• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1#
2# Copyright 2022 Google LLC
3#
4# Licensed under the Apache License, Version 2.0 (the "License");
5# you may not use this file except in compliance with the License.
6# You may obtain a copy of the License at
7#
8#     http://www.apache.org/licenses/LICENSE-2.0
9#
10# Unless required by applicable law or agreed to in writing, software
11# distributed under the License is distributed on an "AS IS" BASIS,
12# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13# See the License for the specific language governing permissions and
14# limitations under the License.
15#
16
17import numpy as np
18import scipy.fftpack as fftpack
19
20import build.lc3 as lc3
21import tables as T, appendix_c as C
22
23### ------------------------------------------------------------------------ ###
24
25class Sns:
26
27    def __init__(self, dt, sr):
28
29        self.dt = dt
30        self.sr = sr
31
32        (self.ind_lf, self.ind_hf, self.shape, self.gain) = \
33            (None, None, None, None)
34
35        (self.idx_a, self.ls_a, self.idx_b, self.ls_b) = \
36            (None, None, None, None)
37
38    def get_data(self):
39
40        data = { 'lfcb' : self.ind_lf, 'hfcb' : self.ind_hf,
41                 'shape' : self.shape, 'gain' : self.gain,
42                 'idx_a' : self.idx_a, 'ls_a' : self.ls_a }
43
44        if self.idx_b is not None:
45            data.update({ 'idx_b' : self.idx_b, 'ls_b' : self.ls_b })
46
47        return data
48
49    def get_nbits(self):
50
51        return 38
52
53    def spectral_shaping(self, scf, inv, x):
54
55        ## 3.3.7.4 Scale factors interpolation
56
57        scf_i = np.empty(4*len(scf))
58        scf_i[0     ] = scf[0]
59        scf_i[1     ] = scf[0]
60        scf_i[2:62:4] = scf[:15] + 1/8 * (scf[1:] - scf[:15])
61        scf_i[3:63:4] = scf[:15] + 3/8 * (scf[1:] - scf[:15])
62        scf_i[4:64:4] = scf[:15] + 5/8 * (scf[1:] - scf[:15])
63        scf_i[5:64:4] = scf[:15] + 7/8 * (scf[1:] - scf[:15])
64        scf_i[62    ] = scf[15 ] + 1/8 * (scf[15] - scf[14 ])
65        scf_i[63    ] = scf[15 ] + 3/8 * (scf[15] - scf[14 ])
66
67        n2 = 64 - min(len(x), 64)
68
69        for i in range(n2):
70            scf_i[i] = 0.5 * (scf_i[2*i] + scf_i[2*i+1])
71        scf_i = np.append(scf_i[:n2], scf_i[2*n2:])
72
73        g_sns = np.power(2, [ -scf_i, scf_i ][inv])
74
75        ## 3.3.7.4 Spectral shaping
76
77        y = np.empty(len(x))
78        I = T.I[self.dt][self.sr]
79
80        for b in range(len(g_sns)):
81            y[I[b]:I[b+1]] = x[I[b]:I[b+1]] * g_sns[b]
82
83        return y
84
85
86class SnsAnalysis(Sns):
87
88    def __init__(self, dt, sr):
89
90        super().__init__(dt, sr)
91
92    def compute_scale_factors(self, e, att):
93
94        dt = self.dt
95
96        ## 3.3.7.2.1 Padding
97
98        n2 = 64 - len(e)
99
100        e = np.append(np.empty(n2), e)
101        for i in range(n2):
102            e[2*i+0] = e[2*i+1] = e[n2+i]
103
104        ## 3.3.7.2.2 Smoothing
105
106        e_s = np.zeros(len(e))
107        e_s[0   ] = 0.75 * e[0   ] + 0.25 * e[1   ]
108        e_s[1:63] = 0.25 * e[0:62] + 0.5  * e[1:63] + 0.25 * e[2:64]
109        e_s[  63] = 0.25 * e[  62] + 0.75 * e[  63]
110
111        ## 3.3.7.2.3 Pre-emphasis
112
113        g_tilt = [ 14, 18, 22, 26, 30 ][self.sr]
114        e_p = e_s * (10 ** ((np.arange(64) * g_tilt) / 630))
115
116        ## 3.3.7.2.4 Noise floor
117
118        noise_floor = max(np.average(e_p) * (10 ** (-40/10)), 2 ** -32)
119        e_p = np.fmax(e_p, noise_floor * np.ones(len(e)))
120
121        ## 3.3.7.2.5 Logarithm
122
123        e_l = np.log2(10 ** -31 + e_p) / 2
124
125        ## 3.3.7.2.6 Band energy grouping
126
127        w = [ 1/12, 2/12, 3/12, 3/12, 2/12, 1/12 ]
128
129        e_4 = np.zeros(len(e_l) // 4)
130        e_4[0   ] = w[0] * e_l[0] + np.sum(w[1:] * e_l[:5])
131        e_4[1:15] = [ np.sum(w * e_l[4*i-1:4*i+5]) for i in range(1, 15) ]
132        e_4[  15] = np.sum(w[:5] * e_l[59:64]) + w[5] * e_l[63]
133
134        ## 3.3.7.2.7 Mean removal and scaling, attack handling
135
136        scf = 0.85 * (e_4 - np.average(e_4))
137
138        scf_a = np.zeros(len(scf))
139        scf_a[0   ] = np.average(scf[:3])
140        scf_a[1   ] = np.average(scf[:4])
141        scf_a[2:14] = [ np.average(scf[i:i+5]) for i in range(12) ]
142        scf_a[  14] = np.average(scf[12:])
143        scf_a[  15] = np.average(scf[13:])
144
145        scf_a = (0.5 if self.dt == T.DT_10M else 0.3) * \
146                (scf_a - np.average(scf_a))
147
148        return scf_a if att else scf
149
150    def enum_mpvq(self, v):
151
152        sign = None
153        index = 0
154        x = 0
155
156        for (n, vn) in enumerate(v[::-1]):
157
158            if sign is not None and vn != 0:
159                index = 2*index + sign
160            if vn != 0:
161                sign = 1 if vn < 0 else 0
162
163            index += T.SNS_MPVQ_OFFSETS[n][x]
164            x += abs(vn)
165
166        return (index, bool(sign))
167
168    def quantize(self, scf):
169
170        ## 3.3.7.3.2 Stage 1
171
172        dmse_lf = [ np.sum((scf[:8] - T.SNS_LFCB[i]) ** 2) for i in range(32) ]
173        dmse_hf = [ np.sum((scf[8:] - T.SNS_HFCB[i]) ** 2) for i in range(32) ]
174
175        self.ind_lf = np.argmin(dmse_lf)
176        self.ind_hf = np.argmin(dmse_hf)
177
178        st1 = np.append(T.SNS_LFCB[self.ind_lf], T.SNS_HFCB[self.ind_hf])
179        r1 = scf - st1
180
181        ## 3.3.7.3.3 Stage 2
182
183        t2_rot = fftpack.dct(r1, norm = 'ortho')
184        x = np.abs(t2_rot)
185
186        ## 3.3.7.3.3 Stage 2 Shape search, step 1
187
188        K = 6
189
190        proj_fac = (K - 1) / sum(np.abs(t2_rot))
191        y3 = np.floor(x * proj_fac).astype(int)
192
193        ## 3.3.7.3.3 Stage 2 Shape search, step 2
194
195        corr_xy = np.sum(y3 * x)
196        energy_y = np.sum(y3 * y3)
197
198        k0 = sum(y3)
199        for k in range(k0, K):
200            q_pvq = ((corr_xy + x) ** 2) / (energy_y + 2*y3 + 1)
201            n_best = np.argmax(q_pvq)
202
203            corr_xy += x[n_best]
204            energy_y += 2*y3[n_best] + 1
205            y3[n_best] += 1
206
207        ## 3.3.7.3.3 Stage 2 Shape search, step 3
208
209        K = 8
210
211        y2 = y3.copy()
212
213        for k in range(sum(y2), K):
214            q_pvq = ((corr_xy + x) ** 2) / (energy_y + 2*y2 + 1)
215            n_best = np.argmax(q_pvq)
216
217            corr_xy += x[n_best]
218            energy_y += 2*y2[n_best] + 1
219            y2[n_best] += 1
220
221
222        ## 3.3.7.3.3 Stage 2 Shape search, step 4
223
224        y1 = np.append(y2[:10], [0] * 6)
225
226        ## 3.3.7.3.3 Stage 2 Shape search, step 5
227
228        corr_xy -= sum(y2[10:] * x[10:])
229        energy_y -= sum(y2[10:] * y2[10:])
230
231        ## 3.3.7.3.3 Stage 2 Shape search, step 6
232
233        K = 10
234
235        for k in range(sum(y1), K):
236            q_pvq = ((corr_xy + x[:10]) ** 2) / (energy_y + 2*y1[:10] + 1)
237            n_best = np.argmax(q_pvq)
238
239            corr_xy += x[n_best]
240            energy_y += 2*y1[n_best] + 1
241            y1[n_best] += 1
242
243        ## 3.3.7.3.3 Stage 2 Shape search, step 7
244
245        y0 = np.append(y1[:10], [ 0 ] * 6)
246
247        q_pvq = ((corr_xy + x[10:]) ** 2) / (energy_y + 2*y0[10:] + 1)
248        n_best = 10 + np.argmax(q_pvq)
249
250        y0[n_best] += 1
251
252        ## 3.3.7.3.3 Stage 2 Shape search, step 8
253
254        y0 *= np.sign(t2_rot).astype(int)
255        y1 *= np.sign(t2_rot).astype(int)
256        y2 *= np.sign(t2_rot).astype(int)
257        y3 *= np.sign(t2_rot).astype(int)
258
259        ## 3.3.7.3.3 Stage 2 Shape search, step 9
260
261        xq = [ y / np.sqrt(sum(y ** 2)) for y in (y0, y1, y2, y3) ]
262
263        ## 3.3.7.3.3 Shape and gain combination determination
264
265        G = [ T.SNS_VQ_REG_ADJ_GAINS, T.SNS_VQ_REG_LF_ADJ_GAINS,
266              T.SNS_VQ_NEAR_ADJ_GAINS, T.SNS_VQ_FAR_ADJ_GAINS ]
267
268        dMSE = [ [ sum((t2_rot - G[j][i] * xq[j]) ** 2)
269                   for i in range(len(G[j])) ] for j in range(4) ]
270
271        self.shape = np.argmin([ np.min(dMSE[j]) for j in range(4) ])
272        self.gain = np.argmin(dMSE[self.shape])
273
274        gain = G[self.shape][self.gain]
275
276        ## 3.3.7.3.3 Enumeration of the selected PVQ pulse configurations
277
278        if self.shape == 0:
279            (self.idx_a, self.ls_a) = self.enum_mpvq(y0[:10])
280            (self.idx_b, self.ls_b) = self.enum_mpvq(y0[10:])
281        elif self.shape == 1:
282            (self.idx_a, self.ls_a) = self.enum_mpvq(y1[:10])
283            (self.idx_b, self.ls_b) = (None, None)
284        elif self.shape == 2:
285            (self.idx_a, self.ls_a) = self.enum_mpvq(y2)
286            (self.idx_b, self.ls_b) = (None, None)
287        elif self.shape == 3:
288            (self.idx_a, self.ls_a) = self.enum_mpvq(y3)
289            (self.idx_b, self.ls_b) = (None, None)
290
291        ## 3.3.7.3.4 Synthesis of the Quantized scale factor
292
293        scf_q = st1 + gain * fftpack.idct(xq[self.shape], norm = 'ortho')
294
295        return scf_q
296
297    def run(self, eb, att, x):
298
299        scf = self.compute_scale_factors(eb, att)
300        scf_q = self.quantize(scf)
301        y = self.spectral_shaping(scf_q, False, x)
302
303        return y
304
305    def store(self, b):
306
307        shape = self.shape
308        gain_msb_bits = np.array([ 1, 1, 2, 2 ])[shape]
309        gain_lsb_bits = np.array([ 0, 1, 0, 1 ])[shape]
310
311        b.write_uint(self.ind_lf, 5)
312        b.write_uint(self.ind_hf, 5)
313
314        b.write_bit(shape >> 1)
315
316        b.write_uint(self.gain >> gain_lsb_bits, gain_msb_bits)
317
318        b.write_bit(self.ls_a)
319
320        if self.shape == 0:
321            sz_shape_a = 2390004
322            index_joint = self.idx_a + \
323                (2 * self.idx_b + self.ls_b + 2) * sz_shape_a
324
325        elif self.shape == 1:
326            sz_shape_a = 2390004
327            index_joint = self.idx_a + (self.gain & 1) * sz_shape_a
328
329        elif self.shape == 2:
330            index_joint = self.idx_a
331
332        elif self.shape == 3:
333            sz_shape_a = 15158272
334            index_joint = sz_shape_a + (self.gain & 1) + 2 * self.idx_a
335
336        b.write_uint(index_joint, 14 - gain_msb_bits)
337        b.write_uint(index_joint >> (14 - gain_msb_bits), 12)
338
339
340class SnsSynthesis(Sns):
341
342    def __init__(self, dt, sr):
343
344        super().__init__(dt, sr)
345
346    def deenum_mpvq(self, index, ls, npulses, n):
347
348        y = np.zeros(n, dtype=np.int)
349        pos = 0
350
351        for i in range(len(y)-1, -1, -1):
352
353            if index > 0:
354                yi = 0
355                while index < T.SNS_MPVQ_OFFSETS[i][npulses - yi]: yi += 1
356                index -= T.SNS_MPVQ_OFFSETS[i][npulses - yi]
357            else:
358                yi = npulses
359
360            y[pos] = [ yi, -yi ][int(ls)]
361            pos += 1
362
363            npulses -= yi
364            if npulses <= 0:
365                break
366
367            if yi > 0:
368                ls = index & 1
369                index >>= 1
370
371        return y
372
373    def unquantize(self):
374
375        ## 3.7.4.2.1-2  SNS VQ Decoding
376
377        y = np.empty(16, dtype=np.int)
378
379        if self.shape == 0:
380            y[:10] = self.deenum_mpvq(self.idx_a, self.ls_a, 10, 10)
381            y[10:] = self.deenum_mpvq(self.idx_b, self.ls_b,  1,  6)
382        elif self.shape == 1:
383            y[:10] = self.deenum_mpvq(self.idx_a, self.ls_a, 10, 10)
384            y[10:] = np.zeros(6, dtype=np.int)
385        elif self.shape == 2:
386            y = self.deenum_mpvq(self.idx_a, self.ls_a, 8, 16)
387        elif self.shape == 3:
388            y = self.deenum_mpvq(self.idx_a, self.ls_a, 6, 16)
389
390        ## 3.7.4.2.3  Unit energy normalization
391
392        y = y / np.sqrt(sum(y ** 2))
393
394        ## 3.7.4.2.4  Reconstruction of the quantized scale factors
395
396        G = [ T.SNS_VQ_REG_ADJ_GAINS, T.SNS_VQ_REG_LF_ADJ_GAINS,
397              T.SNS_VQ_NEAR_ADJ_GAINS, T.SNS_VQ_FAR_ADJ_GAINS ]
398
399        gain = G[self.shape][self.gain]
400
401        scf = np.append(T.SNS_LFCB[self.ind_lf], T.SNS_HFCB[self.ind_hf]) \
402                + gain * fftpack.idct(y, norm = 'ortho')
403
404        return scf
405
406    def load(self, b):
407
408        self.ind_lf = b.read_uint(5)
409        self.ind_hf = b.read_uint(5)
410
411        shape_msb = b.read_bit()
412
413        gain_msb_bits = 1 + shape_msb
414        self.gain = b.read_uint(gain_msb_bits)
415
416        self.ls_a = b.read_bit()
417
418        index_joint  = b.read_uint(14 - gain_msb_bits)
419        index_joint |= b.read_uint(12) << (14 - gain_msb_bits)
420
421        if shape_msb == 0:
422            sz_shape_a = 2390004
423
424            if index_joint >= sz_shape_a * 14:
425                raise ValueError('Invalide SNS joint index')
426
427            self.idx_a = index_joint % sz_shape_a
428            index_joint = index_joint // sz_shape_a
429            if index_joint >= 2:
430                self.shape = 0
431                self.idx_b = (index_joint - 2) // 2
432                self.ls_b =  (index_joint - 2)  % 2
433            else:
434                self.shape = 1
435                self.gain = (self.gain << 1) + (index_joint & 1)
436
437        else:
438            sz_shape_a = 15158272
439            if index_joint >= sz_shape_a + 1549824:
440                raise ValueError('Invalide SNS joint index')
441
442            if index_joint < sz_shape_a:
443                self.shape = 2
444                self.idx_a = index_joint
445            else:
446                self.shape = 3
447                index_joint -= sz_shape_a
448                self.gain = (self.gain << 1) + (index_joint % 2)
449                self.idx_a = index_joint // 2
450
451    def run(self, x):
452
453        scf = self.unquantize()
454        y = self.spectral_shaping(scf, True, x)
455
456        return y
457
458### ------------------------------------------------------------------------ ###
459
460def check_analysis(rng, dt, sr):
461
462    ok = True
463
464    analysis = SnsAnalysis(dt, sr)
465
466    for i in range(10):
467        x = rng.random(T.NE[dt][sr]) * 1e4
468        e = rng.random(min(len(x), 64)) * 1e10
469
470        for att in (0, 1):
471            y = analysis.run(e, att, x)
472            data = analysis.get_data()
473
474            (y_c, data_c) = lc3.sns_analyze(dt, sr, e, att, x)
475
476            for k in data.keys():
477                ok = ok and data_c[k] == data[k]
478
479            ok = ok and lc3.sns_get_nbits() == analysis.get_nbits()
480            ok = ok and np.amax(np.abs(y - y_c)) < 1e-1
481
482    return ok
483
484def check_synthesis(rng, dt, sr):
485
486    ok = True
487
488    synthesis = SnsSynthesis(dt, sr)
489
490    for i in range(100):
491
492        synthesis.ind_lf = rng.integers(0, 32)
493        synthesis.ind_hf = rng.integers(0, 32)
494
495        shape = rng.integers(0, 4)
496        sz_shape_a = [ 2390004, 2390004, 15158272, 774912 ][shape]
497        sz_shape_b = [ 6, 1, 0, 0 ][shape]
498        synthesis.shape = shape
499        synthesis.gain = rng.integers(0, [ 2, 4, 4, 8 ][shape])
500        synthesis.idx_a = rng.integers(0, sz_shape_a, endpoint=True)
501        synthesis.ls_a = bool(rng.integers(0, 1, endpoint=True))
502        synthesis.idx_b = rng.integers(0, sz_shape_b, endpoint=True)
503        synthesis.ls_b = bool(rng.integers(0, 1, endpoint=True))
504
505        x = rng.random(T.NE[dt][sr]) * 1e4
506
507        y = synthesis.run(x)
508        y_c = lc3.sns_synthesize(dt, sr, synthesis.get_data(), x)
509        ok = ok and np.amax(np.abs(y - y_c)) < 1e0
510
511    return ok
512
513def check_analysis_appendix_c(dt):
514
515    sr = T.SRATE_16K
516    ok = True
517
518    for i in range(len(C.E_B[dt])):
519
520        scf = lc3.sns_compute_scale_factors(dt, sr, C.E_B[dt][i], False)
521        ok = ok and np.amax(np.abs(scf - C.SCF[dt][i])) < 1e-4
522
523        (lf, hf) = lc3.sns_resolve_codebooks(scf)
524        ok = ok and lf == C.IND_LF[dt][i] and hf == C.IND_HF[dt][i]
525
526        (y, yn, shape, gain) = lc3.sns_quantize(scf, lf, hf)
527        ok = ok and np.any(y[0][:16] - C.SNS_Y0[dt][i] == 0)
528        ok = ok and np.any(y[1][:10] - C.SNS_Y1[dt][i] == 0)
529        ok = ok and np.any(y[2][:16] - C.SNS_Y2[dt][i] == 0)
530        ok = ok and np.any(y[3][:16] - C.SNS_Y3[dt][i] == 0)
531        ok = ok and shape == 2*C.SUBMODE_MSB[dt][i] + C.SUBMODE_LSB[dt][i]
532        ok = ok and gain == C.G_IND[dt][i]
533
534        scf_q = lc3.sns_unquantize(lf, hf, yn[shape], shape, gain)
535        ok = ok and np.amax(np.abs(scf_q - C.SCF_Q[dt][i])) < 1e-5
536
537        x = lc3.sns_spectral_shaping(dt, sr, C.SCF_Q[dt][i], False, C.X[dt][i])
538        ok = ok and np.amax(np.abs(1 - x/C.X_S[dt][i])) < 1e-5
539
540        (x, data) = lc3.sns_analyze(dt, sr, C.E_B[dt][i], False, C.X[dt][i])
541        ok = ok and data['lfcb'] == C.IND_LF[dt][i]
542        ok = ok and data['hfcb'] == C.IND_HF[dt][i]
543        ok = ok and data['shape'] == \
544            2*C.SUBMODE_MSB[dt][i] + C.SUBMODE_LSB[dt][i]
545        ok = ok and data['gain'] == C.G_IND[dt][i]
546        ok = ok and data['idx_a'] == C.IDX_A[dt][i]
547        ok = ok and data['ls_a'] == C.LS_IND_A[dt][i]
548        ok = ok and (C.IDX_B[dt][i] is None or
549            data['idx_b'] == C.IDX_B[dt][i])
550        ok = ok and (C.LS_IND_B[dt][i] is None or
551            data['ls_b'] == C.LS_IND_B[dt][i])
552        ok = ok and np.amax(np.abs(1 - x/C.X_S[dt][i])) < 1e-5
553
554    return ok
555
556def check_synthesis_appendix_c(dt):
557
558    sr = T.SRATE_16K
559    ok = True
560
561    for i in range(len(C.X_HAT_TNS[dt])):
562
563        data = {
564            'lfcb'  : C.IND_LF[dt][i], 'hfcb' : C.IND_HF[dt][i],
565            'shape' : 2*C.SUBMODE_MSB[dt][i] + C.SUBMODE_LSB[dt][i],
566            'gain'  : C.G_IND[dt][i],
567            'idx_a' : C.IDX_A[dt][i],
568            'ls_a'  : C.LS_IND_A[dt][i],
569            'idx_b' : C.IDX_B[dt][i] if C.IDX_B[dt][i] is not None else 0,
570            'ls_b'  : C.LS_IND_B[dt][i] if C.LS_IND_B[dt][i] is not None else 0,
571        }
572
573        x = lc3.sns_synthesize(dt, sr, data, C.X_HAT_TNS[dt][i])
574        ok = ok and np.amax(np.abs(x - C.X_HAT_SNS[dt][i])) < 1e0
575
576    return ok
577
578def check():
579
580    rng = np.random.default_rng(1234)
581    ok = True
582
583    for dt in range(T.NUM_DT):
584        for sr in range(T.NUM_SRATE):
585            ok = ok and check_analysis(rng, dt, sr)
586            ok = ok and check_synthesis(rng, dt, sr)
587
588    for dt in range(T.NUM_DT):
589        ok = ok and check_analysis_appendix_c(dt)
590        ok = ok and check_synthesis_appendix_c(dt)
591
592    return ok
593
594### ------------------------------------------------------------------------ ###
595