1 /*
2 * Copyright (C) 2020 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17 #include <linux/if.h>
18 #include <linux/ip.h>
19 #include <linux/ipv6.h>
20 #include <linux/pkt_cls.h>
21 #include <linux/tcp.h>
22
23 // bionic kernel uapi linux/udp.h header is munged...
24 #define __kernel_udphdr udphdr
25 #include <linux/udp.h>
26
27 #ifdef BTF
28 // BTF is incompatible with bpfloaders < v0.10, hence for S (v0.2) we must
29 // ship a different file than for later versions, but we need bpfloader v0.25+
30 // for obj@ver.o support
31 #define BPFLOADER_MIN_VER BPFLOADER_OBJ_AT_VER_VERSION
32 #else /* BTF */
33 // The resulting .o needs to load on the Android S bpfloader
34 #define BPFLOADER_MIN_VER BPFLOADER_S_VERSION
35 #define BPFLOADER_MAX_VER BPFLOADER_OBJ_AT_VER_VERSION
36 #endif /* BTF */
37
38 // Warning: values other than AID_ROOT don't work for map uid on BpfLoader < v0.21
39 #define TETHERING_UID AID_ROOT
40
41 #define TETHERING_GID AID_NETWORK_STACK
42
43 #include "bpf_helpers.h"
44 #include "bpf_net_helpers.h"
45 #include "offload.h"
46
47 // From kernel:include/net/ip.h
48 #define IP_DF 0x4000 // Flag: "Don't Fragment"
49
50 // ----- Helper functions for offsets to fields -----
51
52 // They all assume simple IP packets:
53 // - no VLAN ethernet tags
54 // - no IPv4 options (see IPV4_HLEN/TCP4_OFFSET/UDP4_OFFSET)
55 // - no IPv6 extension headers
56 // - no TCP options (see TCP_HLEN)
57
58 //#define ETH_HLEN sizeof(struct ethhdr)
59 #define IP4_HLEN sizeof(struct iphdr)
60 #define IP6_HLEN sizeof(struct ipv6hdr)
61 #define TCP_HLEN sizeof(struct tcphdr)
62 #define UDP_HLEN sizeof(struct udphdr)
63
64 // Offsets from beginning of L4 (TCP/UDP) header
65 #define TCP_OFFSET(field) offsetof(struct tcphdr, field)
66 #define UDP_OFFSET(field) offsetof(struct udphdr, field)
67
68 // Offsets from beginning of L3 (IPv4) header
69 #define IP4_OFFSET(field) offsetof(struct iphdr, field)
70 #define IP4_TCP_OFFSET(field) (IP4_HLEN + TCP_OFFSET(field))
71 #define IP4_UDP_OFFSET(field) (IP4_HLEN + UDP_OFFSET(field))
72
73 // Offsets from beginning of L3 (IPv6) header
74 #define IP6_OFFSET(field) offsetof(struct ipv6hdr, field)
75 #define IP6_TCP_OFFSET(field) (IP6_HLEN + TCP_OFFSET(field))
76 #define IP6_UDP_OFFSET(field) (IP6_HLEN + UDP_OFFSET(field))
77
78 // Offsets from beginning of L2 (ie. Ethernet) header (which must be present)
79 #define ETH_IP4_OFFSET(field) (ETH_HLEN + IP4_OFFSET(field))
80 #define ETH_IP4_TCP_OFFSET(field) (ETH_HLEN + IP4_TCP_OFFSET(field))
81 #define ETH_IP4_UDP_OFFSET(field) (ETH_HLEN + IP4_UDP_OFFSET(field))
82 #define ETH_IP6_OFFSET(field) (ETH_HLEN + IP6_OFFSET(field))
83 #define ETH_IP6_TCP_OFFSET(field) (ETH_HLEN + IP6_TCP_OFFSET(field))
84 #define ETH_IP6_UDP_OFFSET(field) (ETH_HLEN + IP6_UDP_OFFSET(field))
85
86 // ----- Tethering Error Counters -----
87
88 // Note that pre-T devices with Mediatek chipsets may have a kernel bug (bad patch
89 // "[ALPS05162612] bpf: fix ubsan error") making it impossible to write to non-zero
90 // offset of bpf map ARRAYs. This file (offload.o) loads on S+, but luckily this
91 // array is only written by bpf code, and only read by userspace.
DEFINE_BPF_MAP_RO(tether_error_map,ARRAY,uint32_t,uint32_t,BPF_TETHER_ERR__MAX,TETHERING_GID)92 DEFINE_BPF_MAP_RO(tether_error_map, ARRAY, uint32_t, uint32_t, BPF_TETHER_ERR__MAX, TETHERING_GID)
93
94 #define COUNT_AND_RETURN(counter, ret) do { \
95 uint32_t code = BPF_TETHER_ERR_ ## counter; \
96 uint32_t *count = bpf_tether_error_map_lookup_elem(&code); \
97 if (count) __sync_fetch_and_add(count, 1); \
98 return ret; \
99 } while(0)
100
101 #define TC_DROP(counter) COUNT_AND_RETURN(counter, TC_ACT_SHOT)
102 #define TC_PUNT(counter) COUNT_AND_RETURN(counter, TC_ACT_PIPE)
103
104 #define XDP_DROP(counter) COUNT_AND_RETURN(counter, XDP_DROP)
105 #define XDP_PUNT(counter) COUNT_AND_RETURN(counter, XDP_PASS)
106
107 // ----- Tethering Data Stats and Limits -----
108
109 // Tethering stats, indexed by upstream interface.
110 DEFINE_BPF_MAP_GRW(tether_stats_map, HASH, TetherStatsKey, TetherStatsValue, 16, TETHERING_GID)
111
112 // Tethering data limit, indexed by upstream interface.
113 // (tethering allowed when stats[iif].rxBytes + stats[iif].txBytes < limit[iif])
114 DEFINE_BPF_MAP_GRW(tether_limit_map, HASH, TetherLimitKey, TetherLimitValue, 16, TETHERING_GID)
115
116 // ----- IPv6 Support -----
117
118 DEFINE_BPF_MAP_GRW(tether_downstream6_map, HASH, TetherDownstream6Key, Tether6Value, 64,
119 TETHERING_GID)
120
121 DEFINE_BPF_MAP_GRW(tether_downstream64_map, HASH, TetherDownstream64Key, TetherDownstream64Value,
122 1024, TETHERING_GID)
123
124 DEFINE_BPF_MAP_GRW(tether_upstream6_map, HASH, TetherUpstream6Key, Tether6Value, 64,
125 TETHERING_GID)
126
127 static inline __always_inline int do_forward6(struct __sk_buff* skb, const bool is_ethernet,
128 const bool downstream, const unsigned kver) {
129 // Must be meta-ethernet IPv6 frame
130 if (skb->protocol != htons(ETH_P_IPV6)) return TC_ACT_PIPE;
131
132 // Require ethernet dst mac address to be our unicast address.
133 if (is_ethernet && (skb->pkt_type != PACKET_HOST)) return TC_ACT_PIPE;
134
135 const int l2_header_size = is_ethernet ? sizeof(struct ethhdr) : 0;
136
137 // Since the program never writes via DPA (direct packet access) auto-pull/unclone logic does
138 // not trigger and thus we need to manually make sure we can read packet headers via DPA.
139 // Note: this is a blind best effort pull, which may fail or pull less - this doesn't matter.
140 // It has to be done early cause it will invalidate any skb->data/data_end derived pointers.
141 try_make_writable(skb, l2_header_size + IP6_HLEN + TCP_HLEN);
142
143 void* data = (void*)(long)skb->data;
144 const void* data_end = (void*)(long)skb->data_end;
145 struct ethhdr* eth = is_ethernet ? data : NULL; // used iff is_ethernet
146 struct ipv6hdr* ip6 = is_ethernet ? (void*)(eth + 1) : data;
147
148 // Must have (ethernet and) ipv6 header
149 if (data + l2_header_size + sizeof(*ip6) > data_end) return TC_ACT_PIPE;
150
151 // Ethertype - if present - must be IPv6
152 if (is_ethernet && (eth->h_proto != htons(ETH_P_IPV6))) return TC_ACT_PIPE;
153
154 // IP version must be 6
155 if (ip6->version != 6) TC_PUNT(INVALID_IPV6_VERSION);
156
157 // Cannot decrement during forward if already zero or would be zero,
158 // Let the kernel's stack handle these cases and generate appropriate ICMP errors.
159 if (ip6->hop_limit <= 1) TC_PUNT(LOW_TTL);
160
161 // If hardware offload is running and programming flows based on conntrack entries,
162 // try not to interfere with it.
163 if (ip6->nexthdr == IPPROTO_TCP) {
164 struct tcphdr* tcph = (void*)(ip6 + 1);
165
166 // Make sure we can get at the tcp header
167 if (data + l2_header_size + sizeof(*ip6) + sizeof(*tcph) > data_end)
168 TC_PUNT(INVALID_TCP_HEADER);
169
170 // Do not offload TCP packets with any one of the SYN/FIN/RST flags
171 if (tcph->syn || tcph->fin || tcph->rst) TC_PUNT(TCPV6_CONTROL_PACKET);
172 }
173
174 // Protect against forwarding packets sourced from ::1 or fe80::/64 or other weirdness.
175 __be32 src32 = ip6->saddr.s6_addr32[0];
176 if (src32 != htonl(0x0064ff9b) && // 64:ff9b:/32 incl. XLAT464 WKP
177 (src32 & htonl(0xe0000000)) != htonl(0x20000000)) // 2000::/3 Global Unicast
178 TC_PUNT(NON_GLOBAL_SRC);
179
180 // Protect against forwarding packets destined to ::1 or fe80::/64 or other weirdness.
181 __be32 dst32 = ip6->daddr.s6_addr32[0];
182 if (dst32 != htonl(0x0064ff9b) && // 64:ff9b:/32 incl. XLAT464 WKP
183 (dst32 & htonl(0xe0000000)) != htonl(0x20000000)) // 2000::/3 Global Unicast
184 TC_PUNT(NON_GLOBAL_DST);
185
186 // In the upstream direction do not forward traffic within the same /64 subnet.
187 if (!downstream && (src32 == dst32) && (ip6->saddr.s6_addr32[1] == ip6->daddr.s6_addr32[1]))
188 TC_PUNT(LOCAL_SRC_DST);
189
190 TetherDownstream6Key kd = {
191 .iif = skb->ifindex,
192 .neigh6 = ip6->daddr,
193 };
194
195 TetherUpstream6Key ku = {
196 .iif = skb->ifindex,
197 };
198 if (is_ethernet) __builtin_memcpy(downstream ? kd.dstMac : ku.dstMac, eth->h_dest, ETH_ALEN);
199
200 Tether6Value* v = downstream ? bpf_tether_downstream6_map_lookup_elem(&kd)
201 : bpf_tether_upstream6_map_lookup_elem(&ku);
202
203 // If we don't find any offload information then simply let the core stack handle it...
204 if (!v) return TC_ACT_PIPE;
205
206 uint32_t stat_and_limit_k = downstream ? skb->ifindex : v->oif;
207
208 TetherStatsValue* stat_v = bpf_tether_stats_map_lookup_elem(&stat_and_limit_k);
209
210 // If we don't have anywhere to put stats, then abort...
211 if (!stat_v) TC_PUNT(NO_STATS_ENTRY);
212
213 uint64_t* limit_v = bpf_tether_limit_map_lookup_elem(&stat_and_limit_k);
214
215 // If we don't have a limit, then abort...
216 if (!limit_v) TC_PUNT(NO_LIMIT_ENTRY);
217
218 // Required IPv6 minimum mtu is 1280, below that not clear what we should do, abort...
219 if (v->pmtu < IPV6_MIN_MTU) TC_PUNT(BELOW_IPV6_MTU);
220
221 // Approximate handling of TCP/IPv6 overhead for incoming LRO/GRO packets: default
222 // outbound path mtu of 1500 is not necessarily correct, but worst case we simply
223 // undercount, which is still better then not accounting for this overhead at all.
224 // Note: this really shouldn't be device/path mtu at all, but rather should be
225 // derived from this particular connection's mss (ie. from gro segment size).
226 // This would require a much newer kernel with newer ebpf accessors.
227 // (This is also blindly assuming 12 bytes of tcp timestamp option in tcp header)
228 uint64_t packets = 1;
229 uint64_t L3_bytes = skb->len - l2_header_size;
230 if (L3_bytes > v->pmtu) {
231 const int tcp6_overhead = sizeof(struct ipv6hdr) + sizeof(struct tcphdr) + 12;
232 const int mss = v->pmtu - tcp6_overhead;
233 const uint64_t payload = L3_bytes - tcp6_overhead;
234 packets = (payload + mss - 1) / mss;
235 L3_bytes = tcp6_overhead * packets + payload;
236 }
237
238 // Are we past the limit? If so, then abort...
239 // Note: will not overflow since u64 is 936 years even at 5Gbps.
240 // Do not drop here. Offload is just that, whenever we fail to handle
241 // a packet we let the core stack deal with things.
242 // (The core stack needs to handle limits correctly anyway,
243 // since we don't offload all traffic in both directions)
244 if (stat_v->rxBytes + stat_v->txBytes + L3_bytes > *limit_v) TC_PUNT(LIMIT_REACHED);
245
246 if (!is_ethernet) {
247 // Try to inject an ethernet header, and simply return if we fail.
248 // We do this even if TX interface is RAWIP and thus does not need an ethernet header,
249 // because this is easier and the kernel will strip extraneous ethernet header.
250 if (bpf_skb_change_head(skb, sizeof(struct ethhdr), /*flags*/ 0)) {
251 __sync_fetch_and_add(downstream ? &stat_v->rxErrors : &stat_v->txErrors, 1);
252 TC_PUNT(CHANGE_HEAD_FAILED);
253 }
254
255 // bpf_skb_change_head() invalidates all pointers - reload them
256 data = (void*)(long)skb->data;
257 data_end = (void*)(long)skb->data_end;
258 eth = data;
259 ip6 = (void*)(eth + 1);
260
261 // I do not believe this can ever happen, but keep the verifier happy...
262 if (data + sizeof(struct ethhdr) + sizeof(*ip6) > data_end) {
263 __sync_fetch_and_add(downstream ? &stat_v->rxErrors : &stat_v->txErrors, 1);
264 TC_DROP(TOO_SHORT);
265 }
266 };
267
268 // At this point we always have an ethernet header - which will get stripped by the
269 // kernel during transmit through a rawip interface. ie. 'eth' pointer is valid.
270 // Additionally note that 'is_ethernet' and 'l2_header_size' are no longer correct.
271
272 // CHECKSUM_COMPLETE is a 16-bit one's complement sum,
273 // thus corrections for it need to be done in 16-byte chunks at even offsets.
274 // IPv6 nexthdr is at offset 6, while hop limit is at offset 7
275 uint8_t old_hl = ip6->hop_limit;
276 --ip6->hop_limit;
277 uint8_t new_hl = ip6->hop_limit;
278
279 // bpf_csum_update() always succeeds if the skb is CHECKSUM_COMPLETE and returns an error
280 // (-ENOTSUPP) if it isn't.
281 bpf_csum_update(skb, 0xFFFF - ntohs(old_hl) + ntohs(new_hl));
282
283 __sync_fetch_and_add(downstream ? &stat_v->rxPackets : &stat_v->txPackets, packets);
284 __sync_fetch_and_add(downstream ? &stat_v->rxBytes : &stat_v->txBytes, L3_bytes);
285
286 // Overwrite any mac header with the new one
287 // For a rawip tx interface it will simply be a bunch of zeroes and later stripped.
288 *eth = v->macHeader;
289
290 // Redirect to forwarded interface.
291 //
292 // Note that bpf_redirect() cannot fail unless you pass invalid flags.
293 // The redirect actually happens after the ebpf program has already terminated,
294 // and can fail for example for mtu reasons at that point in time, but there's nothing
295 // we can do about it here.
296 return bpf_redirect(v->oif, 0 /* this is effectively BPF_F_EGRESS */);
297 }
298
299 DEFINE_BPF_PROG("schedcls/tether_downstream6_ether", TETHERING_UID, TETHERING_GID,
300 sched_cls_tether_downstream6_ether)
301 (struct __sk_buff* skb) {
302 return do_forward6(skb, ETHER, DOWNSTREAM, KVER_NONE);
303 }
304
305 DEFINE_BPF_PROG("schedcls/tether_upstream6_ether", TETHERING_UID, TETHERING_GID,
306 sched_cls_tether_upstream6_ether)
307 (struct __sk_buff* skb) {
308 return do_forward6(skb, ETHER, UPSTREAM, KVER_NONE);
309 }
310
311 // Note: section names must be unique to prevent programs from appending to each other,
312 // so instead the bpf loader will strip everything past the final $ symbol when actually
313 // pinning the program into the filesystem.
314 //
315 // bpf_skb_change_head() is only present on 4.14+ and 2 trivial kernel patches are needed:
316 // ANDROID: net: bpf: Allow TC programs to call BPF_FUNC_skb_change_head
317 // ANDROID: net: bpf: permit redirect from ingress L3 to egress L2 devices at near max mtu
318 // (the first of those has already been upstreamed)
319 //
320 // These were added to 4.14+ Android Common Kernel in R (including the original release of ACK 5.4)
321 // and there is a test in kernel/tests/net/test/bpf_test.py testSkbChangeHead()
322 // and in system/netd/tests/binder_test.cpp NetdBinderTest TetherOffloadForwarding.
323 //
324 // Hence, these mandatory (must load successfully) implementations for 4.14+ kernels:
325 DEFINE_BPF_PROG_KVER("schedcls/tether_downstream6_rawip$4_14", TETHERING_UID, TETHERING_GID,
326 sched_cls_tether_downstream6_rawip_4_14, KVER(4, 14, 0))
327 (struct __sk_buff* skb) {
328 return do_forward6(skb, RAWIP, DOWNSTREAM, KVER(4, 14, 0));
329 }
330
331 DEFINE_BPF_PROG_KVER("schedcls/tether_upstream6_rawip$4_14", TETHERING_UID, TETHERING_GID,
332 sched_cls_tether_upstream6_rawip_4_14, KVER(4, 14, 0))
333 (struct __sk_buff* skb) {
334 return do_forward6(skb, RAWIP, UPSTREAM, KVER(4, 14, 0));
335 }
336
337 // and define no-op stubs for pre-4.14 kernels.
338 DEFINE_BPF_PROG_KVER_RANGE("schedcls/tether_downstream6_rawip$stub", TETHERING_UID, TETHERING_GID,
339 sched_cls_tether_downstream6_rawip_stub, KVER_NONE, KVER(4, 14, 0))
340 (struct __sk_buff* skb) {
341 return TC_ACT_PIPE;
342 }
343
344 DEFINE_BPF_PROG_KVER_RANGE("schedcls/tether_upstream6_rawip$stub", TETHERING_UID, TETHERING_GID,
345 sched_cls_tether_upstream6_rawip_stub, KVER_NONE, KVER(4, 14, 0))
346 (struct __sk_buff* skb) {
347 return TC_ACT_PIPE;
348 }
349
350 // ----- IPv4 Support -----
351
352 DEFINE_BPF_MAP_GRW(tether_downstream4_map, HASH, Tether4Key, Tether4Value, 1024, TETHERING_GID)
353
354 DEFINE_BPF_MAP_GRW(tether_upstream4_map, HASH, Tether4Key, Tether4Value, 1024, TETHERING_GID)
355
do_forward4_bottom(struct __sk_buff * skb,const int l2_header_size,void * data,const void * data_end,struct ethhdr * eth,struct iphdr * ip,const bool is_ethernet,const bool downstream,const bool updatetime,const bool is_tcp,const unsigned kver)356 static inline __always_inline int do_forward4_bottom(struct __sk_buff* skb,
357 const int l2_header_size, void* data, const void* data_end,
358 struct ethhdr* eth, struct iphdr* ip, const bool is_ethernet,
359 const bool downstream, const bool updatetime, const bool is_tcp,
360 const unsigned kver) {
361 struct tcphdr* tcph = is_tcp ? (void*)(ip + 1) : NULL;
362 struct udphdr* udph = is_tcp ? NULL : (void*)(ip + 1);
363
364 if (is_tcp) {
365 // Make sure we can get at the tcp header
366 if (data + l2_header_size + sizeof(*ip) + sizeof(*tcph) > data_end)
367 TC_PUNT(SHORT_TCP_HEADER);
368
369 // If hardware offload is running and programming flows based on conntrack entries, try not
370 // to interfere with it, so do not offload TCP packets with any one of the SYN/FIN/RST flags
371 if (tcph->syn || tcph->fin || tcph->rst) TC_PUNT(TCPV4_CONTROL_PACKET);
372 } else { // UDP
373 // Make sure we can get at the udp header
374 if (data + l2_header_size + sizeof(*ip) + sizeof(*udph) > data_end)
375 TC_PUNT(SHORT_UDP_HEADER);
376
377 // Skip handling of CHECKSUM_COMPLETE packets with udp checksum zero due to need for
378 // additional updating of skb->csum (this could be fixed up manually with more effort).
379 //
380 // Note that the in-kernel implementation of 'int64_t bpf_csum_update(skb, u32 csum)' is:
381 // if (skb->ip_summed == CHECKSUM_COMPLETE)
382 // return (skb->csum = csum_add(skb->csum, csum));
383 // else
384 // return -ENOTSUPP;
385 //
386 // So this will punt any CHECKSUM_COMPLETE packet with a zero UDP checksum,
387 // and leave all other packets unaffected (since it just at most adds zero to skb->csum).
388 //
389 // In practice this should almost never trigger because most nics do not generate
390 // CHECKSUM_COMPLETE packets on receive - especially so for nics/drivers on a phone.
391 //
392 // Additionally since we're forwarding, in most cases the value of the skb->csum field
393 // shouldn't matter (it's not used by physical nic egress).
394 //
395 // It only matters if we're ingressing through a CHECKSUM_COMPLETE capable nic
396 // and egressing through a virtual interface looping back to the kernel itself
397 // (ie. something like veth) where the CHECKSUM_COMPLETE/skb->csum can get reused
398 // on ingress.
399 //
400 // If we were in the kernel we'd simply probably call
401 // void skb_checksum_complete_unset(struct sk_buff *skb) {
402 // if (skb->ip_summed == CHECKSUM_COMPLETE) skb->ip_summed = CHECKSUM_NONE;
403 // }
404 // here instead. Perhaps there should be a bpf helper for that?
405 if (!udph->check && (bpf_csum_update(skb, 0) >= 0)) TC_PUNT(UDP_CSUM_ZERO);
406 }
407
408 Tether4Key k = {
409 .iif = skb->ifindex,
410 .l4Proto = ip->protocol,
411 .src4.s_addr = ip->saddr,
412 .dst4.s_addr = ip->daddr,
413 .srcPort = is_tcp ? tcph->source : udph->source,
414 .dstPort = is_tcp ? tcph->dest : udph->dest,
415 };
416 if (is_ethernet) __builtin_memcpy(k.dstMac, eth->h_dest, ETH_ALEN);
417
418 Tether4Value* v = downstream ? bpf_tether_downstream4_map_lookup_elem(&k)
419 : bpf_tether_upstream4_map_lookup_elem(&k);
420
421 // If we don't find any offload information then simply let the core stack handle it...
422 if (!v) return TC_ACT_PIPE;
423
424 uint32_t stat_and_limit_k = downstream ? skb->ifindex : v->oif;
425
426 TetherStatsValue* stat_v = bpf_tether_stats_map_lookup_elem(&stat_and_limit_k);
427
428 // If we don't have anywhere to put stats, then abort...
429 if (!stat_v) TC_PUNT(NO_STATS_ENTRY);
430
431 uint64_t* limit_v = bpf_tether_limit_map_lookup_elem(&stat_and_limit_k);
432
433 // If we don't have a limit, then abort...
434 if (!limit_v) TC_PUNT(NO_LIMIT_ENTRY);
435
436 // Required IPv4 minimum mtu is 68, below that not clear what we should do, abort...
437 if (v->pmtu < 68) TC_PUNT(BELOW_IPV4_MTU);
438
439 // Approximate handling of TCP/IPv4 overhead for incoming LRO/GRO packets: default
440 // outbound path mtu of 1500 is not necessarily correct, but worst case we simply
441 // undercount, which is still better then not accounting for this overhead at all.
442 // Note: this really shouldn't be device/path mtu at all, but rather should be
443 // derived from this particular connection's mss (ie. from gro segment size).
444 // This would require a much newer kernel with newer ebpf accessors.
445 // (This is also blindly assuming 12 bytes of tcp timestamp option in tcp header)
446 uint64_t packets = 1;
447 uint64_t L3_bytes = skb->len - l2_header_size;
448 if (L3_bytes > v->pmtu) {
449 const int tcp4_overhead = sizeof(struct iphdr) + sizeof(struct tcphdr) + 12;
450 const int mss = v->pmtu - tcp4_overhead;
451 const uint64_t payload = L3_bytes - tcp4_overhead;
452 packets = (payload + mss - 1) / mss;
453 L3_bytes = tcp4_overhead * packets + payload;
454 }
455
456 // Are we past the limit? If so, then abort...
457 // Note: will not overflow since u64 is 936 years even at 5Gbps.
458 // Do not drop here. Offload is just that, whenever we fail to handle
459 // a packet we let the core stack deal with things.
460 // (The core stack needs to handle limits correctly anyway,
461 // since we don't offload all traffic in both directions)
462 if (stat_v->rxBytes + stat_v->txBytes + L3_bytes > *limit_v) TC_PUNT(LIMIT_REACHED);
463
464 if (!is_ethernet) {
465 // Try to inject an ethernet header, and simply return if we fail.
466 // We do this even if TX interface is RAWIP and thus does not need an ethernet header,
467 // because this is easier and the kernel will strip extraneous ethernet header.
468 if (bpf_skb_change_head(skb, sizeof(struct ethhdr), /*flags*/ 0)) {
469 __sync_fetch_and_add(downstream ? &stat_v->rxErrors : &stat_v->txErrors, 1);
470 TC_PUNT(CHANGE_HEAD_FAILED);
471 }
472
473 // bpf_skb_change_head() invalidates all pointers - reload them
474 data = (void*)(long)skb->data;
475 data_end = (void*)(long)skb->data_end;
476 eth = data;
477 ip = (void*)(eth + 1);
478 tcph = is_tcp ? (void*)(ip + 1) : NULL;
479 udph = is_tcp ? NULL : (void*)(ip + 1);
480
481 // I do not believe this can ever happen, but keep the verifier happy...
482 if (data + sizeof(struct ethhdr) + sizeof(*ip) + (is_tcp ? sizeof(*tcph) : sizeof(*udph)) > data_end) {
483 __sync_fetch_and_add(downstream ? &stat_v->rxErrors : &stat_v->txErrors, 1);
484 TC_DROP(TOO_SHORT);
485 }
486 };
487
488 // At this point we always have an ethernet header - which will get stripped by the
489 // kernel during transmit through a rawip interface. ie. 'eth' pointer is valid.
490 // Additionally note that 'is_ethernet' and 'l2_header_size' are no longer correct.
491
492 // Overwrite any mac header with the new one
493 // For a rawip tx interface it will simply be a bunch of zeroes and later stripped.
494 *eth = v->macHeader;
495
496 // Decrement the IPv4 TTL, we already know it's greater than 1.
497 // u8 TTL field is followed by u8 protocol to make a u16 for ipv4 header checksum update.
498 // Since we're keeping the ipv4 checksum valid (which means the checksum of the entire
499 // ipv4 header remains 0), the overall checksum of the entire packet does not change.
500 const int sz2 = sizeof(__be16);
501 const __be16 old_ttl_proto = *(__be16 *)&ip->ttl;
502 const __be16 new_ttl_proto = old_ttl_proto - htons(0x0100);
503 bpf_l3_csum_replace(skb, ETH_IP4_OFFSET(check), old_ttl_proto, new_ttl_proto, sz2);
504 bpf_skb_store_bytes(skb, ETH_IP4_OFFSET(ttl), &new_ttl_proto, sz2, 0);
505
506 const int l4_offs_csum = is_tcp ? ETH_IP4_TCP_OFFSET(check) : ETH_IP4_UDP_OFFSET(check);
507 const int sz4 = sizeof(__be32);
508 // UDP 0 is special and stored as FFFF (this flag also causes a csum of 0 to be unmodified)
509 const int l4_flags = is_tcp ? 0 : BPF_F_MARK_MANGLED_0;
510 const __be32 old_daddr = k.dst4.s_addr;
511 const __be32 old_saddr = k.src4.s_addr;
512 const __be32 new_daddr = v->dst46.s6_addr32[3];
513 const __be32 new_saddr = v->src46.s6_addr32[3];
514
515 bpf_l4_csum_replace(skb, l4_offs_csum, old_daddr, new_daddr, sz4 | BPF_F_PSEUDO_HDR | l4_flags);
516 bpf_l3_csum_replace(skb, ETH_IP4_OFFSET(check), old_daddr, new_daddr, sz4);
517 bpf_skb_store_bytes(skb, ETH_IP4_OFFSET(daddr), &new_daddr, sz4, 0);
518
519 bpf_l4_csum_replace(skb, l4_offs_csum, old_saddr, new_saddr, sz4 | BPF_F_PSEUDO_HDR | l4_flags);
520 bpf_l3_csum_replace(skb, ETH_IP4_OFFSET(check), old_saddr, new_saddr, sz4);
521 bpf_skb_store_bytes(skb, ETH_IP4_OFFSET(saddr), &new_saddr, sz4, 0);
522
523 // The offsets for TCP and UDP ports: source (u16 @ L4 offset 0) & dest (u16 @ L4 offset 2) are
524 // actually the same, so the compiler should just optimize them both down to a constant.
525 bpf_l4_csum_replace(skb, l4_offs_csum, k.srcPort, v->srcPort, sz2 | l4_flags);
526 bpf_skb_store_bytes(skb, is_tcp ? ETH_IP4_TCP_OFFSET(source) : ETH_IP4_UDP_OFFSET(source),
527 &v->srcPort, sz2, 0);
528
529 bpf_l4_csum_replace(skb, l4_offs_csum, k.dstPort, v->dstPort, sz2 | l4_flags);
530 bpf_skb_store_bytes(skb, is_tcp ? ETH_IP4_TCP_OFFSET(dest) : ETH_IP4_UDP_OFFSET(dest),
531 &v->dstPort, sz2, 0);
532
533 // This requires the bpf_ktime_get_boot_ns() helper which was added in 5.8,
534 // and backported to all Android Common Kernel 4.14+ trees.
535 if (updatetime) v->last_used = bpf_ktime_get_boot_ns();
536
537 __sync_fetch_and_add(downstream ? &stat_v->rxPackets : &stat_v->txPackets, packets);
538 __sync_fetch_and_add(downstream ? &stat_v->rxBytes : &stat_v->txBytes, L3_bytes);
539
540 // Redirect to forwarded interface.
541 //
542 // Note that bpf_redirect() cannot fail unless you pass invalid flags.
543 // The redirect actually happens after the ebpf program has already terminated,
544 // and can fail for example for mtu reasons at that point in time, but there's nothing
545 // we can do about it here.
546 return bpf_redirect(v->oif, 0 /* this is effectively BPF_F_EGRESS */);
547 }
548
do_forward4(struct __sk_buff * skb,const bool is_ethernet,const bool downstream,const bool updatetime,const unsigned kver)549 static inline __always_inline int do_forward4(struct __sk_buff* skb, const bool is_ethernet,
550 const bool downstream, const bool updatetime, const unsigned kver) {
551 // Require ethernet dst mac address to be our unicast address.
552 if (is_ethernet && (skb->pkt_type != PACKET_HOST)) return TC_ACT_PIPE;
553
554 // Must be meta-ethernet IPv4 frame
555 if (skb->protocol != htons(ETH_P_IP)) return TC_ACT_PIPE;
556
557 const int l2_header_size = is_ethernet ? sizeof(struct ethhdr) : 0;
558
559 // Since the program never writes via DPA (direct packet access) auto-pull/unclone logic does
560 // not trigger and thus we need to manually make sure we can read packet headers via DPA.
561 // Note: this is a blind best effort pull, which may fail or pull less - this doesn't matter.
562 // It has to be done early cause it will invalidate any skb->data/data_end derived pointers.
563 try_make_writable(skb, l2_header_size + IP4_HLEN + TCP_HLEN);
564
565 void* data = (void*)(long)skb->data;
566 const void* data_end = (void*)(long)skb->data_end;
567 struct ethhdr* eth = is_ethernet ? data : NULL; // used iff is_ethernet
568 struct iphdr* ip = is_ethernet ? (void*)(eth + 1) : data;
569
570 // Must have (ethernet and) ipv4 header
571 if (data + l2_header_size + sizeof(*ip) > data_end) return TC_ACT_PIPE;
572
573 // Ethertype - if present - must be IPv4
574 if (is_ethernet && (eth->h_proto != htons(ETH_P_IP))) return TC_ACT_PIPE;
575
576 // IP version must be 4
577 if (ip->version != 4) TC_PUNT(INVALID_IPV4_VERSION);
578
579 // We cannot handle IP options, just standard 20 byte == 5 dword minimal IPv4 header
580 if (ip->ihl != 5) TC_PUNT(HAS_IP_OPTIONS);
581
582 // Calculate the IPv4 one's complement checksum of the IPv4 header.
583 __wsum sum4 = 0;
584 for (int i = 0; i < sizeof(*ip) / sizeof(__u16); ++i) {
585 sum4 += ((__u16*)ip)[i];
586 }
587 // Note that sum4 is guaranteed to be non-zero by virtue of ip4->version == 4
588 sum4 = (sum4 & 0xFFFF) + (sum4 >> 16); // collapse u32 into range 1 .. 0x1FFFE
589 sum4 = (sum4 & 0xFFFF) + (sum4 >> 16); // collapse any potential carry into u16
590 // for a correct checksum we should get *a* zero, but sum4 must be positive, ie 0xFFFF
591 if (sum4 != 0xFFFF) TC_PUNT(CHECKSUM);
592
593 // Minimum IPv4 total length is the size of the header
594 if (ntohs(ip->tot_len) < sizeof(*ip)) TC_PUNT(TRUNCATED_IPV4);
595
596 // We are incapable of dealing with IPv4 fragments
597 if (ip->frag_off & ~htons(IP_DF)) TC_PUNT(IS_IP_FRAG);
598
599 // Cannot decrement during forward if already zero or would be zero,
600 // Let the kernel's stack handle these cases and generate appropriate ICMP errors.
601 if (ip->ttl <= 1) TC_PUNT(LOW_TTL);
602
603 // If we cannot update the 'last_used' field due to lack of bpf_ktime_get_boot_ns() helper,
604 // then it is not safe to offload UDP due to the small conntrack timeouts, as such,
605 // in such a situation we can only support TCP. This also has the added nice benefit of
606 // using a separate error counter, and thus making it obvious which version of the program
607 // is loaded.
608 if (!updatetime && ip->protocol != IPPROTO_TCP) TC_PUNT(NON_TCP);
609
610 // We do not support offloading anything besides IPv4 TCP and UDP, due to need for NAT,
611 // but no need to check this if !updatetime due to check immediately above.
612 if (updatetime && (ip->protocol != IPPROTO_TCP) && (ip->protocol != IPPROTO_UDP))
613 TC_PUNT(NON_TCP_UDP);
614
615 // We want to make sure that the compiler will, in the !updatetime case, entirely optimize
616 // out all the non-tcp logic. Also note that at this point is_udp === !is_tcp.
617 const bool is_tcp = !updatetime || (ip->protocol == IPPROTO_TCP);
618
619 // This is a bit of a hack to make things easier on the bpf verifier.
620 // (In particular I believe the Linux 4.14 kernel's verifier can get confused later on about
621 // what offsets into the packet are valid and can spuriously reject the program, this is
622 // because it fails to realize that is_tcp && !is_tcp is impossible)
623 //
624 // For both TCP & UDP we'll need to read and modify the src/dst ports, which so happen to
625 // always be in the first 4 bytes of the L4 header. Additionally for UDP we'll need access
626 // to the checksum field which is in bytes 7 and 8. While for TCP we'll need to read the
627 // TCP flags (at offset 13) and access to the checksum field (2 bytes at offset 16).
628 // As such we *always* need access to at least 8 bytes.
629 if (data + l2_header_size + sizeof(*ip) + 8 > data_end) TC_PUNT(SHORT_L4_HEADER);
630
631 // We're forcing the compiler to emit two copies of the following code, optimized
632 // separately for is_tcp being true or false. This simplifies the resulting bpf
633 // byte code sufficiently that the 4.14 bpf verifier is able to keep track of things.
634 // Without this (updatetime == true) case would fail to bpf verify on 4.14 even
635 // if the underlying requisite kernel support (bpf_ktime_get_boot_ns) was backported.
636 if (is_tcp) {
637 return do_forward4_bottom(skb, l2_header_size, data, data_end, eth, ip,
638 is_ethernet, downstream, updatetime, /* is_tcp */ true, kver);
639 } else {
640 return do_forward4_bottom(skb, l2_header_size, data, data_end, eth, ip,
641 is_ethernet, downstream, updatetime, /* is_tcp */ false, kver);
642 }
643 }
644
645 // Full featured (required) implementations for 5.8+ kernels (these are S+ by definition)
646
647 DEFINE_BPF_PROG_KVER("schedcls/tether_downstream4_rawip$5_8", TETHERING_UID, TETHERING_GID,
648 sched_cls_tether_downstream4_rawip_5_8, KVER(5, 8, 0))
649 (struct __sk_buff* skb) {
650 return do_forward4(skb, RAWIP, DOWNSTREAM, UPDATETIME, KVER(5, 8, 0));
651 }
652
653 DEFINE_BPF_PROG_KVER("schedcls/tether_upstream4_rawip$5_8", TETHERING_UID, TETHERING_GID,
654 sched_cls_tether_upstream4_rawip_5_8, KVER(5, 8, 0))
655 (struct __sk_buff* skb) {
656 return do_forward4(skb, RAWIP, UPSTREAM, UPDATETIME, KVER(5, 8, 0));
657 }
658
659 DEFINE_BPF_PROG_KVER("schedcls/tether_downstream4_ether$5_8", TETHERING_UID, TETHERING_GID,
660 sched_cls_tether_downstream4_ether_5_8, KVER(5, 8, 0))
661 (struct __sk_buff* skb) {
662 return do_forward4(skb, ETHER, DOWNSTREAM, UPDATETIME, KVER(5, 8, 0));
663 }
664
665 DEFINE_BPF_PROG_KVER("schedcls/tether_upstream4_ether$5_8", TETHERING_UID, TETHERING_GID,
666 sched_cls_tether_upstream4_ether_5_8, KVER(5, 8, 0))
667 (struct __sk_buff* skb) {
668 return do_forward4(skb, ETHER, UPSTREAM, UPDATETIME, KVER(5, 8, 0));
669 }
670
671 // Full featured (optional) implementations for 4.14-S, 4.19-S & 5.4-S kernels
672 // (optional, because we need to be able to fallback for 4.14/4.19/5.4 pre-S kernels)
673
674 DEFINE_OPTIONAL_BPF_PROG_KVER_RANGE("schedcls/tether_downstream4_rawip$opt",
675 TETHERING_UID, TETHERING_GID,
676 sched_cls_tether_downstream4_rawip_opt,
677 KVER(4, 14, 0), KVER(5, 8, 0))
678 (struct __sk_buff* skb) {
679 return do_forward4(skb, RAWIP, DOWNSTREAM, UPDATETIME, KVER(4, 14, 0));
680 }
681
682 DEFINE_OPTIONAL_BPF_PROG_KVER_RANGE("schedcls/tether_upstream4_rawip$opt",
683 TETHERING_UID, TETHERING_GID,
684 sched_cls_tether_upstream4_rawip_opt,
685 KVER(4, 14, 0), KVER(5, 8, 0))
686 (struct __sk_buff* skb) {
687 return do_forward4(skb, RAWIP, UPSTREAM, UPDATETIME, KVER(4, 14, 0));
688 }
689
690 DEFINE_OPTIONAL_BPF_PROG_KVER_RANGE("schedcls/tether_downstream4_ether$opt",
691 TETHERING_UID, TETHERING_GID,
692 sched_cls_tether_downstream4_ether_opt,
693 KVER(4, 14, 0), KVER(5, 8, 0))
694 (struct __sk_buff* skb) {
695 return do_forward4(skb, ETHER, DOWNSTREAM, UPDATETIME, KVER(4, 14, 0));
696 }
697
698 DEFINE_OPTIONAL_BPF_PROG_KVER_RANGE("schedcls/tether_upstream4_ether$opt",
699 TETHERING_UID, TETHERING_GID,
700 sched_cls_tether_upstream4_ether_opt,
701 KVER(4, 14, 0), KVER(5, 8, 0))
702 (struct __sk_buff* skb) {
703 return do_forward4(skb, ETHER, UPSTREAM, UPDATETIME, KVER(4, 14, 0));
704 }
705
706 // Partial (TCP-only: will not update 'last_used' field) implementations for 4.14+ kernels.
707 // These will be loaded only if the above optional ones failed (loading of *these* must succeed
708 // for 5.4+, since that is always an R patched kernel).
709 //
710 // [Note: as a result TCP connections will not have their conntrack timeout refreshed, however,
711 // since /proc/sys/net/netfilter/nf_conntrack_tcp_timeout_established defaults to 432000 (seconds),
712 // this in practice means they'll break only after 5 days. This seems an acceptable trade-off.
713 //
714 // Additionally kernel/tests change "net-test: add bpf_ktime_get_ns / bpf_ktime_get_boot_ns tests"
715 // which enforces and documents the required kernel cherrypicks will make it pretty unlikely that
716 // many devices upgrading to S will end up relying on these fallback programs.
717
718 // RAWIP: Required for 5.4-R kernels -- which always support bpf_skb_change_head().
719
720 DEFINE_BPF_PROG_KVER_RANGE("schedcls/tether_downstream4_rawip$5_4", TETHERING_UID, TETHERING_GID,
721 sched_cls_tether_downstream4_rawip_5_4, KVER(5, 4, 0), KVER(5, 8, 0))
722 (struct __sk_buff* skb) {
723 return do_forward4(skb, RAWIP, DOWNSTREAM, NO_UPDATETIME, KVER(5, 4, 0));
724 }
725
726 DEFINE_BPF_PROG_KVER_RANGE("schedcls/tether_upstream4_rawip$5_4", TETHERING_UID, TETHERING_GID,
727 sched_cls_tether_upstream4_rawip_5_4, KVER(5, 4, 0), KVER(5, 8, 0))
728 (struct __sk_buff* skb) {
729 return do_forward4(skb, RAWIP, UPSTREAM, NO_UPDATETIME, KVER(5, 4, 0));
730 }
731
732 // RAWIP: Optional for 4.14/4.19 (R) kernels -- which support bpf_skb_change_head().
733 // [Note: fallback for 4.14/4.19 (P/Q) kernels is below in stub section]
734
735 DEFINE_OPTIONAL_BPF_PROG_KVER_RANGE("schedcls/tether_downstream4_rawip$4_14",
736 TETHERING_UID, TETHERING_GID,
737 sched_cls_tether_downstream4_rawip_4_14,
738 KVER(4, 14, 0), KVER(5, 4, 0))
739 (struct __sk_buff* skb) {
740 return do_forward4(skb, RAWIP, DOWNSTREAM, NO_UPDATETIME, KVER(4, 14, 0));
741 }
742
743 DEFINE_OPTIONAL_BPF_PROG_KVER_RANGE("schedcls/tether_upstream4_rawip$4_14",
744 TETHERING_UID, TETHERING_GID,
745 sched_cls_tether_upstream4_rawip_4_14,
746 KVER(4, 14, 0), KVER(5, 4, 0))
747 (struct __sk_buff* skb) {
748 return do_forward4(skb, RAWIP, UPSTREAM, NO_UPDATETIME, KVER(4, 14, 0));
749 }
750
751 // ETHER: Required for 4.14-Q/R, 4.19-Q/R & 5.4-R kernels.
752
753 DEFINE_BPF_PROG_KVER_RANGE("schedcls/tether_downstream4_ether$4_14", TETHERING_UID, TETHERING_GID,
754 sched_cls_tether_downstream4_ether_4_14, KVER(4, 14, 0), KVER(5, 8, 0))
755 (struct __sk_buff* skb) {
756 return do_forward4(skb, ETHER, DOWNSTREAM, NO_UPDATETIME, KVER(4, 14, 0));
757 }
758
759 DEFINE_BPF_PROG_KVER_RANGE("schedcls/tether_upstream4_ether$4_14", TETHERING_UID, TETHERING_GID,
760 sched_cls_tether_upstream4_ether_4_14, KVER(4, 14, 0), KVER(5, 8, 0))
761 (struct __sk_buff* skb) {
762 return do_forward4(skb, ETHER, UPSTREAM, NO_UPDATETIME, KVER(4, 14, 0));
763 }
764
765 // Placeholder (no-op) implementations for older Q kernels
766
767 // RAWIP: 4.9-P/Q, 4.14-P/Q & 4.19-Q kernels -- without bpf_skb_change_head() for tc programs
768
769 DEFINE_BPF_PROG_KVER_RANGE("schedcls/tether_downstream4_rawip$stub", TETHERING_UID, TETHERING_GID,
770 sched_cls_tether_downstream4_rawip_stub, KVER_NONE, KVER(5, 4, 0))
771 (struct __sk_buff* skb) {
772 return TC_ACT_PIPE;
773 }
774
775 DEFINE_BPF_PROG_KVER_RANGE("schedcls/tether_upstream4_rawip$stub", TETHERING_UID, TETHERING_GID,
776 sched_cls_tether_upstream4_rawip_stub, KVER_NONE, KVER(5, 4, 0))
777 (struct __sk_buff* skb) {
778 return TC_ACT_PIPE;
779 }
780
781 // ETHER: 4.9-P/Q kernel
782
783 DEFINE_BPF_PROG_KVER_RANGE("schedcls/tether_downstream4_ether$stub", TETHERING_UID, TETHERING_GID,
784 sched_cls_tether_downstream4_ether_stub, KVER_NONE, KVER(4, 14, 0))
785 (struct __sk_buff* skb) {
786 return TC_ACT_PIPE;
787 }
788
789 DEFINE_BPF_PROG_KVER_RANGE("schedcls/tether_upstream4_ether$stub", TETHERING_UID, TETHERING_GID,
790 sched_cls_tether_upstream4_ether_stub, KVER_NONE, KVER(4, 14, 0))
791 (struct __sk_buff* skb) {
792 return TC_ACT_PIPE;
793 }
794
795 // ----- XDP Support -----
796
797 DEFINE_BPF_MAP_GRW(tether_dev_map, DEVMAP_HASH, uint32_t, uint32_t, 64, TETHERING_GID)
798
do_xdp_forward6(struct xdp_md * ctx,const bool is_ethernet,const bool downstream)799 static inline __always_inline int do_xdp_forward6(struct xdp_md *ctx, const bool is_ethernet,
800 const bool downstream) {
801 return XDP_PASS;
802 }
803
do_xdp_forward4(struct xdp_md * ctx,const bool is_ethernet,const bool downstream)804 static inline __always_inline int do_xdp_forward4(struct xdp_md *ctx, const bool is_ethernet,
805 const bool downstream) {
806 return XDP_PASS;
807 }
808
do_xdp_forward_ether(struct xdp_md * ctx,const bool downstream)809 static inline __always_inline int do_xdp_forward_ether(struct xdp_md *ctx, const bool downstream) {
810 const void* data = (void*)(long)ctx->data;
811 const void* data_end = (void*)(long)ctx->data_end;
812 const struct ethhdr* eth = data;
813
814 // Make sure we actually have an ethernet header
815 if ((void*)(eth + 1) > data_end) return XDP_PASS;
816
817 if (eth->h_proto == htons(ETH_P_IPV6))
818 return do_xdp_forward6(ctx, ETHER, downstream);
819 if (eth->h_proto == htons(ETH_P_IP))
820 return do_xdp_forward4(ctx, ETHER, downstream);
821
822 // Anything else we don't know how to handle...
823 return XDP_PASS;
824 }
825
do_xdp_forward_rawip(struct xdp_md * ctx,const bool downstream)826 static inline __always_inline int do_xdp_forward_rawip(struct xdp_md *ctx, const bool downstream) {
827 const void* data = (void*)(long)ctx->data;
828 const void* data_end = (void*)(long)ctx->data_end;
829
830 // The top nibble of both IPv4 and IPv6 headers is the IP version.
831 if (data_end - data < 1) return XDP_PASS;
832 const uint8_t v = (*(uint8_t*)data) >> 4;
833
834 if (v == 6) return do_xdp_forward6(ctx, RAWIP, downstream);
835 if (v == 4) return do_xdp_forward4(ctx, RAWIP, downstream);
836
837 // Anything else we don't know how to handle...
838 return XDP_PASS;
839 }
840
841 #define DEFINE_XDP_PROG(str, func) \
842 DEFINE_BPF_PROG_KVER(str, TETHERING_UID, TETHERING_GID, func, KVER(5, 9, 0))(struct xdp_md *ctx)
843
844 DEFINE_XDP_PROG("xdp/tether_downstream_ether",
845 xdp_tether_downstream_ether) {
846 return do_xdp_forward_ether(ctx, DOWNSTREAM);
847 }
848
849 DEFINE_XDP_PROG("xdp/tether_downstream_rawip",
850 xdp_tether_downstream_rawip) {
851 return do_xdp_forward_rawip(ctx, DOWNSTREAM);
852 }
853
854 DEFINE_XDP_PROG("xdp/tether_upstream_ether",
855 xdp_tether_upstream_ether) {
856 return do_xdp_forward_ether(ctx, UPSTREAM);
857 }
858
859 DEFINE_XDP_PROG("xdp/tether_upstream_rawip",
860 xdp_tether_upstream_rawip) {
861 return do_xdp_forward_rawip(ctx, UPSTREAM);
862 }
863
864 LICENSE("Apache 2.0");
865 CRITICAL("Connectivity (Tethering)");
866