P(VibratorAidl, GetResonantFrequency) {
645     getResonantFrequencyHz(vibrator, capabilities);
646 }
647 
TEST_P(VibratorAidl,GetQFactor)648 TEST_P(VibratorAidl, GetQFactor) {
649     float qFactor;
650     Status status = vibrator->getQFactor(&qFactor);
651     if (capabilities & IVibrator::CAP_GET_Q_FACTOR) {
652         ASSERT_GT(qFactor, 0);
653         EXPECT_EQ(status.exceptionCode(), Status::EX_NONE);
654     } else {
655         EXPECT_TRUE(isUnknownOrUnsupported(status)) << status;
656     }
657 }
658 
TEST_P(VibratorAidl,GetFrequencyResolution)659 TEST_P(VibratorAidl, GetFrequencyResolution) {
660     getFrequencyResolutionHz(vibrator, capabilities);
661 }
662 
TEST_P(VibratorAidl,GetFrequencyMinimum)663 TEST_P(VibratorAidl, GetFrequencyMinimum) {
664     getFrequencyMinimumHz(vibrator, capabilities);
665 }
666 
TEST_P(VibratorAidl,GetBandwidthAmplitudeMap)667 TEST_P(VibratorAidl, GetBandwidthAmplitudeMap) {
668     std::vector<float> bandwidthAmplitudeMap;
669     Status status = vibrator->getBandwidthAmplitudeMap(&bandwidthAmplitudeMap);
670     if (capabilities & IVibrator::CAP_FREQUENCY_CONTROL) {
671         EXPECT_EQ(status.exceptionCode(), Status::EX_NONE);
672         ASSERT_FALSE(bandwidthAmplitudeMap.empty());
673 
674         int minMapSize = (getResonantFrequencyHz(vibrator, capabilities) -
675                           getFrequencyMinimumHz(vibrator, capabilities)) /
676                          getFrequencyResolutionHz(vibrator, capabilities);
677         ASSERT_GT(bandwidthAmplitudeMap.size(), minMapSize);
678 
679         for (float e : bandwidthAmplitudeMap) {
680             ASSERT_GE(e, 0.0);
681             ASSERT_LE(e, 1.0);
682         }
683     } else {
684         EXPECT_TRUE(isUnknownOrUnsupported(status)) << status;
685     }
686 }
687 
TEST_P(VibratorAidl,GetPwlePrimitiveDurationMax)688 TEST_P(VibratorAidl, GetPwlePrimitiveDurationMax) {
689     int32_t durationMs;
690     Status status = vibrator->getPwlePrimitiveDurationMax(&durationMs);
691     if (capabilities & IVibrator::CAP_COMPOSE_PWLE_EFFECTS) {
692         ASSERT_NE(durationMs, 0);
693         EXPECT_EQ(status.exceptionCode(), Status::EX_NONE);
694     } else {
695         EXPECT_TRUE(isUnknownOrUnsupported(status)) << status;
696     }
697 }
698 
TEST_P(VibratorAidl,GetPwleCompositionSizeMax)699 TEST_P(VibratorAidl, GetPwleCompositionSizeMax) {
700     int32_t maxSize;
701     Status status = vibrator->getPwleCompositionSizeMax(&maxSize);
702     if (capabilities & IVibrator::CAP_COMPOSE_PWLE_EFFECTS) {
703         ASSERT_NE(maxSize, 0);
704         EXPECT_EQ(status.exceptionCode(), Status::EX_NONE);
705     } else {
706         EXPECT_TRUE(isUnknownOrUnsupported(status)) << status;
707     }
708 }
709 
TEST_P(VibratorAidl,GetSupportedBraking)710 TEST_P(VibratorAidl, GetSupportedBraking) {
711     std::vector<Braking> supported;
712     Status status = vibrator->getSupportedBraking(&supported);
713     if (capabilities & IVibrator::CAP_COMPOSE_PWLE_EFFECTS) {
714         bool isDefaultNoneSupported =
715             std::find(supported.begin(), supported.end(), Braking::NONE) != supported.end();
716         ASSERT_TRUE(isDefaultNoneSupported);
717         EXPECT_EQ(status.exceptionCode(), Status::EX_NONE);
718     } else {
719         EXPECT_TRUE(isUnknownOrUnsupported(status)) << status;
720     }
721 }
722 
TEST_P(VibratorAidl,ComposeValidPwle)723 TEST_P(VibratorAidl, ComposeValidPwle) {
724     if (capabilities & IVibrator::CAP_COMPOSE_PWLE_EFFECTS) {
725         ActivePwle firstActive = composeValidActivePwle(vibrator, capabilities);
726 
727         std::vector<Braking> supported;
728         ASSERT_TRUE(vibrator->getSupportedBraking(&supported).isOk());
729         bool isClabSupported =
730             std::find(supported.begin(), supported.end(), Braking::CLAB) != supported.end();
731         BrakingPwle firstBraking;
732         firstBraking.braking = isClabSupported ? Braking::CLAB : Braking::NONE;
733         firstBraking.duration = 100;
734 
735         ActivePwle secondActive = composeValidActivePwle(vibrator, capabilities);
736         if (capabilities & IVibrator::CAP_FREQUENCY_CONTROL) {
737             float minFrequencyHz = getFrequencyMinimumHz(vibrator, capabilities);
738             float maxFrequencyHz = getFrequencyMaximumHz(vibrator, capabilities);
739             float freqResolutionHz = getFrequencyResolutionHz(vibrator, capabilities);
740             secondActive.startFrequency = minFrequencyHz + (freqResolutionHz / 2.0f);
741             secondActive.endFrequency = maxFrequencyHz - (freqResolutionHz / 3.0f);
742         }
743         BrakingPwle secondBraking;
744         secondBraking.braking = Braking::NONE;
745         secondBraking.duration = 10;
746 
747         auto pwleQueue =
748             std::vector<PrimitivePwle>{firstActive, firstBraking, secondActive, secondBraking};
749 
750         EXPECT_EQ(Status::EX_NONE, vibrator->composePwle(pwleQueue, nullptr).exceptionCode());
751         EXPECT_TRUE(vibrator->off().isOk());
752     }
753 }
754 
TEST_P(VibratorAidl,ComposeValidPwleWithCallback)755 TEST_P(VibratorAidl, ComposeValidPwleWithCallback) {
756     if (!((capabilities & IVibrator::CAP_ON_CALLBACK) &&
757           (capabilities & IVibrator::CAP_COMPOSE_PWLE_EFFECTS)))
758         return;
759 
760     std::promise<void> completionPromise;
761     std::future<void> completionFuture{completionPromise.get_future()};
762     sp<CompletionCallback> callback =
763         new CompletionCallback([&completionPromise] { completionPromise.set_value(); });
764     int32_t segmentDurationMaxMs;
765     vibrator->getPwlePrimitiveDurationMax(&segmentDurationMaxMs);
766     uint32_t durationMs = segmentDurationMaxMs * 2 + 100;  // Sum of 2 active and 1 braking below
767     //TODO(b/187207798): revert back to conservative timeout values once
768     //latencies have been fixed
769     std::chrono::milliseconds timeout{durationMs * 4};
770 
771     ActivePwle active = composeValidActivePwle(vibrator, capabilities);
772 
773     std::vector<Braking> supported;
774     ASSERT_TRUE(vibrator->getSupportedBraking(&supported).isOk());
775     bool isClabSupported =
776         std::find(supported.begin(), supported.end(), Braking::CLAB) != supported.end();
777     BrakingPwle braking;
778     braking.braking = isClabSupported ? Braking::CLAB : Braking::NONE;
779     braking.duration = 100;
780 
781     auto pwleQueue = std::vector<PrimitivePwle>{active, braking, active};
782 
783     EXPECT_TRUE(vibrator->composePwle(pwleQueue, callback).isOk());
784     EXPECT_EQ(completionFuture.wait_for(timeout), std::future_status::ready);
785     EXPECT_TRUE(vibrator->off().isOk());
786 }
787 
TEST_P(VibratorAidl,ComposePwleSegmentBoundary)788 TEST_P(VibratorAidl, ComposePwleSegmentBoundary) {
789     if (capabilities & IVibrator::CAP_COMPOSE_PWLE_EFFECTS) {
790         std::vector<PrimitivePwle> pwleQueue;
791         // test empty queue
792         EXPECT_EQ(Status::EX_ILLEGAL_ARGUMENT,
793                   vibrator->composePwle(pwleQueue, nullptr).exceptionCode());
794         EXPECT_TRUE(vibrator->off().isOk());
795 
796         ActivePwle active = composeValidActivePwle(vibrator, capabilities);
797 
798         PrimitivePwle pwle;
799         pwle = active;
800         int segmentCountMax;
801         vibrator->getPwleCompositionSizeMax(&segmentCountMax);
802 
803         // Create PWLE queue with more segments than allowed
804         for (int i = 0; i < segmentCountMax + 10; i++) {
805             pwleQueue.emplace_back(std::move(pwle));
806         }
807 
808         EXPECT_EQ(Status::EX_ILLEGAL_ARGUMENT,
809                   vibrator->composePwle(pwleQueue, nullptr).exceptionCode());
810         EXPECT_TRUE(vibrator->off().isOk());
811     }
812 }
813 
TEST_P(VibratorAidl,ComposePwleAmplitudeParameterBoundary)814 TEST_P(VibratorAidl, ComposePwleAmplitudeParameterBoundary) {
815     if (capabilities & IVibrator::CAP_COMPOSE_PWLE_EFFECTS) {
816         ActivePwle active = composeValidActivePwle(vibrator, capabilities);
817         active.startAmplitude = getAmplitudeMax() + 1.0;  // Amplitude greater than allowed
818         active.endAmplitude = getAmplitudeMax() + 1.0;    // Amplitude greater than allowed
819 
820         auto pwleQueueGreater = std::vector<PrimitivePwle>{active};
821 
822         EXPECT_EQ(Status::EX_ILLEGAL_ARGUMENT,
823                   vibrator->composePwle(pwleQueueGreater, nullptr).exceptionCode());
824         EXPECT_TRUE(vibrator->off().isOk());
825 
826         active.startAmplitude = getAmplitudeMin() - 1.0;  // Amplitude less than allowed
827         active.endAmplitude = getAmplitudeMin() - 1.0;    // Amplitude less than allowed
828 
829         auto pwleQueueLess = std::vector<PrimitivePwle>{active};
830 
831         EXPECT_EQ(Status::EX_ILLEGAL_ARGUMENT,
832                   vibrator->composePwle(pwleQueueLess, nullptr).exceptionCode());
833         EXPECT_TRUE(vibrator->off().isOk());
834     }
835 }
836 
TEST_P(VibratorAidl,ComposePwleFrequencyParameterBoundary)837 TEST_P(VibratorAidl, ComposePwleFrequencyParameterBoundary) {
838     if ((capabilities & IVibrator::CAP_COMPOSE_PWLE_EFFECTS) &&
839         (capabilities & IVibrator::CAP_FREQUENCY_CONTROL)) {
840         float freqMinimumHz = getFrequencyMinimumHz(vibrator, capabilities);
841         float freqMaximumHz = getFrequencyMaximumHz(vibrator, capabilities);
842         float freqResolutionHz = getFrequencyResolutionHz(vibrator, capabilities);
843 
844         ActivePwle active = composeValidActivePwle(vibrator, capabilities);
845         active.startFrequency =
846             freqMaximumHz + freqResolutionHz;                    // Frequency greater than allowed
847         active.endFrequency = freqMaximumHz + freqResolutionHz;  // Frequency greater than allowed
848 
849         auto pwleQueueGreater = std::vector<PrimitivePwle>{active};
850 
851         EXPECT_EQ(Status::EX_ILLEGAL_ARGUMENT,
852                   vibrator->composePwle(pwleQueueGreater, nullptr).exceptionCode());
853         EXPECT_TRUE(vibrator->off().isOk());
854 
855         active.startFrequency = freqMinimumHz - freqResolutionHz;  // Frequency less than allowed
856         active.endFrequency = freqMinimumHz - freqResolutionHz;    // Frequency less than allowed
857 
858         auto pwleQueueLess = std::vector<PrimitivePwle>{active};
859 
860         EXPECT_EQ(Status::EX_ILLEGAL_ARGUMENT,
861                   vibrator->composePwle(pwleQueueLess, nullptr).exceptionCode());
862         EXPECT_TRUE(vibrator->off().isOk());
863     }
864 }
865 
TEST_P(VibratorAidl,ComposePwleSegmentDurationBoundary)866 TEST_P(VibratorAidl, ComposePwleSegmentDurationBoundary) {
867     if (capabilities & IVibrator::CAP_COMPOSE_PWLE_EFFECTS) {
868         ActivePwle active = composeValidActivePwle(vibrator, capabilities);
869 
870         int32_t segmentDurationMaxMs;
871         vibrator->getPwlePrimitiveDurationMax(&segmentDurationMaxMs);
872         active.duration = segmentDurationMaxMs + 10;  // Segment duration greater than allowed
873 
874         auto pwleQueue = std::vector<PrimitivePwle>{active};
875 
876         EXPECT_EQ(Status::EX_ILLEGAL_ARGUMENT,
877                   vibrator->composePwle(pwleQueue, nullptr).exceptionCode());
878         EXPECT_TRUE(vibrator->off().isOk());
879     }
880 }
881 
GenerateVibratorMapping()882 std::vector<std::tuple<int32_t, int32_t>> GenerateVibratorMapping() {
883     std::vector<std::tuple<int32_t, int32_t>> tuples;
884     auto managerAidlNames = android::getAidlHalInstanceNames(IVibratorManager::descriptor);
885     std::vector<int32_t> vibratorIds;
886 
887     for (int i = 0; i < managerAidlNames.size(); i++) {
888         auto managerName = String16(managerAidlNames[i].c_str());
889         auto vibratorManager = android::waitForDeclaredService<IVibratorManager>(managerName);
890         if (vibratorManager->getVibratorIds(&vibratorIds).isOk()) {
891             for (auto &vibratorId : vibratorIds) {
892                 tuples.push_back(std::make_tuple(i, vibratorId));
893             }
894         }
895     }
896 
897     auto vibratorAidlNames = android::getAidlHalInstanceNames(IVibrator::descriptor);
898     for (int i = 0; i < vibratorAidlNames.size(); i++) {
899         tuples.push_back(std::make_tuple(-1, i));
900     }
901 
902     return tuples;
903 }
904 
PrintGeneratedTest(const testing::TestParamInfo<VibratorAidl::ParamType> & info)905 std::string PrintGeneratedTest(const testing::TestParamInfo<VibratorAidl::ParamType> &info) {
906     const auto &[managerIdx, vibratorId] = info.param;
907     if (managerIdx < 0) {
908         return std::string("TOP_LEVEL_VIBRATOR_") + std::to_string(vibratorId);
909     }
910     return std::string("MANAGER_") + std::to_string(managerIdx) + "_VIBRATOR_ID_" +
911            std::to_string(vibratorId);
912 }
913 
914 GTEST_ALLOW_UNINSTANTIATED_PARAMETERIZED_TEST(VibratorAidl);
915 INSTANTIATE_TEST_SUITE_P(Vibrator, VibratorAidl, testing::ValuesIn(GenerateVibratorMapping()),
916                          PrintGeneratedTest);
917 
main(int argc,char ** argv)918 int main(int argc, char **argv) {
919     ::testing::InitGoogleTest(&argc, argv);
920     ProcessState::self()->setThreadPoolMaxThreadCount(1);
921     ProcessState::self()->startThreadPool();
922     return RUN_ALL_TESTS();
923 }
924