1 /*
2 * Copyright (C) 2008 The Android Open Source Project
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * * Redistributions of source code must retain the above copyright
9 * notice, this list of conditions and the following disclaimer.
10 * * Redistributions in binary form must reproduce the above copyright
11 * notice, this list of conditions and the following disclaimer in
12 * the documentation and/or other materials provided with the
13 * distribution.
14 *
15 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
16 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
17 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
18 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
19 * COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
20 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
21 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
22 * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
23 * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
24 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
25 * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26 * SUCH DAMAGE.
27 */
28
29 #define LOG_TAG "resolv"
30
31 #include "resolv_cache.h"
32
33 #include <resolv.h>
34 #include <stdarg.h>
35 #include <stdlib.h>
36 #include <string.h>
37 #include <time.h>
38 #include <algorithm>
39 #include <mutex>
40 #include <set>
41 #include <string>
42 #include <unordered_map>
43 #include <vector>
44
45 #include <arpa/inet.h>
46 #include <arpa/nameser.h>
47 #include <errno.h>
48 #include <linux/if.h>
49 #include <net/if.h>
50 #include <netdb.h>
51
52 #include <aidl/android/net/IDnsResolver.h>
53 #include <android-base/logging.h>
54 #include <android-base/parseint.h>
55 #include <android-base/strings.h>
56 #include <android-base/thread_annotations.h>
57 #include <android/multinetwork.h> // ResNsendFlags
58
59 #include <server_configurable_flags/get_flags.h>
60
61 #include "DnsStats.h"
62 #include "Experiments.h"
63 #include "res_comp.h"
64 #include "res_debug.h"
65 #include "resolv_private.h"
66 #include "util.h"
67
68 using aidl::android::net::IDnsResolver;
69 using aidl::android::net::ResolverOptionsParcel;
70 using android::net::DnsQueryEvent;
71 using android::net::DnsStats;
72 using android::net::Experiments;
73 using android::net::PROTO_TCP;
74 using android::net::PROTO_UDP;
75 using android::net::Protocol;
76 using android::netdutils::DumpWriter;
77 using android::netdutils::IPSockAddr;
78 using std::span;
79
80 /* This code implements a small and *simple* DNS resolver cache.
81 *
82 * It is only used to cache DNS answers for a time defined by the smallest TTL
83 * among the answer records in order to reduce DNS traffic. It is not supposed
84 * to be a full DNS cache, since we plan to implement that in the future in a
85 * dedicated process running on the system.
86 *
87 * Note that its design is kept simple very intentionally, i.e.:
88 *
89 * - it takes raw DNS query packet data as input, and returns raw DNS
90 * answer packet data as output
91 *
92 * (this means that two similar queries that encode the DNS name
93 * differently will be treated distinctly).
94 *
95 * the smallest TTL value among the answer records are used as the time
96 * to keep an answer in the cache.
97 *
98 * this is bad, but we absolutely want to avoid parsing the answer packets
99 * (and should be solved by the later full DNS cache process).
100 *
101 * - the implementation is just a (query-data) => (answer-data) hash table
102 * with a trivial least-recently-used expiration policy.
103 *
104 * Doing this keeps the code simple and avoids to deal with a lot of things
105 * that a full DNS cache is expected to do.
106 *
107 * The API is also very simple:
108 *
109 * - the client calls resolv_cache_lookup() before performing a query
110 *
111 * If the function returns RESOLV_CACHE_FOUND, a copy of the answer data
112 * has been copied into the client-provided answer buffer.
113 *
114 * If the function returns RESOLV_CACHE_NOTFOUND, the client should perform
115 * a request normally, *then* call resolv_cache_add() to add the received
116 * answer to the cache.
117 *
118 * If the function returns RESOLV_CACHE_UNSUPPORTED, the client should
119 * perform a request normally, and *not* call resolv_cache_add()
120 *
121 * Note that RESOLV_CACHE_UNSUPPORTED is also returned if the answer buffer
122 * is too short to accomodate the cached result.
123 */
124
125 /* Default number of entries kept in the cache. This value has been
126 * determined by browsing through various sites and counting the number
127 * of corresponding requests. Keep in mind that our framework is currently
128 * performing two requests per name lookup (one for IPv4, the other for IPv6)
129 *
130 * www.google.com 4
131 * www.ysearch.com 6
132 * www.amazon.com 8
133 * www.nytimes.com 22
134 * www.espn.com 28
135 * www.msn.com 28
136 * www.lemonde.fr 35
137 *
138 * (determined in 2009-2-17 from Paris, France, results may vary depending
139 * on location)
140 *
141 * most high-level websites use lots of media/ad servers with different names
142 * but these are generally reused when browsing through the site.
143 *
144 * As such, a value of 64 should be relatively comfortable at the moment.
145 *
146 * ******************************************
147 * * NOTE - this has changed.
148 * * 1) we've added IPv6 support so each dns query results in 2 responses
149 * * 2) we've made this a system-wide cache, so the cost is less (it's not
150 * * duplicated in each process) and the need is greater (more processes
151 * * making different requests).
152 * * Upping by 2x for IPv6
153 * * Upping by another 5x for the centralized nature
154 * *****************************************
155 */
156 const int MAX_ENTRIES_DEFAULT = 64 * 2 * 5;
157 const int MAX_ENTRIES_UPPER_BOUND = 100 * 1000;
158 constexpr int DNSEVENT_SUBSAMPLING_MAP_DEFAULT_KEY = -1;
159
_time_now(void)160 static time_t _time_now(void) {
161 struct timeval tv;
162
163 gettimeofday(&tv, NULL);
164 return tv.tv_sec;
165 }
166
167 /* reminder: the general format of a DNS packet is the following:
168 *
169 * HEADER (12 bytes)
170 * QUESTION (variable)
171 * ANSWER (variable)
172 * AUTHORITY (variable)
173 * ADDITIONNAL (variable)
174 *
175 * the HEADER is made of:
176 *
177 * ID : 16 : 16-bit unique query identification field
178 *
179 * QR : 1 : set to 0 for queries, and 1 for responses
180 * Opcode : 4 : set to 0 for queries
181 * AA : 1 : set to 0 for queries
182 * TC : 1 : truncation flag, will be set to 0 in queries
183 * RD : 1 : recursion desired
184 *
185 * RA : 1 : recursion available (0 in queries)
186 * Z : 3 : three reserved zero bits
187 * RCODE : 4 : response code (always 0=NOERROR in queries)
188 *
189 * QDCount: 16 : question count
190 * ANCount: 16 : Answer count (0 in queries)
191 * NSCount: 16: Authority Record count (0 in queries)
192 * ARCount: 16: Additionnal Record count (0 in queries)
193 *
194 * the QUESTION is made of QDCount Question Record (QRs)
195 * the ANSWER is made of ANCount RRs
196 * the AUTHORITY is made of NSCount RRs
197 * the ADDITIONNAL is made of ARCount RRs
198 *
199 * Each Question Record (QR) is made of:
200 *
201 * QNAME : variable : Query DNS NAME
202 * TYPE : 16 : type of query (A=1, PTR=12, MX=15, AAAA=28, ALL=255)
203 * CLASS : 16 : class of query (IN=1)
204 *
205 * Each Resource Record (RR) is made of:
206 *
207 * NAME : variable : DNS NAME
208 * TYPE : 16 : type of query (A=1, PTR=12, MX=15, AAAA=28, ALL=255)
209 * CLASS : 16 : class of query (IN=1)
210 * TTL : 32 : seconds to cache this RR (0=none)
211 * RDLENGTH: 16 : size of RDDATA in bytes
212 * RDDATA : variable : RR data (depends on TYPE)
213 *
214 * Each QNAME contains a domain name encoded as a sequence of 'labels'
215 * terminated by a zero. Each label has the following format:
216 *
217 * LEN : 8 : lenght of label (MUST be < 64)
218 * NAME : 8*LEN : label length (must exclude dots)
219 *
220 * A value of 0 in the encoding is interpreted as the 'root' domain and
221 * terminates the encoding. So 'www.android.com' will be encoded as:
222 *
223 * <3>www<7>android<3>com<0>
224 *
225 * Where <n> represents the byte with value 'n'
226 *
227 * Each NAME reflects the QNAME of the question, but has a slightly more
228 * complex encoding in order to provide message compression. This is achieved
229 * by using a 2-byte pointer, with format:
230 *
231 * TYPE : 2 : 0b11 to indicate a pointer, 0b01 and 0b10 are reserved
232 * OFFSET : 14 : offset to another part of the DNS packet
233 *
234 * The offset is relative to the start of the DNS packet and must point
235 * A pointer terminates the encoding.
236 *
237 * The NAME can be encoded in one of the following formats:
238 *
239 * - a sequence of simple labels terminated by 0 (like QNAMEs)
240 * - a single pointer
241 * - a sequence of simple labels terminated by a pointer
242 *
243 * A pointer shall always point to either a pointer of a sequence of
244 * labels (which can themselves be terminated by either a 0 or a pointer)
245 *
246 * The expanded length of a given domain name should not exceed 255 bytes.
247 *
248 * NOTE: we don't parse the answer packets, so don't need to deal with NAME
249 * records, only QNAMEs.
250 */
251
252 #define DNS_HEADER_SIZE 12
253
254 #define DNS_TYPE_A "\00\01" /* big-endian decimal 1 */
255 #define DNS_TYPE_PTR "\00\014" /* big-endian decimal 12 */
256 #define DNS_TYPE_MX "\00\017" /* big-endian decimal 15 */
257 #define DNS_TYPE_AAAA "\00\034" /* big-endian decimal 28 */
258 #define DNS_TYPE_ALL "\00\0377" /* big-endian decimal 255 */
259
260 #define DNS_CLASS_IN "\00\01" /* big-endian decimal 1 */
261
262 struct DnsPacket {
263 const uint8_t* base;
264 const uint8_t* end;
265 const uint8_t* cursor;
266 };
267
res_tolower(uint8_t c)268 static uint8_t res_tolower(uint8_t c) {
269 return (c >= 'A' && c <= 'Z') ? (c | 0x20) : c;
270 }
271
res_memcasecmp(const unsigned char * s1,const unsigned char * s2,size_t len)272 static int res_memcasecmp(const unsigned char *s1, const unsigned char *s2, size_t len) {
273 for (size_t i = 0; i < len; i++) {
274 int ch1 = *s1++;
275 int ch2 = *s2++;
276 int d = res_tolower(ch1) - res_tolower(ch2);
277 if (d != 0) {
278 return d;
279 }
280 }
281 return 0;
282 }
283
_dnsPacket_init(DnsPacket * packet,const uint8_t * buff,int bufflen)284 static void _dnsPacket_init(DnsPacket* packet, const uint8_t* buff, int bufflen) {
285 packet->base = buff;
286 packet->end = buff + bufflen;
287 packet->cursor = buff;
288 }
289
_dnsPacket_rewind(DnsPacket * packet)290 static void _dnsPacket_rewind(DnsPacket* packet) {
291 packet->cursor = packet->base;
292 }
293
_dnsPacket_skip(DnsPacket * packet,int count)294 static void _dnsPacket_skip(DnsPacket* packet, int count) {
295 const uint8_t* p = packet->cursor + count;
296
297 if (p > packet->end) p = packet->end;
298
299 packet->cursor = p;
300 }
301
_dnsPacket_readInt16(DnsPacket * packet)302 static int _dnsPacket_readInt16(DnsPacket* packet) {
303 const uint8_t* p = packet->cursor;
304
305 if (p + 2 > packet->end) return -1;
306
307 packet->cursor = p + 2;
308 return (p[0] << 8) | p[1];
309 }
310
311 /** QUERY CHECKING **/
312
313 /* check bytes in a dns packet. returns 1 on success, 0 on failure.
314 * the cursor is only advanced in the case of success
315 */
_dnsPacket_checkBytes(DnsPacket * packet,int numBytes,const void * bytes)316 static int _dnsPacket_checkBytes(DnsPacket* packet, int numBytes, const void* bytes) {
317 const uint8_t* p = packet->cursor;
318
319 if (p + numBytes > packet->end) return 0;
320
321 if (memcmp(p, bytes, numBytes) != 0) return 0;
322
323 packet->cursor = p + numBytes;
324 return 1;
325 }
326
327 /* parse and skip a given QNAME stored in a query packet,
328 * from the current cursor position. returns 1 on success,
329 * or 0 for malformed data.
330 */
_dnsPacket_checkQName(DnsPacket * packet)331 static int _dnsPacket_checkQName(DnsPacket* packet) {
332 const uint8_t* p = packet->cursor;
333 const uint8_t* end = packet->end;
334
335 for (;;) {
336 int c;
337
338 if (p >= end) break;
339
340 c = *p++;
341
342 if (c == 0) {
343 packet->cursor = p;
344 return 1;
345 }
346
347 /* we don't expect label compression in QNAMEs */
348 if (c >= 64) break;
349
350 p += c;
351 /* we rely on the bound check at the start
352 * of the loop here */
353 }
354 /* malformed data */
355 LOG(INFO) << __func__ << ": malformed QNAME";
356 return 0;
357 }
358
359 /* parse and skip a given QR stored in a packet.
360 * returns 1 on success, and 0 on failure
361 */
_dnsPacket_checkQR(DnsPacket * packet)362 static int _dnsPacket_checkQR(DnsPacket* packet) {
363 if (!_dnsPacket_checkQName(packet)) return 0;
364
365 /* TYPE must be one of the things we support */
366 if (!_dnsPacket_checkBytes(packet, 2, DNS_TYPE_A) &&
367 !_dnsPacket_checkBytes(packet, 2, DNS_TYPE_PTR) &&
368 !_dnsPacket_checkBytes(packet, 2, DNS_TYPE_MX) &&
369 !_dnsPacket_checkBytes(packet, 2, DNS_TYPE_AAAA) &&
370 !_dnsPacket_checkBytes(packet, 2, DNS_TYPE_ALL)) {
371 LOG(INFO) << __func__ << ": unsupported TYPE";
372 return 0;
373 }
374 /* CLASS must be IN */
375 if (!_dnsPacket_checkBytes(packet, 2, DNS_CLASS_IN)) {
376 LOG(INFO) << __func__ << ": unsupported CLASS";
377 return 0;
378 }
379
380 return 1;
381 }
382
383 /* check the header of a DNS Query packet, return 1 if it is one
384 * type of query we can cache, or 0 otherwise
385 */
_dnsPacket_checkQuery(DnsPacket * packet)386 static int _dnsPacket_checkQuery(DnsPacket* packet) {
387 const uint8_t* p = packet->base;
388 int qdCount, anCount, dnCount, arCount;
389
390 if (p + DNS_HEADER_SIZE > packet->end) {
391 LOG(INFO) << __func__ << ": query packet too small";
392 return 0;
393 }
394
395 /* QR must be set to 0, opcode must be 0 and AA must be 0 */
396 /* RA, Z, and RCODE must be 0 */
397 if ((p[2] & 0xFC) != 0 || (p[3] & 0xCF) != 0) {
398 LOG(INFO) << __func__ << ": query packet flags unsupported";
399 return 0;
400 }
401
402 /* Note that we ignore the TC, RD, CD, and AD bits here for the
403 * following reasons:
404 *
405 * - there is no point for a query packet sent to a server
406 * to have the TC bit set, but the implementation might
407 * set the bit in the query buffer for its own needs
408 * between a resolv_cache_lookup and a resolv_cache_add.
409 * We should not freak out if this is the case.
410 *
411 * - we consider that the result from a query might depend on
412 * the RD, AD, and CD bits, so these bits
413 * should be used to differentiate cached result.
414 *
415 * this implies that these bits are checked when hashing or
416 * comparing query packets, but not TC
417 */
418
419 /* ANCOUNT, DNCOUNT and ARCOUNT must be 0 */
420 qdCount = (p[4] << 8) | p[5];
421 anCount = (p[6] << 8) | p[7];
422 dnCount = (p[8] << 8) | p[9];
423 arCount = (p[10] << 8) | p[11];
424
425 if (anCount != 0 || dnCount != 0 || arCount > 1) {
426 LOG(INFO) << __func__ << ": query packet contains non-query records";
427 return 0;
428 }
429
430 if (qdCount == 0) {
431 LOG(INFO) << __func__ << ": query packet doesn't contain query record";
432 return 0;
433 }
434
435 /* Check QDCOUNT QRs */
436 packet->cursor = p + DNS_HEADER_SIZE;
437
438 for (; qdCount > 0; qdCount--)
439 if (!_dnsPacket_checkQR(packet)) return 0;
440
441 return 1;
442 }
443
444 /** QUERY HASHING SUPPORT
445 **
446 ** THE FOLLOWING CODE ASSUMES THAT THE INPUT PACKET HAS ALREADY
447 ** BEEN SUCCESFULLY CHECKED.
448 **/
449
450 /* use 32-bit FNV hash function */
451 #define FNV_MULT 16777619U
452 #define FNV_BASIS 2166136261U
453
_dnsPacket_hashBytes(DnsPacket * packet,int numBytes,unsigned hash)454 static unsigned _dnsPacket_hashBytes(DnsPacket* packet, int numBytes, unsigned hash) {
455 const uint8_t* p = packet->cursor;
456 const uint8_t* end = packet->end;
457
458 while (numBytes > 0 && p < end) {
459 hash = hash * FNV_MULT ^ *p++;
460 numBytes--;
461 }
462 packet->cursor = p;
463 return hash;
464 }
465
_dnsPacket_hashQName(DnsPacket * packet,unsigned hash)466 static unsigned _dnsPacket_hashQName(DnsPacket* packet, unsigned hash) {
467 const uint8_t* p = packet->cursor;
468 const uint8_t* end = packet->end;
469
470 for (;;) {
471 if (p >= end) { /* should not happen */
472 LOG(INFO) << __func__ << ": INTERNAL_ERROR: read-overflow";
473 break;
474 }
475
476 int c = *p++;
477
478 if (c == 0) break;
479
480 if (c >= 64) {
481 LOG(INFO) << __func__ << ": INTERNAL_ERROR: malformed domain";
482 break;
483 }
484 if (p + c >= end) {
485 LOG(INFO) << __func__ << ": INTERNAL_ERROR: simple label read-overflow";
486 break;
487 }
488
489 while (c > 0) {
490 uint8_t ch = *p++;
491 ch = res_tolower(ch);
492 hash = hash * FNV_MULT ^ ch;
493 c--;
494 }
495 }
496 packet->cursor = p;
497 return hash;
498 }
499
_dnsPacket_hashQR(DnsPacket * packet,unsigned hash)500 static unsigned _dnsPacket_hashQR(DnsPacket* packet, unsigned hash) {
501 hash = _dnsPacket_hashQName(packet, hash);
502 hash = _dnsPacket_hashBytes(packet, 4, hash); /* TYPE and CLASS */
503 return hash;
504 }
505
_dnsPacket_hashRR(DnsPacket * packet,unsigned hash)506 static unsigned _dnsPacket_hashRR(DnsPacket* packet, unsigned hash) {
507 int rdlength;
508 hash = _dnsPacket_hashQR(packet, hash);
509 hash = _dnsPacket_hashBytes(packet, 4, hash); /* TTL */
510 rdlength = _dnsPacket_readInt16(packet);
511 hash = _dnsPacket_hashBytes(packet, rdlength, hash); /* RDATA */
512 return hash;
513 }
514
_dnsPacket_hashQuery(DnsPacket * packet)515 static unsigned _dnsPacket_hashQuery(DnsPacket* packet) {
516 unsigned hash = FNV_BASIS;
517 int count, arcount;
518 _dnsPacket_rewind(packet);
519
520 /* ignore the ID */
521 _dnsPacket_skip(packet, 2);
522
523 /* we ignore the TC bit for reasons explained in
524 * _dnsPacket_checkQuery().
525 *
526 * however we hash the RD bit to differentiate
527 * between answers for recursive and non-recursive
528 * queries.
529 */
530 hash = hash * FNV_MULT ^ (packet->base[2] & 1);
531
532 /* mark the first header byte as processed */
533 _dnsPacket_skip(packet, 1);
534
535 /* process the second header byte */
536 hash = _dnsPacket_hashBytes(packet, 1, hash);
537
538 /* read QDCOUNT */
539 count = _dnsPacket_readInt16(packet);
540
541 /* assume: ANcount and NScount are 0 */
542 _dnsPacket_skip(packet, 4);
543
544 /* read ARCOUNT */
545 arcount = _dnsPacket_readInt16(packet);
546
547 /* hash QDCOUNT QRs */
548 for (; count > 0; count--) hash = _dnsPacket_hashQR(packet, hash);
549
550 /* hash ARCOUNT RRs */
551 for (; arcount > 0; arcount--) hash = _dnsPacket_hashRR(packet, hash);
552
553 return hash;
554 }
555
556 /** QUERY COMPARISON
557 **
558 ** THE FOLLOWING CODE ASSUMES THAT THE INPUT PACKETS HAVE ALREADY
559 ** BEEN SUCCESSFULLY CHECKED.
560 **/
561
_dnsPacket_isEqualDomainName(DnsPacket * pack1,DnsPacket * pack2)562 static int _dnsPacket_isEqualDomainName(DnsPacket* pack1, DnsPacket* pack2) {
563 const uint8_t* p1 = pack1->cursor;
564 const uint8_t* end1 = pack1->end;
565 const uint8_t* p2 = pack2->cursor;
566 const uint8_t* end2 = pack2->end;
567
568 for (;;) {
569 if (p1 >= end1 || p2 >= end2) {
570 LOG(INFO) << __func__ << ": INTERNAL_ERROR: read-overflow";
571 break;
572 }
573 int c1 = *p1++;
574 int c2 = *p2++;
575 if (c1 != c2) break;
576
577 if (c1 == 0) {
578 pack1->cursor = p1;
579 pack2->cursor = p2;
580 return 1;
581 }
582 if (c1 >= 64) {
583 LOG(INFO) << __func__ << ": INTERNAL_ERROR: malformed domain";
584 break;
585 }
586 if ((p1 + c1 > end1) || (p2 + c1 > end2)) {
587 LOG(INFO) << __func__ << ": INTERNAL_ERROR: simple label read-overflow";
588 break;
589 }
590 if (res_memcasecmp(p1, p2, c1) != 0) break;
591 p1 += c1;
592 p2 += c1;
593 /* we rely on the bound checks at the start of the loop */
594 }
595 /* not the same, or one is malformed */
596 LOG(INFO) << __func__ << ": different DN";
597 return 0;
598 }
599
_dnsPacket_isEqualBytes(DnsPacket * pack1,DnsPacket * pack2,int numBytes)600 static int _dnsPacket_isEqualBytes(DnsPacket* pack1, DnsPacket* pack2, int numBytes) {
601 const uint8_t* p1 = pack1->cursor;
602 const uint8_t* p2 = pack2->cursor;
603
604 if (p1 + numBytes > pack1->end || p2 + numBytes > pack2->end) return 0;
605
606 if (memcmp(p1, p2, numBytes) != 0) return 0;
607
608 pack1->cursor += numBytes;
609 pack2->cursor += numBytes;
610 return 1;
611 }
612
_dnsPacket_isEqualQR(DnsPacket * pack1,DnsPacket * pack2)613 static int _dnsPacket_isEqualQR(DnsPacket* pack1, DnsPacket* pack2) {
614 /* compare domain name encoding + TYPE + CLASS */
615 if (!_dnsPacket_isEqualDomainName(pack1, pack2) ||
616 !_dnsPacket_isEqualBytes(pack1, pack2, 2 + 2))
617 return 0;
618
619 return 1;
620 }
621
_dnsPacket_isEqualRR(DnsPacket * pack1,DnsPacket * pack2)622 static int _dnsPacket_isEqualRR(DnsPacket* pack1, DnsPacket* pack2) {
623 int rdlength1, rdlength2;
624 /* compare query + TTL */
625 if (!_dnsPacket_isEqualQR(pack1, pack2) || !_dnsPacket_isEqualBytes(pack1, pack2, 4)) return 0;
626
627 /* compare RDATA */
628 rdlength1 = _dnsPacket_readInt16(pack1);
629 rdlength2 = _dnsPacket_readInt16(pack2);
630 if (rdlength1 != rdlength2 || !_dnsPacket_isEqualBytes(pack1, pack2, rdlength1)) return 0;
631
632 return 1;
633 }
634
_dnsPacket_isEqualQuery(DnsPacket * pack1,DnsPacket * pack2)635 static int _dnsPacket_isEqualQuery(DnsPacket* pack1, DnsPacket* pack2) {
636 int count1, count2, arcount1, arcount2;
637
638 /* compare the headers, ignore most fields */
639 _dnsPacket_rewind(pack1);
640 _dnsPacket_rewind(pack2);
641
642 /* compare RD, ignore TC, see comment in _dnsPacket_checkQuery */
643 if ((pack1->base[2] & 1) != (pack2->base[2] & 1)) {
644 LOG(INFO) << __func__ << ": different RD";
645 return 0;
646 }
647
648 if (pack1->base[3] != pack2->base[3]) {
649 LOG(INFO) << __func__ << ": different CD or AD";
650 return 0;
651 }
652
653 /* mark ID and header bytes as compared */
654 _dnsPacket_skip(pack1, 4);
655 _dnsPacket_skip(pack2, 4);
656
657 /* compare QDCOUNT */
658 count1 = _dnsPacket_readInt16(pack1);
659 count2 = _dnsPacket_readInt16(pack2);
660 if (count1 != count2 || count1 < 0) {
661 LOG(INFO) << __func__ << ": different QDCOUNT";
662 return 0;
663 }
664
665 /* assume: ANcount and NScount are 0 */
666 _dnsPacket_skip(pack1, 4);
667 _dnsPacket_skip(pack2, 4);
668
669 /* compare ARCOUNT */
670 arcount1 = _dnsPacket_readInt16(pack1);
671 arcount2 = _dnsPacket_readInt16(pack2);
672 if (arcount1 != arcount2 || arcount1 < 0) {
673 LOG(INFO) << __func__ << ": different ARCOUNT";
674 return 0;
675 }
676
677 /* compare the QDCOUNT QRs */
678 for (; count1 > 0; count1--) {
679 if (!_dnsPacket_isEqualQR(pack1, pack2)) {
680 LOG(INFO) << __func__ << ": different QR";
681 return 0;
682 }
683 }
684
685 /* compare the ARCOUNT RRs */
686 for (; arcount1 > 0; arcount1--) {
687 if (!_dnsPacket_isEqualRR(pack1, pack2)) {
688 LOG(INFO) << __func__ << ": different additional RR";
689 return 0;
690 }
691 }
692 return 1;
693 }
694
695 /* cache entry. for simplicity, 'hash' and 'hlink' are inlined in this
696 * structure though they are conceptually part of the hash table.
697 *
698 * similarly, mru_next and mru_prev are part of the global MRU list
699 */
700 struct Entry {
701 unsigned int hash; /* hash value */
702 struct Entry* hlink; /* next in collision chain */
703 struct Entry* mru_prev;
704 struct Entry* mru_next;
705
706 const uint8_t* query;
707 int querylen;
708 const uint8_t* answer;
709 int answerlen;
710 time_t expires; /* time_t when the entry isn't valid any more */
711 int id; /* for debugging purpose */
712 };
713
714 /*
715 * Find the TTL for a negative DNS result. This is defined as the minimum
716 * of the SOA records TTL and the MINIMUM-TTL field (RFC-2308).
717 *
718 * Return 0 if not found.
719 */
answer_getNegativeTTL(ns_msg handle)720 static uint32_t answer_getNegativeTTL(ns_msg handle) {
721 int n, nscount;
722 uint32_t result = 0;
723 ns_rr rr;
724
725 nscount = ns_msg_count(handle, ns_s_ns);
726 for (n = 0; n < nscount; n++) {
727 if ((ns_parserr(&handle, ns_s_ns, n, &rr) == 0) && (ns_rr_type(rr) == ns_t_soa)) {
728 const uint8_t* rdata = ns_rr_rdata(rr); // find the data
729 const uint8_t* edata = rdata + ns_rr_rdlen(rr); // add the len to find the end
730 int len;
731 uint32_t ttl, rec_result = rr.ttl;
732
733 // find the MINIMUM-TTL field from the blob of binary data for this record
734 // skip the server name
735 len = dn_skipname(rdata, edata);
736 if (len == -1) continue; // error skipping
737 rdata += len;
738
739 // skip the admin name
740 len = dn_skipname(rdata, edata);
741 if (len == -1) continue; // error skipping
742 rdata += len;
743
744 if (edata - rdata != 5 * NS_INT32SZ) continue;
745 // skip: serial number + refresh interval + retry interval + expiry
746 rdata += NS_INT32SZ * 4;
747 // finally read the MINIMUM TTL
748 ttl = ntohl(*reinterpret_cast<const uint32_t*>(rdata));
749 if (ttl < rec_result) {
750 rec_result = ttl;
751 }
752 // Now that the record is read successfully, apply the new min TTL
753 if (n == 0 || rec_result < result) {
754 result = rec_result;
755 }
756 }
757 }
758 return result;
759 }
760
761 /*
762 * Parse the answer records and find the appropriate
763 * smallest TTL among the records. This might be from
764 * the answer records if found or from the SOA record
765 * if it's a negative result.
766 *
767 * The returned TTL is the number of seconds to
768 * keep the answer in the cache.
769 *
770 * In case of parse error zero (0) is returned which
771 * indicates that the answer shall not be cached.
772 */
answer_getTTL(span<const uint8_t> answer)773 static uint32_t answer_getTTL(span<const uint8_t> answer) {
774 ns_msg handle;
775 int ancount, n;
776 uint32_t result, ttl;
777 ns_rr rr;
778
779 result = 0;
780 if (ns_initparse(answer.data(), answer.size(), &handle) >= 0) {
781 // get number of answer records
782 ancount = ns_msg_count(handle, ns_s_an);
783
784 if (ancount == 0) {
785 // a response with no answers? Cache this negative result.
786 result = answer_getNegativeTTL(handle);
787 } else {
788 for (n = 0; n < ancount; n++) {
789 if (ns_parserr(&handle, ns_s_an, n, &rr) == 0) {
790 ttl = rr.ttl;
791 if (n == 0 || ttl < result) {
792 result = ttl;
793 }
794 } else {
795 PLOG(INFO) << __func__ << ": ns_parserr failed ancount no = " << n;
796 }
797 }
798 }
799 } else {
800 PLOG(INFO) << __func__ << ": ns_initparse failed";
801 }
802
803 LOG(DEBUG) << __func__ << ": TTL = " << result;
804 return result;
805 }
806
entry_free(Entry * e)807 static void entry_free(Entry* e) {
808 /* everything is allocated in a single memory block */
809 if (e) {
810 free(e);
811 }
812 }
813
entry_mru_remove(Entry * e)814 static void entry_mru_remove(Entry* e) {
815 e->mru_prev->mru_next = e->mru_next;
816 e->mru_next->mru_prev = e->mru_prev;
817 }
818
entry_mru_add(Entry * e,Entry * list)819 static void entry_mru_add(Entry* e, Entry* list) {
820 Entry* first = list->mru_next;
821
822 e->mru_next = first;
823 e->mru_prev = list;
824
825 list->mru_next = e;
826 first->mru_prev = e;
827 }
828
829 /* compute the hash of a given entry, this is a hash of most
830 * data in the query (key) */
entry_hash(const Entry * e)831 static unsigned entry_hash(const Entry* e) {
832 DnsPacket pack[1];
833
834 _dnsPacket_init(pack, e->query, e->querylen);
835 return _dnsPacket_hashQuery(pack);
836 }
837
838 /* initialize an Entry as a search key, this also checks the input query packet
839 * returns 1 on success, or 0 in case of unsupported/malformed data */
entry_init_key(Entry * e,span<const uint8_t> query)840 static int entry_init_key(Entry* e, span<const uint8_t> query) {
841 DnsPacket pack[1];
842
843 memset(e, 0, sizeof(*e));
844
845 e->query = query.data();
846 e->querylen = query.size();
847 e->hash = entry_hash(e);
848
849 _dnsPacket_init(pack, e->query, e->querylen);
850
851 return _dnsPacket_checkQuery(pack);
852 }
853
854 /* allocate a new entry as a cache node */
entry_alloc(const Entry * init,span<const uint8_t> answer)855 static Entry* entry_alloc(const Entry* init, span<const uint8_t> answer) {
856 Entry* e;
857 int size;
858
859 size = sizeof(*e) + init->querylen + answer.size();
860 e = (Entry*) calloc(size, 1);
861 if (e == NULL) return e;
862
863 e->hash = init->hash;
864 e->query = (const uint8_t*) (e + 1);
865 e->querylen = init->querylen;
866
867 memcpy((char*) e->query, init->query, e->querylen);
868
869 e->answer = e->query + e->querylen;
870 e->answerlen = answer.size();
871
872 memcpy((char*)e->answer, answer.data(), e->answerlen);
873
874 return e;
875 }
876
entry_equals(const Entry * e1,const Entry * e2)877 static int entry_equals(const Entry* e1, const Entry* e2) {
878 DnsPacket pack1[1], pack2[1];
879
880 if (e1->querylen != e2->querylen) {
881 return 0;
882 }
883 _dnsPacket_init(pack1, e1->query, e1->querylen);
884 _dnsPacket_init(pack2, e2->query, e2->querylen);
885
886 return _dnsPacket_isEqualQuery(pack1, pack2);
887 }
888
889 /* We use a simple hash table with external collision lists
890 * for simplicity, the hash-table fields 'hash' and 'hlink' are
891 * inlined in the Entry structure.
892 */
893
894 /* Maximum time for a thread to wait for an pending request */
895 constexpr int PENDING_REQUEST_TIMEOUT = 20;
896
897 // lock protecting everything in NetConfig.
898 static std::mutex cache_mutex;
899 static std::condition_variable cv;
900
901 namespace {
902
903 // Map format: ReturnCode:rate_denom
904 // if the ReturnCode is not associated with any rate_denom, use default
905 // Sampling rate varies by return code; events to log are chosen randomly, with a
906 // probability proportional to the sampling rate.
907 constexpr const char DEFAULT_SUBSAMPLING_MAP[] = "default:8 0:400 2:110 7:110";
908 constexpr const char DEFAULT_MDNS_SUBSAMPLING_MAP[] = "default:1";
909
resolv_get_dns_event_subsampling_map(bool isMdns)910 std::unordered_map<int, uint32_t> resolv_get_dns_event_subsampling_map(bool isMdns) {
911 using android::base::ParseInt;
912 using android::base::ParseUint;
913 using android::base::Split;
914 using server_configurable_flags::GetServerConfigurableFlag;
915 std::unordered_map<int, uint32_t> sampling_rate_map{};
916 const char* flag = isMdns ? "mdns_event_subsample_map" : "dns_event_subsample_map";
917 const char* defaultMap = isMdns ? DEFAULT_MDNS_SUBSAMPLING_MAP : DEFAULT_SUBSAMPLING_MAP;
918 const std::vector<std::string> subsampling_vector =
919 Split(GetServerConfigurableFlag("netd_native", flag, defaultMap), " ");
920
921 for (const auto& pair : subsampling_vector) {
922 std::vector<std::string> rate_denom = Split(pair, ":");
923 int return_code;
924 uint32_t denom;
925 if (rate_denom.size() != 2) {
926 LOG(ERROR) << __func__ << ": invalid subsampling_pair = " << pair;
927 continue;
928 }
929 if (rate_denom[0] == "default") {
930 return_code = DNSEVENT_SUBSAMPLING_MAP_DEFAULT_KEY;
931 } else if (!ParseInt(rate_denom[0], &return_code)) {
932 LOG(ERROR) << __func__ << ": parse subsampling_pair failed = " << pair;
933 continue;
934 }
935 if (!ParseUint(rate_denom[1], &denom)) {
936 LOG(ERROR) << __func__ << ": parse subsampling_pair failed = " << pair;
937 continue;
938 }
939 sampling_rate_map[return_code] = denom;
940 }
941 return sampling_rate_map;
942 }
943
944 } // namespace
945
946 // Note that Cache is not thread-safe per se, access to its members must be protected
947 // by an external mutex.
948 //
949 // TODO: move all cache manipulation code here and make data members private.
950 struct Cache {
CacheCache951 Cache() : max_cache_entries(get_max_cache_entries_from_flag()) {
952 entries.resize(max_cache_entries);
953 mru_list.mru_prev = mru_list.mru_next = &mru_list;
954 }
~CacheCache955 ~Cache() { flush(); }
956
flushCache957 void flush() {
958 for (int nn = 0; nn < max_cache_entries; nn++) {
959 Entry** pnode = (Entry**)&entries[nn];
960
961 while (*pnode) {
962 Entry* node = *pnode;
963 *pnode = node->hlink;
964 entry_free(node);
965 }
966 }
967
968 flushPendingRequests();
969
970 mru_list.mru_next = mru_list.mru_prev = &mru_list;
971 num_entries = 0;
972 last_id = 0;
973
974 LOG(INFO) << "DNS cache flushed";
975 }
976
flushPendingRequestsCache977 void flushPendingRequests() {
978 pending_req_info* ri = pending_requests.next;
979 while (ri) {
980 pending_req_info* tmp = ri;
981 ri = ri->next;
982 free(tmp);
983 }
984
985 pending_requests.next = nullptr;
986 cv.notify_all();
987 }
988
get_max_cache_entriesCache989 int get_max_cache_entries() { return max_cache_entries; }
990
991 int num_entries = 0;
992
993 // TODO: convert to std::list
994 Entry mru_list;
995 int last_id = 0;
996 std::vector<Entry> entries;
997
998 // TODO: convert to std::vector
999 struct pending_req_info {
1000 unsigned int hash;
1001 struct pending_req_info* next;
1002 } pending_requests{};
1003
1004 private:
get_max_cache_entries_from_flagCache1005 int get_max_cache_entries_from_flag() {
1006 int entries = android::net::Experiments::getInstance()->getFlag("max_cache_entries",
1007 MAX_ENTRIES_DEFAULT);
1008 // Check both lower and upper bounds to prevent irrational values mistakenly pushed by
1009 // server.
1010 if (entries < MAX_ENTRIES_DEFAULT || entries > MAX_ENTRIES_UPPER_BOUND) {
1011 LOG(ERROR) << "Misconfiguration on max_cache_entries " << entries;
1012 entries = MAX_ENTRIES_DEFAULT;
1013 }
1014 return entries;
1015 }
1016
1017 const int max_cache_entries;
1018 };
1019
1020 struct NetConfig {
NetConfigNetConfig1021 explicit NetConfig(unsigned netId) : netid(netId) {
1022 cache = std::make_unique<Cache>();
1023 dns_event_subsampling_map = resolv_get_dns_event_subsampling_map(false);
1024 mdns_event_subsampling_map = resolv_get_dns_event_subsampling_map(true);
1025 }
nameserverCountNetConfig1026 int nameserverCount() { return nameserverSockAddrs.size(); }
setOptionsNetConfig1027 int setOptions(const ResolverOptionsParcel& resolverOptions) {
1028 customizedTable.clear();
1029 for (const auto& host : resolverOptions.hosts) {
1030 if (!host.hostName.empty() && !host.ipAddr.empty())
1031 customizedTable.emplace(host.hostName, host.ipAddr);
1032 }
1033
1034 if (resolverOptions.tcMode < aidl::android::net::IDnsResolver::TC_MODE_DEFAULT ||
1035 resolverOptions.tcMode > aidl::android::net::IDnsResolver::TC_MODE_UDP_TCP) {
1036 LOG(WARNING) << __func__ << ": netid = " << netid
1037 << ", invalid TC mode: " << resolverOptions.tcMode;
1038 return -EINVAL;
1039 }
1040 tc_mode = resolverOptions.tcMode;
1041 enforceDnsUid = resolverOptions.enforceDnsUid;
1042 return 0;
1043 }
1044 const unsigned netid;
1045 std::unique_ptr<Cache> cache;
1046 std::vector<std::string> nameservers;
1047 std::vector<IPSockAddr> nameserverSockAddrs;
1048 int revision_id = 0; // # times the nameservers have been replaced
1049 res_params params{};
1050 res_stats nsstats[MAXNS]{};
1051 std::vector<std::string> search_domains;
1052 int wait_for_pending_req_timeout_count = 0;
1053 // Map format: ReturnCode:rate_denom
1054 std::unordered_map<int, uint32_t> dns_event_subsampling_map;
1055 std::unordered_map<int, uint32_t> mdns_event_subsampling_map;
1056 DnsStats dnsStats;
1057
1058 // Customized hostname/address table will be stored in customizedTable.
1059 // If resolverParams.hosts is empty, the existing customized table will be erased.
1060 typedef std::multimap<std::string /* hostname */, std::string /* IPv4/IPv6 address */>
1061 HostMapping;
1062 HostMapping customizedTable = {};
1063
1064 int tc_mode = aidl::android::net::IDnsResolver::TC_MODE_DEFAULT;
1065 bool enforceDnsUid = false;
1066 std::vector<int32_t> transportTypes;
1067 };
1068
1069 /* gets cache associated with a network, or NULL if none exists */
1070 static Cache* find_named_cache_locked(unsigned netid) REQUIRES(cache_mutex);
1071
1072 // Return true - if there is a pending request in |cache| matching |key|.
1073 // Return false - if no pending request is found matching the key. Optionally
1074 // link a new one if parameter append_if_not_found is true.
cache_has_pending_request_locked(Cache * cache,const Entry * key,bool append_if_not_found)1075 static bool cache_has_pending_request_locked(Cache* cache, const Entry* key,
1076 bool append_if_not_found) {
1077 if (!cache || !key) return false;
1078
1079 Cache::pending_req_info* ri = cache->pending_requests.next;
1080 Cache::pending_req_info* prev = &cache->pending_requests;
1081 while (ri) {
1082 if (ri->hash == key->hash) {
1083 return true;
1084 }
1085 prev = ri;
1086 ri = ri->next;
1087 }
1088
1089 if (append_if_not_found) {
1090 ri = (Cache::pending_req_info*)calloc(1, sizeof(Cache::pending_req_info));
1091 if (ri) {
1092 ri->hash = key->hash;
1093 prev->next = ri;
1094 }
1095 }
1096 return false;
1097 }
1098
1099 // Notify all threads that the cache entry |key| has become available
cache_notify_waiting_tid_locked(struct Cache * cache,const Entry * key)1100 static void cache_notify_waiting_tid_locked(struct Cache* cache, const Entry* key) {
1101 if (!cache || !key) return;
1102
1103 Cache::pending_req_info* ri = cache->pending_requests.next;
1104 Cache::pending_req_info* prev = &cache->pending_requests;
1105 while (ri) {
1106 if (ri->hash == key->hash) {
1107 // remove item from list and destroy
1108 prev->next = ri->next;
1109 free(ri);
1110 cv.notify_all();
1111 return;
1112 }
1113 prev = ri;
1114 ri = ri->next;
1115 }
1116 }
1117
_resolv_cache_query_failed(unsigned netid,span<const uint8_t> query,uint32_t flags)1118 void _resolv_cache_query_failed(unsigned netid, span<const uint8_t> query, uint32_t flags) {
1119 // We should not notify with these flags.
1120 if (flags & (ANDROID_RESOLV_NO_CACHE_STORE | ANDROID_RESOLV_NO_CACHE_LOOKUP)) {
1121 return;
1122 }
1123 Entry key[1];
1124
1125 if (!entry_init_key(key, query)) return;
1126
1127 std::lock_guard guard(cache_mutex);
1128
1129 Cache* cache = find_named_cache_locked(netid);
1130
1131 if (cache) {
1132 cache_notify_waiting_tid_locked(cache, key);
1133 }
1134 }
1135
cache_dump_mru_locked(Cache * cache)1136 static void cache_dump_mru_locked(Cache* cache) {
1137 std::string buf = fmt::format("MRU LIST ({:2d}): ", cache->num_entries);
1138 for (Entry* e = cache->mru_list.mru_next; e != &cache->mru_list; e = e->mru_next) {
1139 fmt::format_to(std::back_inserter(buf), " {}", e->id);
1140 }
1141
1142 LOG(DEBUG) << __func__ << ": " << buf;
1143 }
1144
1145 /* This function tries to find a key within the hash table
1146 * In case of success, it will return a *pointer* to the hashed key.
1147 * In case of failure, it will return a *pointer* to NULL
1148 *
1149 * So, the caller must check '*result' to check for success/failure.
1150 *
1151 * The main idea is that the result can later be used directly in
1152 * calls to resolv_cache_add or _resolv_cache_remove as the 'lookup'
1153 * parameter. This makes the code simpler and avoids re-searching
1154 * for the key position in the htable.
1155 *
1156 * The result of a lookup_p is only valid until you alter the hash
1157 * table.
1158 */
_cache_lookup_p(Cache * cache,Entry * key)1159 static Entry** _cache_lookup_p(Cache* cache, Entry* key) {
1160 int index = key->hash % cache->get_max_cache_entries();
1161 Entry** pnode = (Entry**) &cache->entries[index];
1162
1163 while (*pnode != NULL) {
1164 Entry* node = *pnode;
1165
1166 if (node == NULL) break;
1167
1168 if (node->hash == key->hash && entry_equals(node, key)) break;
1169
1170 pnode = &node->hlink;
1171 }
1172 return pnode;
1173 }
1174
1175 /* Add a new entry to the hash table. 'lookup' must be the
1176 * result of an immediate previous failed _lookup_p() call
1177 * (i.e. with *lookup == NULL), and 'e' is the pointer to the
1178 * newly created entry
1179 */
_cache_add_p(Cache * cache,Entry ** lookup,Entry * e)1180 static void _cache_add_p(Cache* cache, Entry** lookup, Entry* e) {
1181 *lookup = e;
1182 e->id = ++cache->last_id;
1183 entry_mru_add(e, &cache->mru_list);
1184 cache->num_entries += 1;
1185
1186 LOG(DEBUG) << __func__ << ": entry " << e->id << " added (count=" << cache->num_entries << ")";
1187 }
1188
1189 /* Remove an existing entry from the hash table,
1190 * 'lookup' must be the result of an immediate previous
1191 * and succesful _lookup_p() call.
1192 */
_cache_remove_p(Cache * cache,Entry ** lookup)1193 static void _cache_remove_p(Cache* cache, Entry** lookup) {
1194 Entry* e = *lookup;
1195
1196 LOG(DEBUG) << __func__ << ": entry " << e->id << " removed (count=" << cache->num_entries - 1
1197 << ")";
1198
1199 entry_mru_remove(e);
1200 *lookup = e->hlink;
1201 entry_free(e);
1202 cache->num_entries -= 1;
1203 }
1204
1205 /* Remove the oldest entry from the hash table.
1206 */
_cache_remove_oldest(Cache * cache)1207 static void _cache_remove_oldest(Cache* cache) {
1208 Entry* oldest = cache->mru_list.mru_prev;
1209 Entry** lookup = _cache_lookup_p(cache, oldest);
1210
1211 if (*lookup == NULL) { /* should not happen */
1212 LOG(INFO) << __func__ << ": OLDEST NOT IN HTABLE ?";
1213 return;
1214 }
1215 LOG(DEBUG) << __func__ << ": Cache full - removing oldest";
1216 res_pquery({oldest->query, oldest->querylen});
1217 _cache_remove_p(cache, lookup);
1218 }
1219
1220 /* Remove all expired entries from the hash table.
1221 */
_cache_remove_expired(Cache * cache)1222 static void _cache_remove_expired(Cache* cache) {
1223 Entry* e;
1224 time_t now = _time_now();
1225
1226 for (e = cache->mru_list.mru_next; e != &cache->mru_list;) {
1227 // Entry is old, remove
1228 if (now >= e->expires) {
1229 Entry** lookup = _cache_lookup_p(cache, e);
1230 if (*lookup == NULL) { /* should not happen */
1231 LOG(INFO) << __func__ << ": ENTRY NOT IN HTABLE ?";
1232 return;
1233 }
1234 e = e->mru_next;
1235 _cache_remove_p(cache, lookup);
1236 } else {
1237 e = e->mru_next;
1238 }
1239 }
1240 }
1241
1242 // Get a NetConfig associated with a network, or nullptr if not found.
1243 static NetConfig* find_netconfig_locked(unsigned netid) REQUIRES(cache_mutex);
1244
resolv_cache_lookup(unsigned netid,span<const uint8_t> query,span<uint8_t> answer,int * answerlen,uint32_t flags)1245 ResolvCacheStatus resolv_cache_lookup(unsigned netid, span<const uint8_t> query,
1246 span<uint8_t> answer, int* answerlen, uint32_t flags) {
1247 // Skip cache lookup, return RESOLV_CACHE_NOTFOUND directly so that it is
1248 // possible to cache the answer of this query.
1249 // If ANDROID_RESOLV_NO_CACHE_STORE is set, return RESOLV_CACHE_SKIP to skip possible cache
1250 // storing.
1251 // (b/150371903): ANDROID_RESOLV_NO_CACHE_STORE should imply ANDROID_RESOLV_NO_CACHE_LOOKUP
1252 // to avoid side channel attack.
1253 if (flags & (ANDROID_RESOLV_NO_CACHE_LOOKUP | ANDROID_RESOLV_NO_CACHE_STORE)) {
1254 return flags & ANDROID_RESOLV_NO_CACHE_STORE ? RESOLV_CACHE_SKIP : RESOLV_CACHE_NOTFOUND;
1255 }
1256 Entry key;
1257 Entry** lookup;
1258 Entry* e;
1259 time_t now;
1260
1261 LOG(DEBUG) << __func__ << ": lookup";
1262
1263 /* we don't cache malformed queries */
1264 if (!entry_init_key(&key, query)) {
1265 LOG(INFO) << __func__ << ": unsupported query";
1266 return RESOLV_CACHE_UNSUPPORTED;
1267 }
1268 /* lookup cache */
1269 std::unique_lock lock(cache_mutex);
1270 android::base::ScopedLockAssertion assume_lock(cache_mutex);
1271 Cache* cache = find_named_cache_locked(netid);
1272 if (cache == nullptr) {
1273 return RESOLV_CACHE_UNSUPPORTED;
1274 }
1275
1276 /* see the description of _lookup_p to understand this.
1277 * the function always return a non-NULL pointer.
1278 */
1279 lookup = _cache_lookup_p(cache, &key);
1280 e = *lookup;
1281
1282 if (e == NULL) {
1283 LOG(DEBUG) << __func__ << ": NOT IN CACHE";
1284
1285 if (!cache_has_pending_request_locked(cache, &key, true)) {
1286 return RESOLV_CACHE_NOTFOUND;
1287 }
1288
1289 LOG(INFO) << __func__ << ": Waiting for previous request";
1290 // wait until (1) timeout OR
1291 // (2) cv is notified AND no pending request matching the |key|
1292 // (cv notifier should delete pending request before sending notification.)
1293 const bool ret = cv.wait_for(lock, std::chrono::seconds(PENDING_REQUEST_TIMEOUT),
1294 [netid, &cache, &key]() REQUIRES(cache_mutex) {
1295 // Must update cache as it could have been deleted
1296 cache = find_named_cache_locked(netid);
1297 return !cache_has_pending_request_locked(cache, &key, false);
1298 });
1299 if (!cache) {
1300 return RESOLV_CACHE_NOTFOUND;
1301 }
1302 if (ret == false) {
1303 NetConfig* info = find_netconfig_locked(netid);
1304 if (info != NULL) {
1305 info->wait_for_pending_req_timeout_count++;
1306 }
1307 }
1308 lookup = _cache_lookup_p(cache, &key);
1309 e = *lookup;
1310 if (e == NULL) {
1311 return RESOLV_CACHE_NOTFOUND;
1312 }
1313 }
1314
1315 now = _time_now();
1316
1317 /* remove stale entries here */
1318 if (now >= e->expires) {
1319 LOG(DEBUG) << __func__ << ": NOT IN CACHE (STALE ENTRY " << *lookup << "DISCARDED)";
1320 res_pquery({e->query, e->querylen});
1321 _cache_remove_p(cache, lookup);
1322 return RESOLV_CACHE_NOTFOUND;
1323 }
1324
1325 *answerlen = e->answerlen;
1326 if (e->answerlen > answer.size()) {
1327 /* NOTE: we return UNSUPPORTED if the answer buffer is too short */
1328 LOG(INFO) << __func__ << ": ANSWER TOO LONG";
1329 return RESOLV_CACHE_UNSUPPORTED;
1330 }
1331
1332 memcpy(answer.data(), e->answer, e->answerlen);
1333
1334 /* bump up this entry to the top of the MRU list */
1335 if (e != cache->mru_list.mru_next) {
1336 entry_mru_remove(e);
1337 entry_mru_add(e, &cache->mru_list);
1338 }
1339
1340 LOG(INFO) << __func__ << ": FOUND IN CACHE entry=" << e;
1341 return RESOLV_CACHE_FOUND;
1342 }
1343
resolv_cache_add(unsigned netid,span<const uint8_t> query,span<const uint8_t> answer)1344 int resolv_cache_add(unsigned netid, span<const uint8_t> query, span<const uint8_t> answer) {
1345 Entry key[1];
1346 Entry* e;
1347 Entry** lookup;
1348 uint32_t ttl;
1349 Cache* cache = NULL;
1350
1351 /* don't assume that the query has already been cached
1352 */
1353 if (!entry_init_key(key, query)) {
1354 LOG(INFO) << __func__ << ": passed invalid query?";
1355 return -EINVAL;
1356 }
1357
1358 std::lock_guard guard(cache_mutex);
1359
1360 cache = find_named_cache_locked(netid);
1361 if (cache == nullptr) {
1362 return -ENONET;
1363 }
1364
1365 lookup = _cache_lookup_p(cache, key);
1366 e = *lookup;
1367
1368 // Should only happen on ANDROID_RESOLV_NO_CACHE_LOOKUP
1369 if (e != NULL) {
1370 LOG(INFO) << __func__ << ": ALREADY IN CACHE (" << e << ") ? IGNORING ADD";
1371 cache_notify_waiting_tid_locked(cache, key);
1372 return -EEXIST;
1373 }
1374
1375 if (cache->num_entries >= cache->get_max_cache_entries()) {
1376 _cache_remove_expired(cache);
1377 if (cache->num_entries >= cache->get_max_cache_entries()) {
1378 _cache_remove_oldest(cache);
1379 }
1380 // TODO: It looks useless, remove below code after having test to prove it.
1381 lookup = _cache_lookup_p(cache, key);
1382 e = *lookup;
1383 if (e != NULL) {
1384 LOG(INFO) << __func__ << ": ALREADY IN CACHE (" << e << ") ? IGNORING ADD";
1385 cache_notify_waiting_tid_locked(cache, key);
1386 return -EEXIST;
1387 }
1388 }
1389
1390 ttl = answer_getTTL(answer);
1391 if (ttl > 0) {
1392 e = entry_alloc(key, answer);
1393 if (e != NULL) {
1394 e->expires = ttl + _time_now();
1395 _cache_add_p(cache, lookup, e);
1396 }
1397 }
1398
1399 cache_dump_mru_locked(cache);
1400 cache_notify_waiting_tid_locked(cache, key);
1401
1402 return 0;
1403 }
1404
resolv_gethostbyaddr_from_cache(unsigned netid,char domain_name[],size_t domain_name_size,const char * ip_address,int af)1405 bool resolv_gethostbyaddr_from_cache(unsigned netid, char domain_name[], size_t domain_name_size,
1406 const char* ip_address, int af) {
1407 if (domain_name_size > NS_MAXDNAME) {
1408 LOG(WARNING) << __func__ << ": invalid domain_name_size " << domain_name_size;
1409 return false;
1410 } else if (ip_address == nullptr || ip_address[0] == '\0') {
1411 LOG(WARNING) << __func__ << ": invalid ip_address";
1412 return false;
1413 } else if (af != AF_INET && af != AF_INET6) {
1414 LOG(WARNING) << __func__ << ": unsupported AF";
1415 return false;
1416 }
1417
1418 Cache* cache = nullptr;
1419 Entry* node = nullptr;
1420
1421 ns_rr rr;
1422 ns_msg handle;
1423 ns_rr rr_query;
1424
1425 struct sockaddr_in sa;
1426 struct sockaddr_in6 sa6;
1427 char* addr_buf = nullptr;
1428
1429 std::lock_guard guard(cache_mutex);
1430
1431 cache = find_named_cache_locked(netid);
1432 if (cache == nullptr) {
1433 return false;
1434 }
1435
1436 for (node = cache->mru_list.mru_next; node != nullptr && node != &cache->mru_list;
1437 node = node->mru_next) {
1438 if (node->answer == nullptr) {
1439 continue;
1440 }
1441
1442 memset(&handle, 0, sizeof(handle));
1443
1444 if (ns_initparse(node->answer, node->answerlen, &handle) < 0) {
1445 continue;
1446 }
1447
1448 for (int n = 0; n < ns_msg_count(handle, ns_s_an); n++) {
1449 memset(&rr, 0, sizeof(rr));
1450
1451 if (ns_parserr(&handle, ns_s_an, n, &rr)) {
1452 continue;
1453 }
1454
1455 if (ns_rr_type(rr) == ns_t_a && af == AF_INET) {
1456 addr_buf = (char*)&(sa.sin_addr);
1457 } else if (ns_rr_type(rr) == ns_t_aaaa && af == AF_INET6) {
1458 addr_buf = (char*)&(sa6.sin6_addr);
1459 } else {
1460 continue;
1461 }
1462
1463 if (inet_pton(af, ip_address, addr_buf) != 1) {
1464 LOG(WARNING) << __func__ << ": inet_pton() fail";
1465 return false;
1466 }
1467
1468 if (memcmp(ns_rr_rdata(rr), addr_buf, ns_rr_rdlen(rr)) == 0) {
1469 int query_count = ns_msg_count(handle, ns_s_qd);
1470 for (int i = 0; i < query_count; i++) {
1471 memset(&rr_query, 0, sizeof(rr_query));
1472 if (ns_parserr(&handle, ns_s_qd, i, &rr_query)) {
1473 continue;
1474 }
1475 strlcpy(domain_name, ns_rr_name(rr_query), domain_name_size);
1476 if (domain_name[0] != '\0') {
1477 return true;
1478 }
1479 }
1480 }
1481 }
1482 }
1483
1484 return false;
1485 }
1486
1487 static std::unordered_map<unsigned, std::unique_ptr<NetConfig>> sNetConfigMap
1488 GUARDED_BY(cache_mutex);
1489
1490 // Clears nameservers set for |netconfig| and clears the stats
1491 static void free_nameservers_locked(NetConfig* netconfig);
1492 // Order-insensitive comparison for the two set of servers.
1493 static bool resolv_is_nameservers_equal(const std::vector<std::string>& oldServers,
1494 const std::vector<std::string>& newServers);
1495 // clears the stats samples contained withing the given netconfig.
1496 static void res_cache_clear_stats_locked(NetConfig* netconfig);
1497
1498 // public API for netd to query if name server is set on specific netid
resolv_has_nameservers(unsigned netid)1499 bool resolv_has_nameservers(unsigned netid) {
1500 std::lock_guard guard(cache_mutex);
1501 NetConfig* info = find_netconfig_locked(netid);
1502 return (info != nullptr) && (info->nameserverCount() > 0);
1503 }
1504
resolv_create_cache_for_net(unsigned netid)1505 int resolv_create_cache_for_net(unsigned netid) {
1506 std::lock_guard guard(cache_mutex);
1507 if (sNetConfigMap.find(netid) != sNetConfigMap.end()) {
1508 LOG(ERROR) << __func__ << ": Cache is already created, netId: " << netid;
1509 return -EEXIST;
1510 }
1511
1512 sNetConfigMap[netid] = std::make_unique<NetConfig>(netid);
1513
1514 return 0;
1515 }
1516
resolv_delete_cache_for_net(unsigned netid)1517 void resolv_delete_cache_for_net(unsigned netid) {
1518 std::lock_guard guard(cache_mutex);
1519 sNetConfigMap.erase(netid);
1520 }
1521
resolv_flush_cache_for_net(unsigned netid)1522 int resolv_flush_cache_for_net(unsigned netid) {
1523 std::lock_guard guard(cache_mutex);
1524
1525 NetConfig* netconfig = find_netconfig_locked(netid);
1526 if (netconfig == nullptr) {
1527 return -ENONET;
1528 }
1529 netconfig->cache->flush();
1530
1531 // Also clear the NS statistics.
1532 res_cache_clear_stats_locked(netconfig);
1533 return 0;
1534 }
1535
resolv_list_caches()1536 std::vector<unsigned> resolv_list_caches() {
1537 std::lock_guard guard(cache_mutex);
1538 std::vector<unsigned> result;
1539 result.reserve(sNetConfigMap.size());
1540 for (const auto& [netId, _] : sNetConfigMap) {
1541 result.push_back(netId);
1542 }
1543 return result;
1544 }
1545
find_named_cache_locked(unsigned netid)1546 static Cache* find_named_cache_locked(unsigned netid) {
1547 NetConfig* info = find_netconfig_locked(netid);
1548 if (info != nullptr) return info->cache.get();
1549 return nullptr;
1550 }
1551
find_netconfig_locked(unsigned netid)1552 static NetConfig* find_netconfig_locked(unsigned netid) {
1553 if (auto it = sNetConfigMap.find(netid); it != sNetConfigMap.end()) {
1554 return it->second.get();
1555 }
1556 return nullptr;
1557 }
1558
resolv_get_network_types_for_net(unsigned netid)1559 android::net::NetworkType resolv_get_network_types_for_net(unsigned netid) {
1560 std::lock_guard guard(cache_mutex);
1561 NetConfig* netconfig = find_netconfig_locked(netid);
1562 if (netconfig == nullptr) return android::net::NT_UNKNOWN;
1563 return convert_network_type(netconfig->transportTypes);
1564 }
1565
is_mdns_supported_transport_types(const std::vector<int32_t> & transportTypes)1566 bool is_mdns_supported_transport_types(const std::vector<int32_t>& transportTypes) {
1567 for (const auto& tp : transportTypes) {
1568 if (tp == IDnsResolver::TRANSPORT_CELLULAR || tp == IDnsResolver::TRANSPORT_VPN) {
1569 return false;
1570 }
1571 }
1572 return true;
1573 }
1574
is_mdns_supported_network(unsigned netid)1575 bool is_mdns_supported_network(unsigned netid) {
1576 std::lock_guard guard(cache_mutex);
1577 NetConfig* netconfig = find_netconfig_locked(netid);
1578 if (netconfig == nullptr) return false;
1579 return is_mdns_supported_transport_types(netconfig->transportTypes);
1580 }
1581
1582 namespace {
1583
1584 // Returns valid domains without duplicates which are limited to max size |MAXDNSRCH|.
filter_domains(const std::vector<std::string> & domains)1585 std::vector<std::string> filter_domains(const std::vector<std::string>& domains) {
1586 std::set<std::string> tmp_set;
1587 std::vector<std::string> res;
1588
1589 std::copy_if(domains.begin(), domains.end(), std::back_inserter(res),
1590 [&tmp_set](const std::string& str) {
1591 return !(str.size() > MAXDNSRCHPATH - 1) && (tmp_set.insert(str).second);
1592 });
1593 if (res.size() > MAXDNSRCH) {
1594 LOG(WARNING) << __func__ << ": valid domains=" << res.size()
1595 << ", but MAXDNSRCH=" << MAXDNSRCH;
1596 res.resize(MAXDNSRCH);
1597 }
1598 return res;
1599 }
1600
filter_nameservers(const std::vector<std::string> & servers)1601 std::vector<std::string> filter_nameservers(const std::vector<std::string>& servers) {
1602 std::vector<std::string> res = servers;
1603 if (res.size() > MAXNS) {
1604 LOG(WARNING) << __func__ << ": too many servers: " << res.size();
1605 res.resize(MAXNS);
1606 }
1607 return res;
1608 }
1609
isValidServer(const std::string & server)1610 bool isValidServer(const std::string& server) {
1611 const addrinfo hints = {
1612 .ai_family = AF_UNSPEC,
1613 .ai_socktype = SOCK_DGRAM,
1614 };
1615 addrinfo* result = nullptr;
1616 if (int err = getaddrinfo_numeric(server.c_str(), "53", hints, &result); err != 0) {
1617 LOG(WARNING) << __func__ << ": getaddrinfo_numeric(" << server
1618 << ") = " << gai_strerror(err);
1619 return false;
1620 }
1621 freeaddrinfo(result);
1622 return true;
1623 }
1624
1625 } // namespace
1626
getCustomizedTableByName(const size_t netid,const char * hostname)1627 std::vector<std::string> getCustomizedTableByName(const size_t netid, const char* hostname) {
1628 std::lock_guard guard(cache_mutex);
1629 NetConfig* netconfig = find_netconfig_locked(netid);
1630
1631 std::vector<std::string> result;
1632 if (netconfig != nullptr) {
1633 const auto& hosts = netconfig->customizedTable.equal_range(hostname);
1634 for (auto i = hosts.first; i != hosts.second; ++i) {
1635 result.push_back(i->second);
1636 }
1637 }
1638 return result;
1639 }
1640
resolv_set_nameservers(unsigned netid,const std::vector<std::string> & servers,const std::vector<std::string> & domains,const res_params & params,const std::optional<ResolverOptionsParcel> optionalResolverOptions,const std::vector<int32_t> & transportTypes)1641 int resolv_set_nameservers(unsigned netid, const std::vector<std::string>& servers,
1642 const std::vector<std::string>& domains, const res_params& params,
1643 const std::optional<ResolverOptionsParcel> optionalResolverOptions,
1644 const std::vector<int32_t>& transportTypes) {
1645 std::vector<std::string> nameservers = filter_nameservers(servers);
1646 const int numservers = static_cast<int>(nameservers.size());
1647
1648 LOG(DEBUG) << __func__ << ": netId = " << netid << ", numservers = " << numservers;
1649
1650 // Parse the addresses before actually locking or changing any state, in case there is an error.
1651 // As a side effect this also reduces the time the lock is kept.
1652 std::vector<IPSockAddr> ipSockAddrs;
1653 ipSockAddrs.reserve(nameservers.size());
1654 for (const auto& server : nameservers) {
1655 if (!isValidServer(server)) return -EINVAL;
1656 ipSockAddrs.push_back(IPSockAddr::toIPSockAddr(server, 53));
1657 }
1658
1659 std::lock_guard guard(cache_mutex);
1660 NetConfig* netconfig = find_netconfig_locked(netid);
1661
1662 if (netconfig == nullptr) return -ENONET;
1663
1664 uint8_t old_max_samples = netconfig->params.max_samples;
1665 netconfig->params = params;
1666
1667 // This check must always be true, but add a protection against OEMs configure negative values
1668 // for retry_count and base_timeout_msec.
1669 if (netconfig->params.retry_count == 0) {
1670 const int retryCount = Experiments::getInstance()->getFlag("retry_count", RES_DFLRETRY);
1671 netconfig->params.retry_count = (retryCount <= 0) ? RES_DFLRETRY : retryCount;
1672 }
1673 if (netconfig->params.base_timeout_msec == 0) {
1674 const int retransmissionInterval =
1675 Experiments::getInstance()->getFlag("retransmission_time_interval", RES_TIMEOUT);
1676 netconfig->params.base_timeout_msec =
1677 (retransmissionInterval <= 0) ? RES_TIMEOUT : retransmissionInterval;
1678 }
1679
1680 if (!resolv_is_nameservers_equal(netconfig->nameservers, nameservers)) {
1681 // free current before adding new
1682 free_nameservers_locked(netconfig);
1683 netconfig->nameservers = std::move(nameservers);
1684 for (int i = 0; i < numservers; i++) {
1685 LOG(INFO) << __func__ << ": netid = " << netid
1686 << ", addr = " << netconfig->nameservers[i];
1687 }
1688 netconfig->nameserverSockAddrs = std::move(ipSockAddrs);
1689 } else {
1690 if (netconfig->params.max_samples != old_max_samples) {
1691 // If the maximum number of samples changes, the overhead of keeping the most recent
1692 // samples around is not considered worth the effort, so they are cleared instead.
1693 // All other parameters do not affect shared state: Changing these parameters does
1694 // not invalidate the samples, as they only affect aggregation and the conditions
1695 // under which servers are considered usable.
1696 res_cache_clear_stats_locked(netconfig);
1697 }
1698 }
1699
1700 // Always update the search paths. Cache-flushing however is not necessary,
1701 // since the stored cache entries do contain the domain, not just the host name.
1702 netconfig->search_domains = filter_domains(domains);
1703
1704 // Setup stats for cleartext dns servers.
1705 if (!netconfig->dnsStats.setAddrs(netconfig->nameserverSockAddrs, PROTO_TCP) ||
1706 !netconfig->dnsStats.setAddrs(netconfig->nameserverSockAddrs, PROTO_UDP)) {
1707 LOG(WARNING) << __func__ << ": netid = " << netid << ", failed to set dns stats";
1708 return -EINVAL;
1709 }
1710 netconfig->transportTypes = transportTypes;
1711 if (optionalResolverOptions.has_value()) {
1712 const ResolverOptionsParcel& resolverOptions = optionalResolverOptions.value();
1713 return netconfig->setOptions(resolverOptions);
1714 }
1715 return 0;
1716 }
1717
resolv_set_options(unsigned netid,const ResolverOptionsParcel & options)1718 int resolv_set_options(unsigned netid, const ResolverOptionsParcel& options) {
1719 std::lock_guard guard(cache_mutex);
1720 NetConfig* netconfig = find_netconfig_locked(netid);
1721
1722 if (netconfig == nullptr) return -ENONET;
1723 return netconfig->setOptions(options);
1724 }
1725
resolv_is_nameservers_equal(const std::vector<std::string> & oldServers,const std::vector<std::string> & newServers)1726 static bool resolv_is_nameservers_equal(const std::vector<std::string>& oldServers,
1727 const std::vector<std::string>& newServers) {
1728 const std::set<std::string> olds(oldServers.begin(), oldServers.end());
1729 const std::set<std::string> news(newServers.begin(), newServers.end());
1730
1731 // TODO: this is incorrect if the list of current or previous nameservers
1732 // contains duplicates. This does not really matter because the framework
1733 // filters out duplicates, but we should probably fix it. It's also
1734 // insensitive to the order of the nameservers; we should probably fix that
1735 // too.
1736 return olds == news;
1737 }
1738
free_nameservers_locked(NetConfig * netconfig)1739 static void free_nameservers_locked(NetConfig* netconfig) {
1740 netconfig->nameservers.clear();
1741 netconfig->nameserverSockAddrs.clear();
1742 res_cache_clear_stats_locked(netconfig);
1743 }
1744
resolv_populate_res_for_net(ResState * statp)1745 void resolv_populate_res_for_net(ResState* statp) {
1746 if (statp == nullptr) {
1747 return;
1748 }
1749 LOG(DEBUG) << __func__ << ": netid=" << statp->netid;
1750
1751 std::lock_guard guard(cache_mutex);
1752 NetConfig* info = find_netconfig_locked(statp->netid);
1753 if (info == nullptr) return;
1754
1755 const bool sortNameservers = Experiments::getInstance()->getFlag("sort_nameservers", 0);
1756 statp->sort_nameservers = sortNameservers;
1757 statp->nsaddrs = sortNameservers ? info->dnsStats.getSortedServers(PROTO_UDP)
1758 : info->nameserverSockAddrs;
1759 statp->search_domains = info->search_domains;
1760 statp->tc_mode = info->tc_mode;
1761 statp->enforce_dns_uid = info->enforceDnsUid;
1762 }
1763
1764 /* Resolver reachability statistics. */
1765
res_cache_add_stats_sample_locked(res_stats * stats,const res_sample & sample,int max_samples)1766 static void res_cache_add_stats_sample_locked(res_stats* stats, const res_sample& sample,
1767 int max_samples) {
1768 // Note: This function expects max_samples > 0, otherwise a (harmless) modification of the
1769 // allocated but supposedly unused memory for samples[0] will happen
1770 LOG(DEBUG) << __func__ << ": adding sample to stats, next = " << unsigned(stats->sample_next)
1771 << ", count = " << unsigned(stats->sample_count);
1772 stats->samples[stats->sample_next] = sample;
1773 if (stats->sample_count < max_samples) {
1774 ++stats->sample_count;
1775 }
1776 if (++stats->sample_next >= max_samples) {
1777 stats->sample_next = 0;
1778 }
1779 }
1780
res_cache_clear_stats_locked(NetConfig * netconfig)1781 static void res_cache_clear_stats_locked(NetConfig* netconfig) {
1782 for (int i = 0; i < MAXNS; ++i) {
1783 netconfig->nsstats[i].sample_count = 0;
1784 netconfig->nsstats[i].sample_next = 0;
1785 }
1786
1787 // Increment the revision id to ensure that sample state is not written back if the
1788 // servers change; in theory it would suffice to do so only if the servers or
1789 // max_samples actually change, in practice the overhead of checking is higher than the
1790 // cost, and overflows are unlikely.
1791 ++netconfig->revision_id;
1792 }
1793
android_net_res_stats_get_info_for_net(unsigned netid,int * nscount,struct sockaddr_storage servers[MAXNS],int * dcount,char domains[MAXDNSRCH][MAXDNSRCHPATH],res_params * params,struct res_stats stats[MAXNS],int * wait_for_pending_req_timeout_count)1794 int android_net_res_stats_get_info_for_net(unsigned netid, int* nscount,
1795 struct sockaddr_storage servers[MAXNS], int* dcount,
1796 char domains[MAXDNSRCH][MAXDNSRCHPATH],
1797 res_params* params, struct res_stats stats[MAXNS],
1798 int* wait_for_pending_req_timeout_count) {
1799 std::lock_guard guard(cache_mutex);
1800 NetConfig* info = find_netconfig_locked(netid);
1801 if (!info) return -1;
1802
1803 const int num = info->nameserverCount();
1804 if (num > MAXNS) {
1805 LOG(INFO) << __func__ << ": nscount " << num << " > MAXNS " << MAXNS;
1806 errno = EFAULT;
1807 return -1;
1808 }
1809
1810 for (int i = 0; i < num; i++) {
1811 servers[i] = info->nameserverSockAddrs[i];
1812 stats[i] = info->nsstats[i];
1813 }
1814
1815 for (size_t i = 0; i < info->search_domains.size(); i++) {
1816 strlcpy(domains[i], info->search_domains[i].c_str(), MAXDNSRCHPATH);
1817 }
1818
1819 *nscount = num;
1820 *dcount = static_cast<int>(info->search_domains.size());
1821 *params = info->params;
1822 *wait_for_pending_req_timeout_count = info->wait_for_pending_req_timeout_count;
1823
1824 return info->revision_id;
1825 }
1826
resolv_cache_dump_subsampling_map(unsigned netid,bool is_mdns)1827 std::vector<std::string> resolv_cache_dump_subsampling_map(unsigned netid, bool is_mdns) {
1828 std::lock_guard guard(cache_mutex);
1829 NetConfig* netconfig = find_netconfig_locked(netid);
1830 if (netconfig == nullptr) return {};
1831 std::vector<std::string> result;
1832 const auto& subsampling_map = (!is_mdns) ? netconfig->dns_event_subsampling_map
1833 : netconfig->mdns_event_subsampling_map;
1834 result.reserve(subsampling_map.size());
1835 for (const auto& [return_code, rate_denom] : subsampling_map) {
1836 result.push_back(fmt::format("{}:{}",
1837 (return_code == DNSEVENT_SUBSAMPLING_MAP_DEFAULT_KEY)
1838 ? "default"
1839 : std::to_string(return_code),
1840 rate_denom));
1841 }
1842 return result;
1843 }
1844
1845 // Decides whether an event should be sampled using a random number generator and
1846 // a sampling factor derived from the netid and the return code.
1847 //
1848 // Returns the subsampling rate if the event should be sampled, or 0 if it should be discarded.
resolv_cache_get_subsampling_denom(unsigned netid,int return_code,bool is_mdns)1849 uint32_t resolv_cache_get_subsampling_denom(unsigned netid, int return_code, bool is_mdns) {
1850 std::lock_guard guard(cache_mutex);
1851 NetConfig* netconfig = find_netconfig_locked(netid);
1852 if (netconfig == nullptr) return 0; // Don't log anything at all.
1853 const auto& subsampling_map = (!is_mdns) ? netconfig->dns_event_subsampling_map
1854 : netconfig->mdns_event_subsampling_map;
1855 auto search_returnCode = subsampling_map.find(return_code);
1856 uint32_t denom;
1857 if (search_returnCode != subsampling_map.end()) {
1858 denom = search_returnCode->second;
1859 } else {
1860 auto search_default = subsampling_map.find(DNSEVENT_SUBSAMPLING_MAP_DEFAULT_KEY);
1861 denom = (search_default == subsampling_map.end()) ? 0 : search_default->second;
1862 }
1863 return denom;
1864 }
1865
resolv_cache_get_resolver_stats(unsigned netid,res_params * params,res_stats stats[MAXNS],const std::vector<IPSockAddr> & serverSockAddrs)1866 int resolv_cache_get_resolver_stats(unsigned netid, res_params* params, res_stats stats[MAXNS],
1867 const std::vector<IPSockAddr>& serverSockAddrs) {
1868 std::lock_guard guard(cache_mutex);
1869 NetConfig* info = find_netconfig_locked(netid);
1870 if (!info) {
1871 LOG(WARNING) << __func__ << ": NetConfig for netid " << netid << " not found";
1872 return -1;
1873 }
1874
1875 for (size_t i = 0; i < serverSockAddrs.size(); i++) {
1876 for (size_t j = 0; j < info->nameserverSockAddrs.size(); j++) {
1877 // Should never happen. Just in case because of the fix-sized array |stats|.
1878 if (j >= MAXNS) {
1879 LOG(WARNING) << __func__ << ": unexpected size " << j;
1880 return -1;
1881 }
1882
1883 // It's possible that the server is not found, e.g. when a new list of nameservers
1884 // is updated to the NetConfig just after this look up thread being populated.
1885 // Keep the server valid as-is (by means of keeping stats[i] unset), but we should
1886 // think about if there's a better way.
1887 if (info->nameserverSockAddrs[j] == serverSockAddrs[i]) {
1888 stats[i] = info->nsstats[j];
1889 break;
1890 }
1891 }
1892 }
1893
1894 *params = info->params;
1895 return info->revision_id;
1896 }
1897
resolv_cache_add_resolver_stats_sample(unsigned netid,int revision_id,const IPSockAddr & serverSockAddr,const res_sample & sample,int max_samples)1898 void resolv_cache_add_resolver_stats_sample(unsigned netid, int revision_id,
1899 const IPSockAddr& serverSockAddr,
1900 const res_sample& sample, int max_samples) {
1901 if (max_samples <= 0) return;
1902
1903 std::lock_guard guard(cache_mutex);
1904 NetConfig* info = find_netconfig_locked(netid);
1905
1906 if (info && info->revision_id == revision_id) {
1907 const int serverNum = std::min(MAXNS, static_cast<int>(info->nameserverSockAddrs.size()));
1908 for (int ns = 0; ns < serverNum; ns++) {
1909 if (serverSockAddr == info->nameserverSockAddrs[ns]) {
1910 res_cache_add_stats_sample_locked(&info->nsstats[ns], sample, max_samples);
1911 return;
1912 }
1913 }
1914 }
1915 }
1916
has_named_cache(unsigned netid)1917 bool has_named_cache(unsigned netid) {
1918 std::lock_guard guard(cache_mutex);
1919 return find_named_cache_locked(netid) != nullptr;
1920 }
1921
resolv_cache_get_expiration(unsigned netid,span<const uint8_t> query,time_t * expiration)1922 int resolv_cache_get_expiration(unsigned netid, span<const uint8_t> query, time_t* expiration) {
1923 Entry key;
1924 *expiration = -1;
1925
1926 // A malformed query is not allowed.
1927 if (!entry_init_key(&key, query)) {
1928 LOG(WARNING) << __func__ << ": unsupported query";
1929 return -EINVAL;
1930 }
1931
1932 // lookup cache.
1933 Cache* cache;
1934 std::lock_guard guard(cache_mutex);
1935 if (cache = find_named_cache_locked(netid); cache == nullptr) {
1936 LOG(WARNING) << __func__ << ": cache not created in the network " << netid;
1937 return -ENONET;
1938 }
1939 Entry** lookup = _cache_lookup_p(cache, &key);
1940 Entry* e = *lookup;
1941 if (e == NULL) {
1942 LOG(WARNING) << __func__ << ": not in cache";
1943 return -ENODATA;
1944 }
1945
1946 if (_time_now() >= e->expires) {
1947 LOG(WARNING) << __func__ << ": entry expired";
1948 return -ENODATA;
1949 }
1950
1951 *expiration = e->expires;
1952 return 0;
1953 }
1954
resolv_stats_set_addrs(unsigned netid,Protocol proto,const std::vector<std::string> & addrs,int port)1955 int resolv_stats_set_addrs(unsigned netid, Protocol proto, const std::vector<std::string>& addrs,
1956 int port) {
1957 std::lock_guard guard(cache_mutex);
1958 const auto info = find_netconfig_locked(netid);
1959
1960 if (info == nullptr) {
1961 LOG(WARNING) << __func__ << ": Network " << netid << " not found for "
1962 << Protocol_Name(proto);
1963 return -ENONET;
1964 }
1965
1966 std::vector<IPSockAddr> sockAddrs;
1967 sockAddrs.reserve(addrs.size());
1968 for (const auto& addr : addrs) {
1969 sockAddrs.push_back(IPSockAddr::toIPSockAddr(addr, port));
1970 }
1971
1972 if (!info->dnsStats.setAddrs(sockAddrs, proto)) {
1973 LOG(WARNING) << __func__ << ": Failed to set " << Protocol_Name(proto) << " on network "
1974 << netid;
1975 return -EINVAL;
1976 }
1977
1978 return 0;
1979 }
1980
resolv_stats_add(unsigned netid,const android::netdutils::IPSockAddr & server,const DnsQueryEvent * record)1981 bool resolv_stats_add(unsigned netid, const android::netdutils::IPSockAddr& server,
1982 const DnsQueryEvent* record) {
1983 if (record == nullptr) return false;
1984
1985 std::lock_guard guard(cache_mutex);
1986 if (const auto info = find_netconfig_locked(netid); info != nullptr) {
1987 return info->dnsStats.addStats(server, *record);
1988 }
1989 return false;
1990 }
1991
tc_mode_to_str(const int mode)1992 static const char* tc_mode_to_str(const int mode) {
1993 switch (mode) {
1994 case aidl::android::net::IDnsResolver::TC_MODE_DEFAULT:
1995 return "default";
1996 case aidl::android::net::IDnsResolver::TC_MODE_UDP_TCP:
1997 return "UDP_TCP";
1998 default:
1999 return "unknown";
2000 }
2001 }
2002
to_stats_network_type(int32_t mainType,bool withVpn)2003 static android::net::NetworkType to_stats_network_type(int32_t mainType, bool withVpn) {
2004 switch (mainType) {
2005 case IDnsResolver::TRANSPORT_CELLULAR:
2006 return withVpn ? android::net::NT_CELLULAR_VPN : android::net::NT_CELLULAR;
2007 case IDnsResolver::TRANSPORT_WIFI:
2008 return withVpn ? android::net::NT_WIFI_VPN : android::net::NT_WIFI;
2009 case IDnsResolver::TRANSPORT_BLUETOOTH:
2010 return withVpn ? android::net::NT_BLUETOOTH_VPN : android::net::NT_BLUETOOTH;
2011 case IDnsResolver::TRANSPORT_ETHERNET:
2012 return withVpn ? android::net::NT_ETHERNET_VPN : android::net::NT_ETHERNET;
2013 case IDnsResolver::TRANSPORT_VPN:
2014 return withVpn ? android::net::NT_UNKNOWN : android::net::NT_VPN;
2015 case IDnsResolver::TRANSPORT_WIFI_AWARE:
2016 return withVpn ? android::net::NT_UNKNOWN : android::net::NT_WIFI_AWARE;
2017 case IDnsResolver::TRANSPORT_LOWPAN:
2018 return withVpn ? android::net::NT_UNKNOWN : android::net::NT_LOWPAN;
2019 default:
2020 return android::net::NT_UNKNOWN;
2021 }
2022 }
2023
convert_network_type(const std::vector<int32_t> & transportTypes)2024 android::net::NetworkType convert_network_type(const std::vector<int32_t>& transportTypes) {
2025 // The valid transportTypes size is 1 to 3.
2026 if (transportTypes.size() > 3 || transportTypes.size() == 0) return android::net::NT_UNKNOWN;
2027 // TransportTypes size == 1, map the type to stats network type directly.
2028 if (transportTypes.size() == 1) return to_stats_network_type(transportTypes[0], false);
2029 // TransportTypes size == 3, only cellular + wifi + vpn is valid.
2030 if (transportTypes.size() == 3) {
2031 std::vector<int32_t> sortedTransTypes = transportTypes;
2032 std::sort(sortedTransTypes.begin(), sortedTransTypes.end());
2033 if (sortedTransTypes != std::vector<int32_t>{IDnsResolver::TRANSPORT_CELLULAR,
2034 IDnsResolver::TRANSPORT_WIFI,
2035 IDnsResolver::TRANSPORT_VPN}) {
2036 return android::net::NT_UNKNOWN;
2037 }
2038 return android::net::NT_WIFI_CELLULAR_VPN;
2039 }
2040 // TransportTypes size == 2, it shoud be 1 main type + vpn type.
2041 // Otherwise, consider it as UNKNOWN.
2042 bool hasVpn = false;
2043 int32_t mainType = IDnsResolver::TRANSPORT_UNKNOWN;
2044 for (const auto& transportType : transportTypes) {
2045 if (transportType == IDnsResolver::TRANSPORT_VPN) {
2046 hasVpn = true;
2047 continue;
2048 }
2049 mainType = transportType;
2050 }
2051 return hasVpn ? to_stats_network_type(mainType, true) : android::net::NT_UNKNOWN;
2052 }
2053
transport_type_to_str(const std::vector<int32_t> & transportTypes)2054 static const char* transport_type_to_str(const std::vector<int32_t>& transportTypes) {
2055 switch (convert_network_type(transportTypes)) {
2056 case android::net::NT_CELLULAR:
2057 return "CELLULAR";
2058 case android::net::NT_WIFI:
2059 return "WIFI";
2060 case android::net::NT_BLUETOOTH:
2061 return "BLUETOOTH";
2062 case android::net::NT_ETHERNET:
2063 return "ETHERNET";
2064 case android::net::NT_VPN:
2065 return "VPN";
2066 case android::net::NT_WIFI_AWARE:
2067 return "WIFI_AWARE";
2068 case android::net::NT_LOWPAN:
2069 return "LOWPAN";
2070 case android::net::NT_CELLULAR_VPN:
2071 return "CELLULAR_VPN";
2072 case android::net::NT_WIFI_VPN:
2073 return "WIFI_VPN";
2074 case android::net::NT_BLUETOOTH_VPN:
2075 return "BLUETOOTH_VPN";
2076 case android::net::NT_ETHERNET_VPN:
2077 return "ETHERNET_VPN";
2078 case android::net::NT_WIFI_CELLULAR_VPN:
2079 return "WIFI_CELLULAR_VPN";
2080 default:
2081 return "UNKNOWN";
2082 }
2083 }
2084
resolv_netconfig_dump(DumpWriter & dw,unsigned netid)2085 void resolv_netconfig_dump(DumpWriter& dw, unsigned netid) {
2086 std::lock_guard guard(cache_mutex);
2087 if (const auto info = find_netconfig_locked(netid); info != nullptr) {
2088 info->dnsStats.dump(dw);
2089 // TODO: dump info->hosts
2090 dw.println("TC mode: %s", tc_mode_to_str(info->tc_mode));
2091 dw.println("TransportType: %s", transport_type_to_str(info->transportTypes));
2092 }
2093 }
2094
resolv_get_max_cache_entries(unsigned netid)2095 int resolv_get_max_cache_entries(unsigned netid) {
2096 std::lock_guard guard(cache_mutex);
2097 NetConfig* info = find_netconfig_locked(netid);
2098 if (!info) {
2099 LOG(WARNING) << __func__ << ": NetConfig for netid " << netid << " not found";
2100 return -1;
2101 }
2102 return info->cache->get_max_cache_entries();
2103 }