• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1# Scripts reference
2
3[TOC]
4
5## Record a profile
6
7### app_profiler.py
8
9`app_profiler.py` is used to record profiling data for Android applications and native executables.
10
11```sh
12# Record an Android application.
13$ ./app_profiler.py -p simpleperf.example.cpp
14
15# Record an Android application with Java code compiled into native instructions.
16$ ./app_profiler.py -p simpleperf.example.cpp --compile_java_code
17
18# Record the launch of an Activity of an Android application.
19$ ./app_profiler.py -p simpleperf.example.cpp -a .SleepActivity
20
21# Record a native process.
22$ ./app_profiler.py -np surfaceflinger
23
24# Record a native process given its pid.
25$ ./app_profiler.py --pid 11324
26
27# Record a command.
28$ ./app_profiler.py -cmd \
29    "dex2oat --dex-file=/data/local/tmp/app-debug.apk --oat-file=/data/local/tmp/a.oat"
30
31# Record an Android application, and use -r to send custom options to the record command.
32$ ./app_profiler.py -p simpleperf.example.cpp \
33    -r "-e cpu-clock -g --duration 30"
34
35# Record both on CPU time and off CPU time.
36$ ./app_profiler.py -p simpleperf.example.cpp \
37    -r "-e task-clock -g -f 1000 --duration 10 --trace-offcpu"
38
39# Save profiling data in a custom file (like perf_custom.data) instead of perf.data.
40$ ./app_profiler.py -p simpleperf.example.cpp -o perf_custom.data
41```
42
43### Profile from launch of an application
44
45Sometimes we want to profile the launch-time of an application. To support this, we added `--app` in
46the record command. The `--app` option sets the package name of the Android application to profile.
47If the app is not already running, the record command will poll for the app process in a loop with
48an interval of 1ms. So to profile from launch of an application, we can first start the record
49command with `--app`, then start the app. Below is an example.
50
51```sh
52$ ./run_simpleperf_on_device.py record --app simpleperf.example.cpp \
53    -g --duration 1 -o /data/local/tmp/perf.data
54# Start the app manually or using the `am` command.
55```
56
57To make it convenient to use, `app_profiler.py` supports using the `-a` option to start an Activity
58after recording has started.
59
60```sh
61$ ./app_profiler.py -p simpleperf.example.cpp -a .MainActivity
62```
63
64### api_profiler.py
65
66`api_profiler.py` is used to control recording in application code. It does preparation work
67before recording, and collects profiling data files after recording.
68
69[Here](./android_application_profiling.md#control-recording-in-application-code) are the details.
70
71### run_simpleperf_without_usb_connection.py
72
73`run_simpleperf_without_usb_connection.py` records profiling data while the USB cable isn't
74connected. Maybe `api_profiler.py` is more suitable, which also don't need USB cable when recording.
75Below is an example.
76
77```sh
78$ ./run_simpleperf_without_usb_connection.py start -p simpleperf.example.cpp
79# After the command finishes successfully, unplug the USB cable, run the
80# SimpleperfExampleCpp app. After a few seconds, plug in the USB cable.
81$ ./run_simpleperf_without_usb_connection.py stop
82# It may take a while to stop recording. After that, the profiling data is collected in perf.data
83# on host.
84```
85
86### binary_cache_builder.py
87
88The `binary_cache` directory is a directory holding binaries needed by a profiling data file. The
89binaries are expected to be unstripped, having debug information and symbol tables. The
90`binary_cache` directory is used by report scripts to read symbols of binaries. It is also used by
91`report_html.py` to generate annotated source code and disassembly.
92
93By default, `app_profiler.py` builds the binary_cache directory after recording. But we can also
94build `binary_cache` for existing profiling data files using `binary_cache_builder.py`. It is useful
95when you record profiling data using `simpleperf record` directly, to do system wide profiling or
96record without the USB cable connected.
97
98`binary_cache_builder.py` can either pull binaries from an Android device, or find binaries in
99directories on the host (via `-lib`).
100
101```sh
102# Generate binary_cache for perf.data, by pulling binaries from the device.
103$ ./binary_cache_builder.py
104
105# Generate binary_cache, by pulling binaries from the device and finding binaries in
106# SimpleperfExampleCpp.
107$ ./binary_cache_builder.py -lib path_of_SimpleperfExampleCpp
108```
109
110### run_simpleperf_on_device.py
111
112This script pushes the `simpleperf` executable on the device, and run a simpleperf command on the
113device. It is more convenient than running adb commands manually.
114
115## Viewing the profile
116
117Scripts in this section are for viewing the profile or converting profile data into formats used by
118external UIs. For recommended UIs, see [view_the_profile.md](view_the_profile.md).
119
120### report.py
121
122report.py is a wrapper of the `report` command on the host. It accepts all options of the `report`
123command.
124
125```sh
126# Report call graph
127$ ./report.py -g
128
129# Report call graph in a GUI window implemented by Python Tk.
130$ ./report.py -g --gui
131```
132
133### report_html.py
134
135`report_html.py` generates `report.html` based on the profiling data. Then the `report.html` can show
136the profiling result without depending on other files. So it can be shown in local browsers or
137passed to other machines. Depending on which command-line options are used, the content of the
138`report.html` can include: chart statistics, sample table, flamegraphs, annotated source code for
139each function, annotated disassembly for each function.
140
141```sh
142# Generate chart statistics, sample table and flamegraphs, based on perf.data.
143$ ./report_html.py
144
145# Add source code.
146$ ./report_html.py --add_source_code --source_dirs path_of_SimpleperfExampleCpp
147
148# Add disassembly.
149$ ./report_html.py --add_disassembly
150
151# Adding disassembly for all binaries can cost a lot of time. So we can choose to only add
152# disassembly for selected binaries.
153$ ./report_html.py --add_disassembly --binary_filter libgame.so
154
155# report_html.py accepts more than one recording data file.
156$ ./report_html.py -i perf1.data perf2.data
157```
158
159Below is an example of generating html profiling results for SimpleperfExampleCpp.
160
161```sh
162$ ./app_profiler.py -p simpleperf.example.cpp
163$ ./report_html.py --add_source_code --source_dirs path_of_SimpleperfExampleCpp \
164    --add_disassembly
165```
166
167After opening the generated [`report.html`](./report_html.html) in a browser, there are several tabs:
168
169The first tab is "Chart Statistics". You can click the pie chart to show the time consumed by each
170process, thread, library and function.
171
172The second tab is "Sample Table". It shows the time taken by each function. By clicking one row in
173the table, we can jump to a new tab called "Function".
174
175The third tab is "Flamegraph". It shows the graphs generated by [`inferno`](./inferno.md).
176
177The fourth tab is "Function". It only appears when users click a row in the "Sample Table" tab.
178It shows information of a function, including:
179
1801. A flamegraph showing functions called by that function.
1812. A flamegraph showing functions calling that function.
1823. Annotated source code of that function. It only appears when there are source code files for
183   that function.
1844. Annotated disassembly of that function. It only appears when there are binaries containing that
185   function.
186
187### inferno
188
189[`inferno`](./inferno.md) is a tool used to generate flamegraph in a html file.
190
191```sh
192# Generate flamegraph based on perf.data.
193# On Windows, use inferno.bat instead of ./inferno.sh.
194$ ./inferno.sh -sc --record_file perf.data
195
196# Record a native program and generate flamegraph.
197$ ./inferno.sh -np surfaceflinger
198```
199
200### purgatorio
201
202[`purgatorio`](../scripts/purgatorio/README.md) is a visualization tool to show samples in time order.
203
204### pprof_proto_generator.py
205
206It converts a profiling data file into `pprof.proto`, a format used by [pprof](https://github.com/google/pprof).
207
208```sh
209# Convert perf.data in the current directory to pprof.proto format.
210$ ./pprof_proto_generator.py
211# Show report in pdf format.
212$ pprof -pdf pprof.profile
213
214# Show report in html format. To show disassembly, add --tools option like:
215#  --tools=objdump:<ndk_path>/toolchains/llvm/prebuilt/linux-x86_64/aarch64-linux-android/bin
216# To show annotated source or disassembly, select `top` in the view menu, click a function and
217# select `source` or `disassemble` in the view menu.
218$ pprof -http=:8080 pprof.profile
219```
220
221### gecko_profile_generator.py
222
223Converts `perf.data` to [Gecko Profile
224Format](https://github.com/firefox-devtools/profiler/blob/main/docs-developer/gecko-profile-format.md),
225the format read by https://profiler.firefox.com/.
226
227Firefox Profiler is a powerful general-purpose profiler UI which runs locally in
228any browser (not just Firefox), with:
229
230- Per-thread tracks
231- Flamegraphs
232- Search, focus for specific stacks
233- A time series view for seeing your samples in timestamp order
234- Filtering by thread and duration
235
236Usage:
237
238```
239# Record a profile of your application
240$ ./app_profiler.py -p simpleperf.example.cpp
241
242# Convert and gzip.
243$ ./gecko_profile_generator.py -i perf.data | gzip > gecko-profile.json.gz
244```
245
246Then open `gecko-profile.json.gz` in https://profiler.firefox.com/.
247
248### report_sample.py
249
250`report_sample.py` converts a profiling data file into the `perf script` text format output by
251`linux-perf-tool`.
252
253This format can be imported into:
254
255- [FlameGraph](https://github.com/brendangregg/FlameGraph)
256- [Flamescope](https://github.com/Netflix/flamescope)
257- [Firefox
258  Profiler](https://github.com/firefox-devtools/profiler/blob/main/docs-user/guide-perf-profiling.md),
259  but prefer using `gecko_profile_generator.py`.
260- [Speedscope](https://github.com/jlfwong/speedscope/wiki/Importing-from-perf-(linux))
261
262```sh
263# Record a profile to perf.data
264$ ./app_profiler.py <args>
265
266# Convert perf.data in the current directory to a format used by FlameGraph.
267$ ./report_sample.py --symfs binary_cache >out.perf
268
269$ git clone https://github.com/brendangregg/FlameGraph.git
270$ FlameGraph/stackcollapse-perf.pl out.perf >out.folded
271$ FlameGraph/flamegraph.pl out.folded >a.svg
272```
273
274### stackcollapse.py
275
276`stackcollapse.py` converts a profiling data file (`perf.data`) to [Brendan
277Gregg's "Folded Stacks"
278format](https://queue.acm.org/detail.cfm?id=2927301#:~:text=The%20folded%20stack%2Dtrace%20format,trace%2C%20followed%20by%20a%20semicolon).
279
280Folded Stacks are lines of semicolon-delimited stack frames, root to leaf,
281followed by a count of events sampled in that stack, e.g.:
282
283```
284BusyThread;__start_thread;__pthread_start(void*);java.lang.Thread.run 17889729
285```
286
287All similar stacks are aggregated and sample timestamps are unused.
288
289Folded Stacks format is readable by:
290
291- The [FlameGraph](https://github.com/brendangregg/FlameGraph) toolkit
292- [Inferno](https://github.com/jonhoo/inferno) (Rust port of FlameGraph)
293- [Speedscope](https://speedscope.app/)
294
295Example:
296
297```sh
298# Record a profile to perf.data
299$ ./app_profiler.py <args>
300
301# Convert to Folded Stacks format
302$ ./stackcollapse.py --kernel --jit | gzip > profile.folded.gz
303
304# Visualise with FlameGraph with Java Stacks and nanosecond times
305$ git clone https://github.com/brendangregg/FlameGraph.git
306$ gunzip -c profile.folded.gz \
307    | FlameGraph/flamegraph.pl --color=java --countname=ns \
308    > profile.svg
309```
310
311## simpleperf_report_lib.py
312
313`simpleperf_report_lib.py` is a Python library used to parse profiling data files generated by the
314record command. Internally, it uses libsimpleperf_report.so to do the work. Generally, for each
315profiling data file, we create an instance of ReportLib, pass it the file path (via SetRecordFile).
316Then we can read all samples through GetNextSample(). For each sample, we can read its event info
317(via GetEventOfCurrentSample), symbol info (via GetSymbolOfCurrentSample) and call chain info
318(via GetCallChainOfCurrentSample). We can also get some global information, like record options
319(via GetRecordCmd), the arch of the device (via GetArch) and meta strings (via MetaInfo).
320
321Examples of using `simpleperf_report_lib.py` are in `report_sample.py`, `report_html.py`,
322`pprof_proto_generator.py` and `inferno/inferno.py`.
323