• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (C) 2020 The Android Open Source Project
3  *
4  * Licensed under the Apache License, Version 2.0 (the "License");
5  * you may not use this file except in compliance with the License.
6  * You may obtain a copy of the License at
7  *
8  *      http://www.apache.org/licenses/LICENSE-2.0
9  *
10  * Unless required by applicable law or agreed to in writing, software
11  * distributed under the License is distributed on an "AS IS" BASIS,
12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13  * See the License for the specific language governing permissions and
14  * limitations under the License.
15  */
16 
17 //
18 // Test that file contents encryption is working, via:
19 //
20 // - Correctness tests.  These test the standard FBE settings supported by
21 //   Android R and higher.
22 //
23 // - Randomness test.  This runs on all devices that use FBE, even old ones.
24 //
25 // The correctness tests cover the following settings:
26 //
27 //    fileencryption=aes-256-xts:aes-256-cts:v2
28 //    fileencryption=aes-256-xts:aes-256-cts:v2+inlinecrypt_optimized
29 //    fileencryption=aes-256-xts:aes-256-cts:v2+inlinecrypt_optimized+wrappedkey_v0
30 //    fileencryption=aes-256-xts:aes-256-cts:v2+emmc_optimized
31 //    fileencryption=aes-256-xts:aes-256-cts:v2+emmc_optimized+wrappedkey_v0
32 //    fileencryption=adiantum:adiantum:v2
33 //
34 // On devices launching with R or higher those are equivalent to simply:
35 //
36 //    fileencryption=
37 //    fileencryption=::inlinecrypt_optimized
38 //    fileencryption=::inlinecrypt_optimized+wrappedkey_v0
39 //    fileencryption=::emmc_optimized
40 //    fileencryption=::emmc_optimized+wrappedkey_v0
41 //    fileencryption=adiantum
42 //
43 // The tests don't check which one of those settings, if any, the device is
44 // actually using; they just try to test everything they can.
45 // "fileencryption=aes-256-xts" is guaranteed to be available if the kernel
46 // supports any "fscrypt v2" features at all.  The others may not be available,
47 // so the tests take that into account and skip testing them when unavailable.
48 //
49 // None of these tests should ever fail.  In particular, vendors must not break
50 // any standard FBE settings, regardless of what the device actually uses.  If
51 // any test fails, make sure to check things like the byte order of keys.
52 //
53 
54 #include <android-base/file.h>
55 #include <android-base/properties.h>
56 #include <android-base/stringprintf.h>
57 #include <android-base/unique_fd.h>
58 #include <asm/byteorder.h>
59 #include <errno.h>
60 #include <fcntl.h>
61 #include <gtest/gtest.h>
62 #include <limits.h>
63 #include <linux/f2fs.h>
64 #include <linux/fiemap.h>
65 #include <linux/fs.h>
66 #include <linux/fscrypt.h>
67 #include <lz4.h>
68 #include <openssl/evp.h>
69 #include <openssl/hkdf.h>
70 #include <openssl/siphash.h>
71 #include <stdlib.h>
72 #include <string.h>
73 #include <sys/ioctl.h>
74 #include <unistd.h>
75 
76 #include <chrono>
77 #include <thread>
78 
79 #include "vts_kernel_encryption.h"
80 
81 /* These values are missing from <linux/f2fs.h> */
82 enum f2fs_compress_algorithm {
83   F2FS_COMPRESS_LZO,
84   F2FS_COMPRESS_LZ4,
85   F2FS_COMPRESS_ZSTD,
86   F2FS_COMPRESS_LZORLE,
87   F2FS_COMPRESS_MAX,
88 };
89 
90 namespace android {
91 namespace kernel {
92 
93 // The main mountpoint of the filesystem the test will use to test FBE.
94 constexpr const char *kTestMountpoint = "/data";
95 
96 // A directory on the kTestMountpoint filesystem that doesn't already have an
97 // encryption policy, and therefore allows the creation of subdirectories with
98 // custom encryption policies.
99 constexpr const char *kUnencryptedDir = "/data/unencrypted";
100 
101 // A directory on the kTestMountpoint filesystem that already has an encryption
102 // policy.  Any files created in this directory will be encrypted using the
103 // encryption settings that Android is configured to use.
104 constexpr const char *kTmpDir = "/data/local/tmp";
105 
106 // Assumed size of filesystem blocks, in bytes
107 constexpr int kFilesystemBlockSize = 4096;
108 
109 // Size of the test file in filesystem blocks
110 constexpr int kTestFileBlocks = 256;
111 
112 // Size of the test file in bytes
113 constexpr int kTestFileBytes = kFilesystemBlockSize * kTestFileBlocks;
114 
115 // fscrypt master key size in bytes
116 constexpr int kFscryptMasterKeySize = 64;
117 
118 // fscrypt maximum IV size in bytes
119 constexpr int kFscryptMaxIVSize = 32;
120 
121 // fscrypt per-file nonce size in bytes
122 constexpr int kFscryptFileNonceSize = 16;
123 
124 // fscrypt HKDF context bytes, from kernel fs/crypto/fscrypt_private.h
125 enum FscryptHkdfContext {
126   HKDF_CONTEXT_KEY_IDENTIFIER = 1,
127   HKDF_CONTEXT_PER_FILE_ENC_KEY = 2,
128   HKDF_CONTEXT_DIRECT_KEY = 3,
129   HKDF_CONTEXT_IV_INO_LBLK_64_KEY = 4,
130   HKDF_CONTEXT_DIRHASH_KEY = 5,
131   HKDF_CONTEXT_IV_INO_LBLK_32_KEY = 6,
132   HKDF_CONTEXT_INODE_HASH_KEY = 7,
133 };
134 
135 struct FscryptFileNonce {
136   uint8_t bytes[kFscryptFileNonceSize];
137 };
138 
139 // Format of the initialization vector
140 union FscryptIV {
141   struct {
142     __le32 lblk_num;      // file logical block number, starts at 0
143     __le32 inode_number;  // only used for IV_INO_LBLK_64
144     uint8_t file_nonce[kFscryptFileNonceSize];  // only used for DIRECT_KEY
145   };
146   uint8_t bytes[kFscryptMaxIVSize];
147 };
148 
149 struct TestFileInfo {
150   std::vector<uint8_t> plaintext;
151   std::vector<uint8_t> actual_ciphertext;
152   uint64_t inode_number;
153   FscryptFileNonce nonce;
154 };
155 
GetInodeNumber(const std::string & path,uint64_t * inode_number)156 static bool GetInodeNumber(const std::string &path, uint64_t *inode_number) {
157   struct stat stbuf;
158   if (stat(path.c_str(), &stbuf) != 0) {
159     ADD_FAILURE() << "Failed to stat " << path << Errno();
160     return false;
161   }
162   *inode_number = stbuf.st_ino;
163   return true;
164 }
165 
166 //
167 // Checks whether the kernel has support for the following fscrypt features:
168 //
169 // - Filesystem-level keyring (FS_IOC_ADD_ENCRYPTION_KEY and
170 //   FS_IOC_REMOVE_ENCRYPTION_KEY)
171 // - v2 encryption policies
172 // - The IV_INO_LBLK_64 encryption policy flag
173 // - The FS_IOC_GET_ENCRYPTION_NONCE ioctl
174 // - The IV_INO_LBLK_32 encryption policy flag
175 //
176 // To do this it's sufficient to just check whether FS_IOC_ADD_ENCRYPTION_KEY is
177 // available, as the other features were added in the same AOSP release.
178 //
179 // The easiest way to do this is to just execute the ioctl with a NULL argument.
180 // If available it will fail with EFAULT; otherwise it will fail with ENOTTY (or
181 // EOPNOTSUPP if encryption isn't enabled on the filesystem; that happens on old
182 // devices that aren't using FBE and are upgraded to a new kernel).
183 //
IsFscryptV2Supported(const std::string & mountpoint)184 static bool IsFscryptV2Supported(const std::string &mountpoint) {
185   android::base::unique_fd fd(
186       open(mountpoint.c_str(), O_RDONLY | O_DIRECTORY | O_CLOEXEC));
187   if (fd < 0) {
188     ADD_FAILURE() << "Failed to open " << mountpoint << Errno();
189     return false;
190   }
191 
192   if (ioctl(fd, FS_IOC_ADD_ENCRYPTION_KEY, nullptr) == 0) {
193     ADD_FAILURE()
194         << "FS_IOC_ADD_ENCRYPTION_KEY(nullptr) unexpectedly succeeded on "
195         << mountpoint;
196     return false;
197   }
198   switch (errno) {
199     case EFAULT:
200       return true;
201     case EOPNOTSUPP:
202     case ENOTTY:
203       GTEST_LOG_(INFO) << "No support for FS_IOC_ADD_ENCRYPTION_KEY on "
204                        << mountpoint;
205       return false;
206     default:
207       ADD_FAILURE()
208           << "Unexpected error from FS_IOC_ADD_ENCRYPTION_KEY(nullptr) on "
209           << mountpoint << Errno();
210       return false;
211   }
212 }
213 
214 // Helper class to freeze / unfreeze a filesystem, to prevent the filesystem
215 // from moving the file's blocks while the test is accessing them via the
216 // underlying device.  ext4 doesn't need this, but f2fs does because f2fs does
217 // background garbage collection.  We cannot use F2FS_IOC_SET_PIN_FILE because
218 // F2FS_IOC_SET_PIN_FILE doesn't support compressed files.
219 //
220 // The fd given can be any fd to a file or directory on the filesystem.
221 // FIFREEZE operates on the whole filesystem, not on the individual file given.
222 class ScopedFsFreezer {
223  public:
ScopedFsFreezer(int fd)224   explicit ScopedFsFreezer(int fd) {
225     auto start = std::chrono::steady_clock::now();
226     do {
227       if (ioctl(fd, FIFREEZE, NULL) == 0) {
228         fd_ = fd;
229         return;
230       }
231       if (errno == EBUSY || errno == EINVAL) {
232         // EBUSY means the filesystem is already frozen, perhaps by a concurrent
233         // execution of this same test.  Since we don't have control over
234         // exactly when another process unfreezes the filesystem, we don't
235         // continue on with the test but rather just keep retrying the freeze
236         // until it works.
237         //
238         // Very rarely, on f2fs FIFREEZE fails with EINVAL (b/255800104).
239         // Unfortunately, the reason for this is still unknown.  Enter the retry
240         // loop in this case too, in the hope that it helps.
241         //
242         // Both of these errors are rare, so this sleep should not normally be
243         // executed.
244         std::this_thread::sleep_for(std::chrono::milliseconds(100));
245         continue;
246       }
247       ADD_FAILURE() << "Failed to freeze filesystem" << Errno();
248       return;
249     } while (std::chrono::steady_clock::now() - start <
250              std::chrono::seconds(20));
251     ADD_FAILURE() << "Timed out while waiting to freeze filesystem";
252   }
253 
~ScopedFsFreezer()254   ~ScopedFsFreezer() {
255     if (fd_ != -1 && ioctl(fd_, FITHAW, NULL) != 0) {
256       ADD_FAILURE() << "Failed to thaw filesystem" << Errno();
257     }
258   }
259 
260  private:
261   int fd_ = -1;
262 };
263 
264 // Reads the raw data of the file specified by |fd| from its underlying block
265 // device |blk_device|.  The file has |expected_data_size| bytes of initialized
266 // data; this must be a multiple of the filesystem block size
267 // kFilesystemBlockSize.  The file may contain holes, in which case only the
268 // non-holes are read; the holes are not counted in |expected_data_size|.
ReadRawDataOfFile(int fd,const std::string & blk_device,int expected_data_size,std::vector<uint8_t> * raw_data)269 static bool ReadRawDataOfFile(int fd, const std::string &blk_device,
270                               int expected_data_size,
271                               std::vector<uint8_t> *raw_data) {
272   int max_extents = expected_data_size / kFilesystemBlockSize;
273 
274   EXPECT_TRUE(expected_data_size % kFilesystemBlockSize == 0);
275 
276   if (fsync(fd) != 0) {
277     ADD_FAILURE() << "Failed to sync file" << Errno();
278     return false;
279   }
280 
281   // Freeze the filesystem containing the file.
282   ScopedFsFreezer freezer(fd);
283 
284   // Query the file's extents.
285   size_t allocsize = offsetof(struct fiemap, fm_extents[max_extents]);
286   std::unique_ptr<struct fiemap> map(
287       new (::operator new(allocsize)) struct fiemap);
288   memset(map.get(), 0, allocsize);
289   map->fm_flags = 0;
290   map->fm_length = UINT64_MAX;
291   map->fm_extent_count = max_extents;
292   if (ioctl(fd, FS_IOC_FIEMAP, map.get()) != 0) {
293     ADD_FAILURE() << "Failed to get extents of file" << Errno();
294     return false;
295   }
296 
297   // Read the raw data, using direct I/O to avoid getting any stale cached data.
298   // Direct I/O requires using a block size aligned buffer.
299 
300   std::unique_ptr<void, void (*)(void *)> buf_mem(
301       aligned_alloc(kFilesystemBlockSize, expected_data_size), free);
302   if (buf_mem == nullptr) {
303     ADD_FAILURE() << "Out of memory";
304     return false;
305   }
306   uint8_t *buf = static_cast<uint8_t *>(buf_mem.get());
307   int offset = 0;
308 
309   android::base::unique_fd blk_fd(
310       open(blk_device.c_str(), O_RDONLY | O_DIRECT | O_CLOEXEC));
311   if (blk_fd < 0) {
312     ADD_FAILURE() << "Failed to open raw block device " << blk_device
313                   << Errno();
314     return false;
315   }
316 
317   for (int i = 0; i < map->fm_mapped_extents; i++) {
318     const struct fiemap_extent &extent = map->fm_extents[i];
319 
320     GTEST_LOG_(INFO) << "Extent " << i + 1 << " of " << map->fm_mapped_extents
321                      << " is logical offset " << extent.fe_logical
322                      << ", physical offset " << extent.fe_physical
323                      << ", length " << extent.fe_length << ", flags 0x"
324                      << std::hex << extent.fe_flags << std::dec;
325     // Make sure the flags indicate that fe_physical is actually valid.
326     if (extent.fe_flags & (FIEMAP_EXTENT_UNKNOWN | FIEMAP_EXTENT_UNWRITTEN)) {
327       ADD_FAILURE() << "Unsupported extent flags: 0x" << std::hex
328                     << extent.fe_flags << std::dec;
329       return false;
330     }
331     if (extent.fe_length % kFilesystemBlockSize != 0) {
332       ADD_FAILURE() << "Extent is not aligned to filesystem block size";
333       return false;
334     }
335     if (extent.fe_length > expected_data_size - offset) {
336       ADD_FAILURE() << "File is longer than expected";
337       return false;
338     }
339     if (pread(blk_fd, &buf[offset], extent.fe_length, extent.fe_physical) !=
340         extent.fe_length) {
341       ADD_FAILURE() << "Error reading raw data from block device" << Errno();
342       return false;
343     }
344     offset += extent.fe_length;
345   }
346   if (offset != expected_data_size) {
347     ADD_FAILURE() << "File is shorter than expected";
348     return false;
349   }
350   *raw_data = std::vector<uint8_t>(&buf[0], &buf[offset]);
351   return true;
352 }
353 
354 // Writes |plaintext| to a file |path| located on the block device |blk_device|.
355 // Returns in |ciphertext| the file's raw ciphertext read from |blk_device|.
WriteTestFile(const std::vector<uint8_t> & plaintext,const std::string & path,const std::string & blk_device,const struct f2fs_comp_option * compress_options,std::vector<uint8_t> * ciphertext)356 static bool WriteTestFile(const std::vector<uint8_t> &plaintext,
357                           const std::string &path,
358                           const std::string &blk_device,
359                           const struct f2fs_comp_option *compress_options,
360                           std::vector<uint8_t> *ciphertext) {
361   GTEST_LOG_(INFO) << "Creating test file " << path << " containing "
362                    << plaintext.size() << " bytes of data";
363   android::base::unique_fd fd(
364       open(path.c_str(), O_WRONLY | O_CREAT | O_CLOEXEC, 0600));
365   if (fd < 0) {
366     ADD_FAILURE() << "Failed to create " << path << Errno();
367     return false;
368   }
369 
370   if (compress_options != nullptr) {
371     if (ioctl(fd, F2FS_IOC_SET_COMPRESS_OPTION, compress_options) != 0) {
372       ADD_FAILURE() << "Error setting compression options on " << path
373                     << Errno();
374       return false;
375     }
376   }
377 
378   if (!android::base::WriteFully(fd, plaintext.data(), plaintext.size())) {
379     ADD_FAILURE() << "Error writing to " << path << Errno();
380     return false;
381   }
382 
383   if (compress_options != nullptr) {
384     // With compress_mode=user, files in a compressed directory inherit the
385     // compression flag but aren't actually compressed unless
386     // F2FS_IOC_COMPRESS_FILE is called.  The ioctl compresses existing data
387     // only, so it must be called *after* writing the data.  With
388     // compress_mode=fs, the ioctl is unnecessary and fails with EOPNOTSUPP.
389     if (ioctl(fd, F2FS_IOC_COMPRESS_FILE, NULL) != 0 && errno != EOPNOTSUPP) {
390       ADD_FAILURE() << "F2FS_IOC_COMPRESS_FILE failed on " << path << Errno();
391       return false;
392     }
393   }
394 
395   GTEST_LOG_(INFO) << "Reading the raw ciphertext of " << path << " from disk";
396   if (!ReadRawDataOfFile(fd, blk_device, plaintext.size(), ciphertext)) {
397     ADD_FAILURE() << "Failed to read the raw ciphertext of " << path;
398     return false;
399   }
400   return true;
401 }
402 
403 // See MakeSomeCompressibleClusters() for explanation.
IsCompressibleCluster(int cluster_num)404 static bool IsCompressibleCluster(int cluster_num) {
405   return cluster_num % 2 == 0;
406 }
407 
408 // Given some random data that will be written to the test file, modifies every
409 // other compression cluster to be compressible by at least 1 filesystem block.
410 //
411 // This testing strategy is adapted from the xfstest "f2fs/002".  We use some
412 // compressible clusters and some incompressible clusters because we want to
413 // test that the encryption works correctly with both.  We also don't make the
414 // data *too* compressible, since we want to have enough compressed blocks in
415 // each cluster to see the IVs being incremented.
MakeSomeCompressibleClusters(std::vector<uint8_t> & bytes,int log_cluster_size)416 static bool MakeSomeCompressibleClusters(std::vector<uint8_t> &bytes,
417                                          int log_cluster_size) {
418   int cluster_bytes = kFilesystemBlockSize << log_cluster_size;
419   if (bytes.size() % cluster_bytes != 0) {
420     ADD_FAILURE() << "Test file size (" << bytes.size()
421                   << " bytes) is not divisible by compression cluster size ("
422                   << cluster_bytes << " bytes)";
423     return false;
424   }
425   int num_clusters = bytes.size() / cluster_bytes;
426   for (int i = 0; i < num_clusters; i++) {
427     if (IsCompressibleCluster(i)) {
428       memset(&bytes[i * cluster_bytes], 0, 2 * kFilesystemBlockSize);
429     }
430   }
431   return true;
432 }
433 
434 // On-disk format of an f2fs compressed cluster
435 struct f2fs_compressed_cluster {
436   __le32 clen;
437   __le32 reserved[5];
438   uint8_t cdata[];
439 } __attribute__((packed));
440 
DecompressLZ4Cluster(const uint8_t * in,uint8_t * out,int cluster_bytes)441 static bool DecompressLZ4Cluster(const uint8_t *in, uint8_t *out,
442                                  int cluster_bytes) {
443   const struct f2fs_compressed_cluster *cluster =
444       reinterpret_cast<const struct f2fs_compressed_cluster *>(in);
445   uint32_t clen = __le32_to_cpu(cluster->clen);
446 
447   if (clen > cluster_bytes - kFilesystemBlockSize - sizeof(*cluster)) {
448     ADD_FAILURE() << "Invalid compressed cluster (bad compressed size)";
449     return false;
450   }
451   if (LZ4_decompress_safe(reinterpret_cast<const char *>(cluster->cdata),
452                           reinterpret_cast<char *>(out), clen,
453                           cluster_bytes) != cluster_bytes) {
454     ADD_FAILURE() << "Invalid compressed cluster (LZ4 decompression error)";
455     return false;
456   }
457 
458   // As long as we're here, do a regression test for kernel commit 7fa6d59816e7
459   // ("f2fs: fix leaking uninitialized memory in compressed clusters").
460   // Note that if this fails, we can still continue with the rest of the test.
461   size_t full_clen = offsetof(struct f2fs_compressed_cluster, cdata[clen]);
462   if (full_clen % kFilesystemBlockSize != 0) {
463     size_t remainder =
464         kFilesystemBlockSize - (full_clen % kFilesystemBlockSize);
465     std::vector<uint8_t> zeroes(remainder, 0);
466     std::vector<uint8_t> actual(&cluster->cdata[clen],
467                                 &cluster->cdata[clen + remainder]);
468     EXPECT_EQ(zeroes, actual);
469   }
470   return true;
471 }
472 
473 class FBEPolicyTest : public ::testing::Test {
474  protected:
475   void SetUp() override;
476   void TearDown() override;
477   bool SetMasterKey(const std::vector<uint8_t> &master_key, uint32_t flags = 0,
478                     bool required = true);
479   bool CreateAndSetHwWrappedKey(std::vector<uint8_t> *enc_key,
480                                 std::vector<uint8_t> *sw_secret);
481   int GetSkipFlagsForInoBasedEncryption();
482   bool SetEncryptionPolicy(int contents_mode, int filenames_mode, int flags,
483                            int skip_flags);
484   bool GenerateTestFile(
485       TestFileInfo *info,
486       const struct f2fs_comp_option *compress_options = nullptr);
487   bool VerifyKeyIdentifier(const std::vector<uint8_t> &master_key);
488   bool DerivePerModeEncryptionKey(const std::vector<uint8_t> &master_key,
489                                   int mode, FscryptHkdfContext context,
490                                   std::vector<uint8_t> &enc_key);
491   bool DerivePerFileEncryptionKey(const std::vector<uint8_t> &master_key,
492                                   const FscryptFileNonce &nonce,
493                                   std::vector<uint8_t> &enc_key);
494   void VerifyCiphertext(const std::vector<uint8_t> &enc_key,
495                         const FscryptIV &starting_iv, const Cipher &cipher,
496                         const TestFileInfo &file_info);
497   void TestEmmcOptimizedDunWraparound(const std::vector<uint8_t> &master_key,
498                                       const std::vector<uint8_t> &enc_key);
499   bool EnableF2fsCompressionOnTestDir();
500   bool F2fsCompressOptionsSupported(const struct f2fs_comp_option &opts);
501   std::string test_dir_;
502   std::string test_file_;
503   struct fscrypt_key_specifier master_key_specifier_;
504   bool skip_test_ = false;
505   bool key_added_ = false;
506   FilesystemInfo fs_info_;
507 };
508 
509 // Test setup procedure.  Creates a test directory test_dir_ and does other
510 // preparations. skip_test_ is set to true if the test should be skipped.
SetUp()511 void FBEPolicyTest::SetUp() {
512   if (!IsFscryptV2Supported(kTestMountpoint)) {
513     int first_api_level;
514     ASSERT_TRUE(GetFirstApiLevel(&first_api_level));
515     // Devices launching with R or higher must support fscrypt v2.
516     ASSERT_LE(first_api_level, __ANDROID_API_Q__);
517     GTEST_LOG_(INFO) << "Skipping test because fscrypt v2 is unsupported";
518     skip_test_ = true;
519     return;
520   }
521 
522   // Make sure that if multiple test processes run simultaneously, they generate
523   // different encryption keys.
524   srand(getpid());
525 
526   test_dir_ = android::base::StringPrintf("%s/FBEPolicyTest.%d",
527                                           kUnencryptedDir, getpid());
528   test_file_ = test_dir_ + "/file";
529 
530   ASSERT_TRUE(GetFilesystemInfo(kTestMountpoint, &fs_info_));
531 
532   DeleteRecursively(test_dir_);
533   if (mkdir(test_dir_.c_str(), 0700) != 0) {
534     FAIL() << "Failed to create " << test_dir_ << Errno();
535   }
536 }
537 
TearDown()538 void FBEPolicyTest::TearDown() {
539   DeleteRecursively(test_dir_);
540 
541   // Remove the test key from kTestMountpoint.
542   if (key_added_) {
543     android::base::unique_fd mntfd(
544         open(kTestMountpoint, O_RDONLY | O_DIRECTORY | O_CLOEXEC));
545     if (mntfd < 0) {
546       FAIL() << "Failed to open " << kTestMountpoint << Errno();
547     }
548     struct fscrypt_remove_key_arg arg;
549     memset(&arg, 0, sizeof(arg));
550     arg.key_spec = master_key_specifier_;
551 
552     if (ioctl(mntfd, FS_IOC_REMOVE_ENCRYPTION_KEY, &arg) != 0) {
553       FAIL() << "FS_IOC_REMOVE_ENCRYPTION_KEY failed on " << kTestMountpoint
554              << Errno();
555     }
556   }
557 }
558 
559 // Adds |master_key| to kTestMountpoint and places the resulting key identifier
560 // in master_key_specifier_.
SetMasterKey(const std::vector<uint8_t> & master_key,uint32_t flags,bool required)561 bool FBEPolicyTest::SetMasterKey(const std::vector<uint8_t> &master_key,
562                                  uint32_t flags, bool required) {
563   size_t allocsize = sizeof(struct fscrypt_add_key_arg) + master_key.size();
564   std::unique_ptr<struct fscrypt_add_key_arg> arg(
565       new (::operator new(allocsize)) struct fscrypt_add_key_arg);
566   memset(arg.get(), 0, allocsize);
567   arg->key_spec.type = FSCRYPT_KEY_SPEC_TYPE_IDENTIFIER;
568   arg->__flags = flags;
569   arg->raw_size = master_key.size();
570   std::copy(master_key.begin(), master_key.end(), arg->raw);
571 
572   GTEST_LOG_(INFO) << "Adding fscrypt master key, flags are 0x" << std::hex
573                    << flags << std::dec << ", raw bytes are "
574                    << BytesToHex(master_key);
575   android::base::unique_fd mntfd(
576       open(kTestMountpoint, O_RDONLY | O_DIRECTORY | O_CLOEXEC));
577   if (mntfd < 0) {
578     ADD_FAILURE() << "Failed to open " << kTestMountpoint << Errno();
579     return false;
580   }
581   if (ioctl(mntfd, FS_IOC_ADD_ENCRYPTION_KEY, arg.get()) != 0) {
582     if (required || (errno != EINVAL && errno != EOPNOTSUPP)) {
583       ADD_FAILURE() << "FS_IOC_ADD_ENCRYPTION_KEY failed on " << kTestMountpoint
584                     << Errno();
585     }
586     return false;
587   }
588   master_key_specifier_ = arg->key_spec;
589   GTEST_LOG_(INFO) << "Master key identifier is "
590                    << BytesToHex(master_key_specifier_.u.identifier);
591   key_added_ = true;
592   if (!(flags & __FSCRYPT_ADD_KEY_FLAG_HW_WRAPPED) &&
593       !VerifyKeyIdentifier(master_key))
594     return false;
595   return true;
596 }
597 
598 // Creates a hardware-wrapped key, adds it to the filesystem, and derives the
599 // corresponding inline encryption key |enc_key| and software secret
600 // |sw_secret|.  Returns false if unsuccessful (either the test failed, or the
601 // device doesn't support hardware-wrapped keys so the test should be skipped).
CreateAndSetHwWrappedKey(std::vector<uint8_t> * enc_key,std::vector<uint8_t> * sw_secret)602 bool FBEPolicyTest::CreateAndSetHwWrappedKey(std::vector<uint8_t> *enc_key,
603                                              std::vector<uint8_t> *sw_secret) {
604   std::vector<uint8_t> master_key, exported_key;
605   if (!CreateHwWrappedKey(&master_key, &exported_key)) return false;
606 
607   if (!SetMasterKey(exported_key, __FSCRYPT_ADD_KEY_FLAG_HW_WRAPPED, false)) {
608     if (!HasFailure()) {
609       GTEST_LOG_(INFO) << "Skipping test because kernel doesn't support "
610                           "hardware-wrapped keys";
611     }
612     return false;
613   }
614 
615   if (!DeriveHwWrappedEncryptionKey(master_key, enc_key)) return false;
616   if (!DeriveHwWrappedRawSecret(master_key, sw_secret)) return false;
617 
618   if (!VerifyKeyIdentifier(*sw_secret)) return false;
619 
620   return true;
621 }
622 
623 enum {
624   kSkipIfNoPolicySupport = 1 << 0,
625   kSkipIfNoCryptoAPISupport = 1 << 1,
626   kSkipIfNoHardwareSupport = 1 << 2,
627 };
628 
629 // Returns 0 if encryption policies that include the inode number in the IVs
630 // (e.g. IV_INO_LBLK_64) are guaranteed to be settable on the test filesystem.
631 // Else returns kSkipIfNoPolicySupport.
632 //
633 // On f2fs, they're always settable.  On ext4, they're only settable if the
634 // filesystem has the 'stable_inodes' feature flag.  Android only sets
635 // 'stable_inodes' if the device uses one of these encryption policies "for
636 // real", e.g. "fileencryption=::inlinecrypt_optimized" in fstab.  Since the
637 // fstab could contain something else, we have to allow the tests for these
638 // encryption policies to be skipped on ext4.
GetSkipFlagsForInoBasedEncryption()639 int FBEPolicyTest::GetSkipFlagsForInoBasedEncryption() {
640   if (fs_info_.type == "ext4") return kSkipIfNoPolicySupport;
641   return 0;
642 }
643 
644 // Sets a v2 encryption policy on the test directory.  The policy will use the
645 // test key and the specified encryption modes and flags.  If the kernel doesn't
646 // support setting or using the encryption policy, then a failure will be added,
647 // unless the reason is covered by a bit set in |skip_flags|.
SetEncryptionPolicy(int contents_mode,int filenames_mode,int flags,int skip_flags)648 bool FBEPolicyTest::SetEncryptionPolicy(int contents_mode, int filenames_mode,
649                                         int flags, int skip_flags) {
650   if (!key_added_) {
651     ADD_FAILURE() << "SetEncryptionPolicy called but no key added";
652     return false;
653   }
654 
655   struct fscrypt_policy_v2 policy;
656   memset(&policy, 0, sizeof(policy));
657   policy.version = FSCRYPT_POLICY_V2;
658   policy.contents_encryption_mode = contents_mode;
659   policy.filenames_encryption_mode = filenames_mode;
660   // Always give PAD_16, to match the policies that Android sets for real.
661   // It doesn't affect contents encryption, though.
662   policy.flags = flags | FSCRYPT_POLICY_FLAGS_PAD_16;
663   memcpy(policy.master_key_identifier, master_key_specifier_.u.identifier,
664          FSCRYPT_KEY_IDENTIFIER_SIZE);
665 
666   android::base::unique_fd dirfd(
667       open(test_dir_.c_str(), O_RDONLY | O_DIRECTORY | O_CLOEXEC));
668   if (dirfd < 0) {
669     ADD_FAILURE() << "Failed to open " << test_dir_ << Errno();
670     return false;
671   }
672   GTEST_LOG_(INFO) << "Setting encryption policy on " << test_dir_;
673   if (ioctl(dirfd, FS_IOC_SET_ENCRYPTION_POLICY, &policy) != 0) {
674     if (errno == EINVAL && (skip_flags & kSkipIfNoPolicySupport)) {
675       GTEST_LOG_(INFO) << "Skipping test because encryption policy is "
676                           "unsupported on this filesystem / kernel";
677       return false;
678     }
679     ADD_FAILURE() << "FS_IOC_SET_ENCRYPTION_POLICY failed on " << test_dir_
680                   << " using contents_mode=" << contents_mode
681                   << ", filenames_mode=" << filenames_mode << ", flags=0x"
682                   << std::hex << flags << std::dec << Errno();
683     return false;
684   }
685   if (skip_flags & (kSkipIfNoCryptoAPISupport | kSkipIfNoHardwareSupport)) {
686     android::base::unique_fd fd(
687         open(test_file_.c_str(), O_WRONLY | O_CREAT | O_CLOEXEC, 0600));
688     if (fd < 0) {
689       // Setting an encryption policy that uses modes that aren't enabled in the
690       // kernel's crypto API (e.g. FSCRYPT_MODE_ADIANTUM when the kernel lacks
691       // CONFIG_CRYPTO_ADIANTUM) will still succeed, but actually creating a
692       // file will fail with ENOPKG.  Make sure to check for this case.
693       if (errno == ENOPKG && (skip_flags & kSkipIfNoCryptoAPISupport)) {
694         GTEST_LOG_(INFO)
695             << "Skipping test because encryption policy is "
696                "unsupported on this kernel, due to missing crypto API support";
697         return false;
698       }
699       // We get EINVAL here when using a hardware-wrapped key and the inline
700       // encryption hardware supports wrapped keys but doesn't support the
701       // number of DUN bytes that the file contents encryption requires.
702       if (errno == EINVAL && (skip_flags & kSkipIfNoHardwareSupport)) {
703         GTEST_LOG_(INFO)
704             << "Skipping test because encryption policy is not compatible with "
705                "this device's inline encryption hardware";
706         return false;
707       }
708     }
709     unlink(test_file_.c_str());
710   }
711   return true;
712 }
713 
714 // Generates some test data, writes it to a file in the test directory, and
715 // returns in |info| the file's plaintext, the file's raw ciphertext read from
716 // disk, and other information about the file.
GenerateTestFile(TestFileInfo * info,const struct f2fs_comp_option * compress_options)717 bool FBEPolicyTest::GenerateTestFile(
718     TestFileInfo *info, const struct f2fs_comp_option *compress_options) {
719   info->plaintext.resize(kTestFileBytes);
720   RandomBytesForTesting(info->plaintext);
721 
722   if (compress_options != nullptr &&
723       !MakeSomeCompressibleClusters(info->plaintext,
724                                     compress_options->log_cluster_size))
725     return false;
726 
727   if (!WriteTestFile(info->plaintext, test_file_, fs_info_.raw_blk_device,
728                      compress_options, &info->actual_ciphertext))
729     return false;
730 
731   android::base::unique_fd fd(open(test_file_.c_str(), O_RDONLY | O_CLOEXEC));
732   if (fd < 0) {
733     ADD_FAILURE() << "Failed to open " << test_file_ << Errno();
734     return false;
735   }
736 
737   // Get the file's inode number.
738   if (!GetInodeNumber(test_file_, &info->inode_number)) return false;
739   GTEST_LOG_(INFO) << "Inode number: " << info->inode_number;
740 
741   // Get the file's nonce.
742   if (ioctl(fd, FS_IOC_GET_ENCRYPTION_NONCE, info->nonce.bytes) != 0) {
743     ADD_FAILURE() << "FS_IOC_GET_ENCRYPTION_NONCE failed on " << test_file_
744                   << Errno();
745     return false;
746   }
747   GTEST_LOG_(INFO) << "File nonce: " << BytesToHex(info->nonce.bytes);
748   return true;
749 }
750 
InitHkdfInfo(FscryptHkdfContext context)751 static std::vector<uint8_t> InitHkdfInfo(FscryptHkdfContext context) {
752   return {
753       'f', 's', 'c', 'r', 'y', 'p', 't', '\0', static_cast<uint8_t>(context)};
754 }
755 
DeriveKey(const std::vector<uint8_t> & master_key,const std::vector<uint8_t> & hkdf_info,std::vector<uint8_t> & out)756 static bool DeriveKey(const std::vector<uint8_t> &master_key,
757                       const std::vector<uint8_t> &hkdf_info,
758                       std::vector<uint8_t> &out) {
759   if (HKDF(out.data(), out.size(), EVP_sha512(), master_key.data(),
760            master_key.size(), nullptr, 0, hkdf_info.data(),
761            hkdf_info.size()) != 1) {
762     ADD_FAILURE() << "BoringSSL HKDF-SHA512 call failed";
763     return false;
764   }
765   GTEST_LOG_(INFO) << "Derived subkey " << BytesToHex(out)
766                    << " using HKDF info " << BytesToHex(hkdf_info);
767   return true;
768 }
769 
770 // Derives the key identifier from |master_key| and verifies that it matches the
771 // value the kernel returned in |master_key_specifier_|.
VerifyKeyIdentifier(const std::vector<uint8_t> & master_key)772 bool FBEPolicyTest::VerifyKeyIdentifier(
773     const std::vector<uint8_t> &master_key) {
774   std::vector<uint8_t> hkdf_info = InitHkdfInfo(HKDF_CONTEXT_KEY_IDENTIFIER);
775   std::vector<uint8_t> computed_key_identifier(FSCRYPT_KEY_IDENTIFIER_SIZE);
776   if (!DeriveKey(master_key, hkdf_info, computed_key_identifier)) return false;
777 
778   std::vector<uint8_t> actual_key_identifier(
779       std::begin(master_key_specifier_.u.identifier),
780       std::end(master_key_specifier_.u.identifier));
781   EXPECT_EQ(actual_key_identifier, computed_key_identifier);
782   return actual_key_identifier == computed_key_identifier;
783 }
784 
785 // Derives a per-mode encryption key from |master_key|, |mode|, |context|, and
786 // (if needed for the context) the filesystem UUID.
DerivePerModeEncryptionKey(const std::vector<uint8_t> & master_key,int mode,FscryptHkdfContext context,std::vector<uint8_t> & enc_key)787 bool FBEPolicyTest::DerivePerModeEncryptionKey(
788     const std::vector<uint8_t> &master_key, int mode,
789     FscryptHkdfContext context, std::vector<uint8_t> &enc_key) {
790   std::vector<uint8_t> hkdf_info = InitHkdfInfo(context);
791 
792   hkdf_info.push_back(mode);
793   if (context == HKDF_CONTEXT_IV_INO_LBLK_64_KEY ||
794       context == HKDF_CONTEXT_IV_INO_LBLK_32_KEY)
795     hkdf_info.insert(hkdf_info.end(), fs_info_.uuid.bytes,
796                      std::end(fs_info_.uuid.bytes));
797 
798   return DeriveKey(master_key, hkdf_info, enc_key);
799 }
800 
801 // Derives a per-file encryption key from |master_key| and |nonce|.
DerivePerFileEncryptionKey(const std::vector<uint8_t> & master_key,const FscryptFileNonce & nonce,std::vector<uint8_t> & enc_key)802 bool FBEPolicyTest::DerivePerFileEncryptionKey(
803     const std::vector<uint8_t> &master_key, const FscryptFileNonce &nonce,
804     std::vector<uint8_t> &enc_key) {
805   std::vector<uint8_t> hkdf_info = InitHkdfInfo(HKDF_CONTEXT_PER_FILE_ENC_KEY);
806 
807   hkdf_info.insert(hkdf_info.end(), nonce.bytes, std::end(nonce.bytes));
808 
809   return DeriveKey(master_key, hkdf_info, enc_key);
810 }
811 
812 // For IV_INO_LBLK_32: Hashes the |inode_number| using the SipHash key derived
813 // from |master_key|.  Returns the resulting hash in |hash|.
HashInodeNumber(const std::vector<uint8_t> & master_key,uint64_t inode_number,uint32_t * hash)814 static bool HashInodeNumber(const std::vector<uint8_t> &master_key,
815                             uint64_t inode_number, uint32_t *hash) {
816   union {
817     uint64_t words[2];
818     __le64 le_words[2];
819   } siphash_key;
820   union {
821     __le64 inode_number;
822     uint8_t bytes[8];
823   } input;
824 
825   std::vector<uint8_t> hkdf_info = InitHkdfInfo(HKDF_CONTEXT_INODE_HASH_KEY);
826   std::vector<uint8_t> ino_hash_key(sizeof(siphash_key));
827   if (!DeriveKey(master_key, hkdf_info, ino_hash_key)) return false;
828 
829   memcpy(&siphash_key, &ino_hash_key[0], sizeof(siphash_key));
830   siphash_key.words[0] = __le64_to_cpu(siphash_key.le_words[0]);
831   siphash_key.words[1] = __le64_to_cpu(siphash_key.le_words[1]);
832 
833   GTEST_LOG_(INFO) << "Inode hash key is {" << std::hex << "0x"
834                    << siphash_key.words[0] << ", 0x" << siphash_key.words[1]
835                    << "}" << std::dec;
836 
837   input.inode_number = __cpu_to_le64(inode_number);
838 
839   *hash = SIPHASH_24(siphash_key.words, input.bytes, sizeof(input));
840   GTEST_LOG_(INFO) << "Hashed inode number " << inode_number << " to 0x"
841                    << std::hex << *hash << std::dec;
842   return true;
843 }
844 
VerifyCiphertext(const std::vector<uint8_t> & enc_key,const FscryptIV & starting_iv,const Cipher & cipher,const TestFileInfo & file_info)845 void FBEPolicyTest::VerifyCiphertext(const std::vector<uint8_t> &enc_key,
846                                      const FscryptIV &starting_iv,
847                                      const Cipher &cipher,
848                                      const TestFileInfo &file_info) {
849   const std::vector<uint8_t> &plaintext = file_info.plaintext;
850 
851   GTEST_LOG_(INFO) << "Verifying correctness of encrypted data";
852   FscryptIV iv = starting_iv;
853 
854   std::vector<uint8_t> computed_ciphertext(plaintext.size());
855 
856   // Encrypt each filesystem block of file contents.
857   for (size_t i = 0; i < plaintext.size(); i += kFilesystemBlockSize) {
858     int block_size =
859         std::min<size_t>(kFilesystemBlockSize, plaintext.size() - i);
860 
861     ASSERT_GE(sizeof(iv.bytes), cipher.ivsize());
862     ASSERT_TRUE(cipher.Encrypt(enc_key, iv.bytes, &plaintext[i],
863                                &computed_ciphertext[i], block_size));
864 
865     // Update the IV by incrementing the file logical block number.
866     iv.lblk_num = __cpu_to_le32(__le32_to_cpu(iv.lblk_num) + 1);
867   }
868 
869   ASSERT_EQ(file_info.actual_ciphertext, computed_ciphertext);
870 }
871 
InitIVForPerFileKey(FscryptIV * iv)872 static bool InitIVForPerFileKey(FscryptIV *iv) {
873   memset(iv, 0, kFscryptMaxIVSize);
874   return true;
875 }
876 
InitIVForDirectKey(const FscryptFileNonce & nonce,FscryptIV * iv)877 static bool InitIVForDirectKey(const FscryptFileNonce &nonce, FscryptIV *iv) {
878   memset(iv, 0, kFscryptMaxIVSize);
879   memcpy(iv->file_nonce, nonce.bytes, kFscryptFileNonceSize);
880   return true;
881 }
882 
InitIVForInoLblk64(uint64_t inode_number,FscryptIV * iv)883 static bool InitIVForInoLblk64(uint64_t inode_number, FscryptIV *iv) {
884   if (inode_number > UINT32_MAX) {
885     ADD_FAILURE() << "inode number doesn't fit in 32 bits";
886     return false;
887   }
888   memset(iv, 0, kFscryptMaxIVSize);
889   iv->inode_number = __cpu_to_le32(inode_number);
890   return true;
891 }
892 
InitIVForInoLblk32(const std::vector<uint8_t> & master_key,uint64_t inode_number,FscryptIV * iv)893 static bool InitIVForInoLblk32(const std::vector<uint8_t> &master_key,
894                                uint64_t inode_number, FscryptIV *iv) {
895   uint32_t hash;
896   if (!HashInodeNumber(master_key, inode_number, &hash)) return false;
897   memset(iv, 0, kFscryptMaxIVSize);
898   iv->lblk_num = __cpu_to_le32(hash);
899   return true;
900 }
901 
902 // Tests a policy matching "fileencryption=aes-256-xts:aes-256-cts:v2"
903 // (or simply "fileencryption=" on devices launched with R or higher)
TEST_F(FBEPolicyTest,TestAesPerFileKeysPolicy)904 TEST_F(FBEPolicyTest, TestAesPerFileKeysPolicy) {
905   if (skip_test_) return;
906 
907   auto master_key = GenerateTestKey(kFscryptMasterKeySize);
908   ASSERT_TRUE(SetMasterKey(master_key));
909 
910   if (!SetEncryptionPolicy(FSCRYPT_MODE_AES_256_XTS, FSCRYPT_MODE_AES_256_CTS,
911                            0, 0))
912     return;
913 
914   TestFileInfo file_info;
915   ASSERT_TRUE(GenerateTestFile(&file_info));
916 
917   std::vector<uint8_t> enc_key(kAes256XtsKeySize);
918   ASSERT_TRUE(DerivePerFileEncryptionKey(master_key, file_info.nonce, enc_key));
919 
920   FscryptIV iv;
921   ASSERT_TRUE(InitIVForPerFileKey(&iv));
922   VerifyCiphertext(enc_key, iv, Aes256XtsCipher(), file_info);
923 }
924 
925 // Tests a policy matching
926 // "fileencryption=aes-256-xts:aes-256-cts:v2+inlinecrypt_optimized"
927 // (or simply "fileencryption=::inlinecrypt_optimized" on devices launched with
928 // R or higher)
TEST_F(FBEPolicyTest,TestAesInlineCryptOptimizedPolicy)929 TEST_F(FBEPolicyTest, TestAesInlineCryptOptimizedPolicy) {
930   if (skip_test_) return;
931 
932   auto master_key = GenerateTestKey(kFscryptMasterKeySize);
933   ASSERT_TRUE(SetMasterKey(master_key));
934 
935   if (!SetEncryptionPolicy(FSCRYPT_MODE_AES_256_XTS, FSCRYPT_MODE_AES_256_CTS,
936                            FSCRYPT_POLICY_FLAG_IV_INO_LBLK_64,
937                            GetSkipFlagsForInoBasedEncryption()))
938     return;
939 
940   TestFileInfo file_info;
941   ASSERT_TRUE(GenerateTestFile(&file_info));
942 
943   std::vector<uint8_t> enc_key(kAes256XtsKeySize);
944   ASSERT_TRUE(DerivePerModeEncryptionKey(master_key, FSCRYPT_MODE_AES_256_XTS,
945                                          HKDF_CONTEXT_IV_INO_LBLK_64_KEY,
946                                          enc_key));
947 
948   FscryptIV iv;
949   ASSERT_TRUE(InitIVForInoLblk64(file_info.inode_number, &iv));
950   VerifyCiphertext(enc_key, iv, Aes256XtsCipher(), file_info);
951 }
952 
953 // Tests a policy matching
954 // "fileencryption=aes-256-xts:aes-256-cts:v2+inlinecrypt_optimized+wrappedkey_v0"
955 // (or simply "fileencryption=::inlinecrypt_optimized+wrappedkey_v0" on devices
956 // launched with R or higher)
TEST_F(FBEPolicyTest,TestAesInlineCryptOptimizedHwWrappedKeyPolicy)957 TEST_F(FBEPolicyTest, TestAesInlineCryptOptimizedHwWrappedKeyPolicy) {
958   if (skip_test_) return;
959 
960   std::vector<uint8_t> enc_key, sw_secret;
961   if (!CreateAndSetHwWrappedKey(&enc_key, &sw_secret)) return;
962 
963   if (!SetEncryptionPolicy(
964           FSCRYPT_MODE_AES_256_XTS, FSCRYPT_MODE_AES_256_CTS,
965           FSCRYPT_POLICY_FLAG_IV_INO_LBLK_64,
966           // 64-bit DUN support is not guaranteed.
967           kSkipIfNoHardwareSupport | GetSkipFlagsForInoBasedEncryption()))
968     return;
969 
970   TestFileInfo file_info;
971   ASSERT_TRUE(GenerateTestFile(&file_info));
972 
973   FscryptIV iv;
974   ASSERT_TRUE(InitIVForInoLblk64(file_info.inode_number, &iv));
975   VerifyCiphertext(enc_key, iv, Aes256XtsCipher(), file_info);
976 }
977 
978 // With IV_INO_LBLK_32, the DUN (IV) can wrap from UINT32_MAX to 0 in the middle
979 // of the file.  This method tests that this case appears to be handled
980 // correctly, by doing I/O across the place where the DUN wraps around.  Assumes
981 // that test_dir_ has already been set up with an IV_INO_LBLK_32 policy.
TestEmmcOptimizedDunWraparound(const std::vector<uint8_t> & master_key,const std::vector<uint8_t> & enc_key)982 void FBEPolicyTest::TestEmmcOptimizedDunWraparound(
983     const std::vector<uint8_t> &master_key,
984     const std::vector<uint8_t> &enc_key) {
985   // We'll test writing 'block_count' filesystem blocks.  The first
986   // 'block_count_1' blocks will have DUNs [..., UINT32_MAX - 1, UINT32_MAX].
987   // The remaining 'block_count_2' blocks will have DUNs [0, 1, ...].
988   constexpr uint32_t block_count_1 = 3;
989   constexpr uint32_t block_count_2 = 7;
990   constexpr uint32_t block_count = block_count_1 + block_count_2;
991   constexpr size_t data_size = block_count * kFilesystemBlockSize;
992 
993   // Assumed maximum file size.  Unfortunately there isn't a syscall to get
994   // this.  ext4 allows ~16TB and f2fs allows ~4TB.  However, an underestimate
995   // works fine for our purposes, so just go with 1TB.
996   constexpr off_t max_file_size = 1000000000000;
997   constexpr off_t max_file_blocks = max_file_size / kFilesystemBlockSize;
998 
999   // Repeatedly create empty files until we find one that can be used for DUN
1000   // wraparound testing, due to SipHash(inode_number) being almost UINT32_MAX.
1001   std::string path;
1002   TestFileInfo file_info;
1003   uint32_t lblk_with_dun_0;
1004   for (int i = 0;; i++) {
1005     // The probability of finding a usable file is about 'max_file_blocks /
1006     // UINT32_MAX', or about 5.6%.  So on average we'll need about 18 tries.
1007     // The probability we'll need over 1000 tries is less than 1e-25.
1008     ASSERT_LT(i, 1000) << "Tried too many times to find a usable test file";
1009 
1010     path = android::base::StringPrintf("%s/file%d", test_dir_.c_str(), i);
1011     android::base::unique_fd fd(
1012         open(path.c_str(), O_WRONLY | O_CREAT | O_CLOEXEC, 0600));
1013     ASSERT_GE(fd, 0) << "Failed to create " << path << Errno();
1014 
1015     ASSERT_TRUE(GetInodeNumber(path, &file_info.inode_number));
1016     uint32_t hash;
1017     ASSERT_TRUE(HashInodeNumber(master_key, file_info.inode_number, &hash));
1018     // Negating the hash gives the distance to DUN 0, and hence the 0-based
1019     // logical block number of the block which has DUN 0.
1020     lblk_with_dun_0 = -hash;
1021     if (lblk_with_dun_0 >= block_count_1 &&
1022         static_cast<off_t>(lblk_with_dun_0) + block_count_2 < max_file_blocks)
1023       break;
1024   }
1025 
1026   GTEST_LOG_(INFO) << "DUN wraparound test: path=" << path
1027                    << ", inode_number=" << file_info.inode_number
1028                    << ", lblk_with_dun_0=" << lblk_with_dun_0;
1029 
1030   // Write some data across the DUN wraparound boundary and verify that the
1031   // resulting on-disk ciphertext is as expected.  Note that we don't actually
1032   // have to fill the file until the boundary; we can just write to the needed
1033   // part and leave a hole before it.
1034   for (int i = 0; i < 2; i++) {
1035     // Try both buffered I/O and direct I/O.
1036     int open_flags = O_RDWR | O_CLOEXEC;
1037     if (i == 1) open_flags |= O_DIRECT;
1038 
1039     android::base::unique_fd fd(open(path.c_str(), open_flags));
1040     ASSERT_GE(fd, 0) << "Failed to open " << path << Errno();
1041 
1042     // Generate some test data.
1043     file_info.plaintext.resize(data_size);
1044     RandomBytesForTesting(file_info.plaintext);
1045 
1046     // Write the test data.  To support O_DIRECT, use a block-aligned buffer.
1047     std::unique_ptr<void, void (*)(void *)> buf_mem(
1048         aligned_alloc(kFilesystemBlockSize, data_size), free);
1049     ASSERT_TRUE(buf_mem != nullptr);
1050     memcpy(buf_mem.get(), &file_info.plaintext[0], data_size);
1051     off_t pos = static_cast<off_t>(lblk_with_dun_0 - block_count_1) *
1052                 kFilesystemBlockSize;
1053     ASSERT_EQ(data_size, pwrite(fd, buf_mem.get(), data_size, pos))
1054         << "Error writing data to " << path << Errno();
1055 
1056     // Verify the ciphertext.
1057     ASSERT_TRUE(ReadRawDataOfFile(fd, fs_info_.raw_blk_device, data_size,
1058                                   &file_info.actual_ciphertext));
1059     FscryptIV iv;
1060     memset(&iv, 0, sizeof(iv));
1061     iv.lblk_num = __cpu_to_le32(-block_count_1);
1062     VerifyCiphertext(enc_key, iv, Aes256XtsCipher(), file_info);
1063   }
1064 }
1065 
1066 // Tests a policy matching
1067 // "fileencryption=aes-256-xts:aes-256-cts:v2+emmc_optimized" (or simply
1068 // "fileencryption=::emmc_optimized" on devices launched with R or higher)
TEST_F(FBEPolicyTest,TestAesEmmcOptimizedPolicy)1069 TEST_F(FBEPolicyTest, TestAesEmmcOptimizedPolicy) {
1070   if (skip_test_) return;
1071 
1072   auto master_key = GenerateTestKey(kFscryptMasterKeySize);
1073   ASSERT_TRUE(SetMasterKey(master_key));
1074 
1075   if (!SetEncryptionPolicy(FSCRYPT_MODE_AES_256_XTS, FSCRYPT_MODE_AES_256_CTS,
1076                            FSCRYPT_POLICY_FLAG_IV_INO_LBLK_32,
1077                            GetSkipFlagsForInoBasedEncryption()))
1078     return;
1079 
1080   TestFileInfo file_info;
1081   ASSERT_TRUE(GenerateTestFile(&file_info));
1082 
1083   std::vector<uint8_t> enc_key(kAes256XtsKeySize);
1084   ASSERT_TRUE(DerivePerModeEncryptionKey(master_key, FSCRYPT_MODE_AES_256_XTS,
1085                                          HKDF_CONTEXT_IV_INO_LBLK_32_KEY,
1086                                          enc_key));
1087 
1088   FscryptIV iv;
1089   ASSERT_TRUE(InitIVForInoLblk32(master_key, file_info.inode_number, &iv));
1090   VerifyCiphertext(enc_key, iv, Aes256XtsCipher(), file_info);
1091 
1092   TestEmmcOptimizedDunWraparound(master_key, enc_key);
1093 }
1094 
1095 // Tests a policy matching
1096 // "fileencryption=aes-256-xts:aes-256-cts:v2+emmc_optimized+wrappedkey_v0"
1097 // (or simply "fileencryption=::emmc_optimized+wrappedkey_v0" on devices
1098 // launched with R or higher)
TEST_F(FBEPolicyTest,TestAesEmmcOptimizedHwWrappedKeyPolicy)1099 TEST_F(FBEPolicyTest, TestAesEmmcOptimizedHwWrappedKeyPolicy) {
1100   if (skip_test_) return;
1101 
1102   std::vector<uint8_t> enc_key, sw_secret;
1103   if (!CreateAndSetHwWrappedKey(&enc_key, &sw_secret)) return;
1104 
1105   if (!SetEncryptionPolicy(FSCRYPT_MODE_AES_256_XTS, FSCRYPT_MODE_AES_256_CTS,
1106                            FSCRYPT_POLICY_FLAG_IV_INO_LBLK_32,
1107                            GetSkipFlagsForInoBasedEncryption()))
1108     return;
1109 
1110   TestFileInfo file_info;
1111   ASSERT_TRUE(GenerateTestFile(&file_info));
1112 
1113   FscryptIV iv;
1114   ASSERT_TRUE(InitIVForInoLblk32(sw_secret, file_info.inode_number, &iv));
1115   VerifyCiphertext(enc_key, iv, Aes256XtsCipher(), file_info);
1116 
1117   TestEmmcOptimizedDunWraparound(sw_secret, enc_key);
1118 }
1119 
1120 // Tests a policy matching "fileencryption=adiantum:adiantum:v2" (or simply
1121 // "fileencryption=adiantum" on devices launched with R or higher)
TEST_F(FBEPolicyTest,TestAdiantumPolicy)1122 TEST_F(FBEPolicyTest, TestAdiantumPolicy) {
1123   if (skip_test_) return;
1124 
1125   auto master_key = GenerateTestKey(kFscryptMasterKeySize);
1126   ASSERT_TRUE(SetMasterKey(master_key));
1127 
1128   // Adiantum support isn't required (since CONFIG_CRYPTO_ADIANTUM can be unset
1129   // in the kernel config), so we may skip the test here.
1130   //
1131   // We don't need to use GetSkipFlagsForInoBasedEncryption() here, since the
1132   // "DIRECT_KEY" IV generation method doesn't include inode numbers in the IVs.
1133   if (!SetEncryptionPolicy(FSCRYPT_MODE_ADIANTUM, FSCRYPT_MODE_ADIANTUM,
1134                            FSCRYPT_POLICY_FLAG_DIRECT_KEY,
1135                            kSkipIfNoCryptoAPISupport))
1136     return;
1137 
1138   TestFileInfo file_info;
1139   ASSERT_TRUE(GenerateTestFile(&file_info));
1140 
1141   std::vector<uint8_t> enc_key(kAdiantumKeySize);
1142   ASSERT_TRUE(DerivePerModeEncryptionKey(master_key, FSCRYPT_MODE_ADIANTUM,
1143                                          HKDF_CONTEXT_DIRECT_KEY, enc_key));
1144 
1145   FscryptIV iv;
1146   ASSERT_TRUE(InitIVForDirectKey(file_info.nonce, &iv));
1147   VerifyCiphertext(enc_key, iv, AdiantumCipher(), file_info);
1148 }
1149 
1150 // Tests adding a corrupted wrapped key to fscrypt keyring.
1151 // If wrapped key is corrupted, fscrypt should return a failure.
TEST_F(FBEPolicyTest,TestHwWrappedKeyCorruption)1152 TEST_F(FBEPolicyTest, TestHwWrappedKeyCorruption) {
1153   if (skip_test_) return;
1154 
1155   std::vector<uint8_t> master_key, exported_key;
1156   if (!CreateHwWrappedKey(&master_key, &exported_key)) return;
1157 
1158   for (int i = 0; i < exported_key.size(); i++) {
1159     std::vector<uint8_t> corrupt_key(exported_key.begin(), exported_key.end());
1160     corrupt_key[i] = ~corrupt_key[i];
1161     ASSERT_FALSE(
1162         SetMasterKey(corrupt_key, __FSCRYPT_ADD_KEY_FLAG_HW_WRAPPED, false));
1163   }
1164 }
1165 
EnableF2fsCompressionOnTestDir()1166 bool FBEPolicyTest::EnableF2fsCompressionOnTestDir() {
1167   android::base::unique_fd fd(open(test_dir_.c_str(), O_RDONLY | O_CLOEXEC));
1168   if (fd < 0) {
1169     ADD_FAILURE() << "Failed to open " << test_dir_ << Errno();
1170     return false;
1171   }
1172 
1173   int flags;
1174   if (ioctl(fd, FS_IOC_GETFLAGS, &flags) != 0) {
1175     ADD_FAILURE() << "Unexpected error getting flags of " << test_dir_
1176                   << Errno();
1177     return false;
1178   }
1179   flags |= FS_COMPR_FL;
1180   if (ioctl(fd, FS_IOC_SETFLAGS, &flags) != 0) {
1181     if (errno == EOPNOTSUPP) {
1182       GTEST_LOG_(INFO)
1183           << "Skipping test because f2fs compression is not supported on "
1184           << kTestMountpoint;
1185       return false;
1186     }
1187     ADD_FAILURE() << "Unexpected error enabling compression on " << test_dir_
1188                   << Errno();
1189     return false;
1190   }
1191   return true;
1192 }
1193 
F2fsCompressAlgorithmName(int algorithm)1194 static std::string F2fsCompressAlgorithmName(int algorithm) {
1195   switch (algorithm) {
1196     case F2FS_COMPRESS_LZO:
1197       return "LZO";
1198     case F2FS_COMPRESS_LZ4:
1199       return "LZ4";
1200     case F2FS_COMPRESS_ZSTD:
1201       return "ZSTD";
1202     case F2FS_COMPRESS_LZORLE:
1203       return "LZORLE";
1204     default:
1205       return android::base::StringPrintf("%d", algorithm);
1206   }
1207 }
1208 
F2fsCompressOptionsSupported(const struct f2fs_comp_option & opts)1209 bool FBEPolicyTest::F2fsCompressOptionsSupported(
1210     const struct f2fs_comp_option &opts) {
1211   android::base::unique_fd fd(
1212       open(test_file_.c_str(), O_WRONLY | O_CREAT, 0600));
1213   if (fd < 0) {
1214     // If the filesystem has the compression feature flag enabled but f2fs
1215     // compression support was compiled out of the kernel, then setting
1216     // FS_COMPR_FL on the directory will succeed, but creating a file in the
1217     // directory will fail with EOPNOTSUPP.
1218     if (errno == EOPNOTSUPP) {
1219       GTEST_LOG_(INFO)
1220           << "Skipping test because kernel doesn't support f2fs compression";
1221       return false;
1222     }
1223     ADD_FAILURE() << "Unexpected error creating " << test_file_
1224                   << " after enabling f2fs compression on parent directory"
1225                   << Errno();
1226     return false;
1227   }
1228 
1229   if (ioctl(fd, F2FS_IOC_SET_COMPRESS_OPTION, &opts) != 0) {
1230     if (errno == ENOTTY || errno == EOPNOTSUPP) {
1231       GTEST_LOG_(INFO) << "Skipping test because kernel doesn't support "
1232                           "F2FS_IOC_SET_COMPRESS_OPTION on "
1233                        << kTestMountpoint;
1234       return false;
1235     }
1236     ADD_FAILURE() << "Unexpected error from F2FS_IOC_SET_COMPRESS_OPTION"
1237                   << Errno();
1238     return false;
1239   }
1240   // Unsupported compression algorithms aren't detected until the file is
1241   // reopened.
1242   fd.reset(open(test_file_.c_str(), O_WRONLY));
1243   if (fd < 0) {
1244     if (errno == EOPNOTSUPP || errno == ENOPKG) {
1245       GTEST_LOG_(INFO) << "Skipping test because kernel doesn't support "
1246                        << F2fsCompressAlgorithmName(opts.algorithm)
1247                        << " compression";
1248       return false;
1249     }
1250     ADD_FAILURE() << "Unexpected error when reopening file after "
1251                      "F2FS_IOC_SET_COMPRESS_OPTION"
1252                   << Errno();
1253     return false;
1254   }
1255   unlink(test_file_.c_str());
1256   return true;
1257 }
1258 
1259 // Tests that encryption is done correctly on compressed files.
1260 //
1261 // This works by creating a compressed+encrypted file, then decrypting the
1262 // file's on-disk data, then decompressing it, then comparing the result to the
1263 // original data.  We don't do it the other way around (compress+encrypt the
1264 // original data and compare to the on-disk data) because different
1265 // implementations of a compression algorithm can produce different results.
1266 //
1267 // This is adapted from the xfstest "f2fs/002"; see there for some more details.
1268 //
1269 // This test will skip itself if any of the following is true:
1270 //   - f2fs compression isn't enabled on /data
1271 //   - f2fs compression isn't enabled in the kernel (CONFIG_F2FS_FS_COMPRESSION)
1272 //   - The kernel doesn't support the needed algorithm (CONFIG_F2FS_FS_LZ4)
1273 //   - The kernel doesn't support the F2FS_IOC_SET_COMPRESS_OPTION ioctl
1274 //
1275 // Note, this test will be flaky if the kernel is missing commit 093f0bac32b
1276 // ("f2fs: change fiemap way in printing compression chunk").
TEST_F(FBEPolicyTest,TestF2fsCompression)1277 TEST_F(FBEPolicyTest, TestF2fsCompression) {
1278   if (skip_test_) return;
1279 
1280   // Currently, only f2fs supports compression+encryption.
1281   if (fs_info_.type != "f2fs") {
1282     GTEST_LOG_(INFO) << "Skipping test because device uses " << fs_info_.type
1283                      << ", not f2fs";
1284     return;
1285   }
1286 
1287   // Enable compression and encryption on the test directory.  Afterwards, both
1288   // of these features will be inherited by any file created in this directory.
1289   //
1290   // If compression is not supported, skip the test.  Use the default encryption
1291   // settings, which should always be supported.
1292   if (!EnableF2fsCompressionOnTestDir()) return;
1293   auto master_key = GenerateTestKey(kFscryptMasterKeySize);
1294   ASSERT_TRUE(SetMasterKey(master_key));
1295   ASSERT_TRUE(SetEncryptionPolicy(FSCRYPT_MODE_AES_256_XTS,
1296                                   FSCRYPT_MODE_AES_256_CTS, 0, 0));
1297 
1298   // This test will use LZ4 compression with a cluster size of 2^2 = 4 blocks.
1299   // Check that this setting is supported.
1300   //
1301   // Note that the precise choice of algorithm and cluster size isn't too
1302   // important for this test.  We just (somewhat arbitrarily) chose a setting
1303   // which is commonly used and for which a decompression library is available.
1304   const int log_cluster_size = 2;
1305   const int cluster_bytes = kFilesystemBlockSize << log_cluster_size;
1306   struct f2fs_comp_option comp_opt;
1307   memset(&comp_opt, 0, sizeof(comp_opt));
1308   comp_opt.algorithm = F2FS_COMPRESS_LZ4;
1309   comp_opt.log_cluster_size = log_cluster_size;
1310   if (!F2fsCompressOptionsSupported(comp_opt)) return;
1311 
1312   // Generate the test file and retrieve its on-disk data.  Note: despite being
1313   // compressed, the on-disk data here will still be |kTestFileBytes| long.
1314   // This is because FS_IOC_FIEMAP doesn't natively support compression, and the
1315   // way that f2fs handles it on compressed files results in us reading extra
1316   // blocks appended to the compressed clusters.  It works out in the end
1317   // though, since these extra blocks get ignored during decompression.
1318   TestFileInfo file_info;
1319   ASSERT_TRUE(GenerateTestFile(&file_info, &comp_opt));
1320 
1321   GTEST_LOG_(INFO) << "Decrypting the blocks of the compressed file";
1322   std::vector<uint8_t> enc_key(kAes256XtsKeySize);
1323   ASSERT_TRUE(DerivePerFileEncryptionKey(master_key, file_info.nonce, enc_key));
1324   std::vector<uint8_t> decrypted_data(kTestFileBytes);
1325   FscryptIV iv;
1326   memset(&iv, 0, sizeof(iv));
1327   ASSERT_EQ(0, kTestFileBytes % kFilesystemBlockSize);
1328   for (int i = 0; i < kTestFileBytes; i += kFilesystemBlockSize) {
1329     int block_num = i / kFilesystemBlockSize;
1330     int cluster_num = i / cluster_bytes;
1331 
1332     // In compressed clusters, IVs start at 1 higher than the expected value.
1333     // Fortunately, due to the compression there is no overlap...
1334     if (IsCompressibleCluster(cluster_num)) block_num++;
1335 
1336     iv.lblk_num = __cpu_to_le32(block_num);
1337     ASSERT_TRUE(Aes256XtsCipher().Decrypt(
1338         enc_key, iv.bytes, &file_info.actual_ciphertext[i], &decrypted_data[i],
1339         kFilesystemBlockSize));
1340   }
1341 
1342   GTEST_LOG_(INFO) << "Decompressing the decrypted blocks of the file";
1343   std::vector<uint8_t> decompressed_data(kTestFileBytes);
1344   ASSERT_EQ(0, kTestFileBytes % cluster_bytes);
1345   for (int i = 0; i < kTestFileBytes; i += cluster_bytes) {
1346     int cluster_num = i / cluster_bytes;
1347     if (IsCompressibleCluster(cluster_num)) {
1348       // We had filled this cluster with compressible data, so it should have
1349       // been stored compressed.
1350       ASSERT_TRUE(DecompressLZ4Cluster(&decrypted_data[i],
1351                                        &decompressed_data[i], cluster_bytes));
1352     } else {
1353       // We had filled this cluster with random data, so it should have been
1354       // incompressible and thus stored uncompressed.
1355       memcpy(&decompressed_data[i], &decrypted_data[i], cluster_bytes);
1356     }
1357   }
1358 
1359   // Finally do the actual test.  The data we got after decryption+decompression
1360   // should match the original file contents.
1361   GTEST_LOG_(INFO) << "Comparing the result to the original data";
1362   ASSERT_EQ(file_info.plaintext, decompressed_data);
1363 }
1364 
DeviceUsesFBE()1365 static bool DeviceUsesFBE() {
1366   if (android::base::GetProperty("ro.crypto.type", "") == "file") return true;
1367   // FBE has been required since Android Q.
1368   int first_api_level;
1369   if (!GetFirstApiLevel(&first_api_level)) return true;
1370   if (first_api_level >= __ANDROID_API_Q__) {
1371     ADD_FAILURE() << "File-based encryption is required";
1372   } else {
1373     GTEST_LOG_(INFO)
1374         << "Skipping test because device doesn't use file-based encryption";
1375   }
1376   return false;
1377 }
1378 
1379 // Retrieves the encryption key specifier used in the file-based encryption
1380 // policy of |dir|.  This isn't the key itself, but rather a "name" for the key.
1381 // If the key specifier cannot be retrieved, e.g. due to the directory being
1382 // unencrypted, then false is returned and a failure is added.
GetKeyUsedByDir(const std::string & dir,std::string * key_specifier)1383 static bool GetKeyUsedByDir(const std::string &dir,
1384                             std::string *key_specifier) {
1385   android::base::unique_fd fd(open(dir.c_str(), O_RDONLY));
1386   if (fd < 0) {
1387     ADD_FAILURE() << "Failed to open " << dir << Errno();
1388     return false;
1389   }
1390   struct fscrypt_get_policy_ex_arg arg = {.policy_size = sizeof(arg.policy)};
1391   int res = ioctl(fd, FS_IOC_GET_ENCRYPTION_POLICY_EX, &arg);
1392   if (res != 0 && errno == ENOTTY) {
1393     // Handle old kernels that don't support FS_IOC_GET_ENCRYPTION_POLICY_EX.
1394     res = ioctl(fd, FS_IOC_GET_ENCRYPTION_POLICY, &arg.policy.v1);
1395   }
1396   if (res != 0) {
1397     if (errno == ENODATA) {
1398       ADD_FAILURE() << "Directory " << dir << " is not encrypted!";
1399     } else {
1400       ADD_FAILURE() << "Failed to get encryption policy of " << dir << Errno();
1401     }
1402     return false;
1403   }
1404   switch (arg.policy.version) {
1405     case FSCRYPT_POLICY_V1:
1406       *key_specifier = BytesToHex(arg.policy.v1.master_key_descriptor);
1407       return true;
1408     case FSCRYPT_POLICY_V2:
1409       *key_specifier = BytesToHex(arg.policy.v2.master_key_identifier);
1410       return true;
1411     default:
1412       ADD_FAILURE() << dir << " uses unknown encryption policy version ("
1413                     << arg.policy.version << ")";
1414       return false;
1415   }
1416 }
1417 
1418 // Tests that if the device uses FBE, then the ciphertext for file contents in
1419 // encrypted directories seems to be random.
1420 //
1421 // This isn't as strong a test as the correctness tests, but it's useful because
1422 // it applies regardless of the encryption format and key.  Thus it runs even on
1423 // old devices, including ones that used a vendor-specific encryption format.
TEST(FBETest,TestFileContentsRandomness)1424 TEST(FBETest, TestFileContentsRandomness) {
1425   const std::string path_1 =
1426       android::base::StringPrintf("%s/FBETest-1.%d", kTmpDir, getpid());
1427   const std::string path_2 =
1428       android::base::StringPrintf("%s/FBETest-2.%d", kTmpDir, getpid());
1429 
1430   if (!DeviceUsesFBE()) return;
1431 
1432   FilesystemInfo fs_info;
1433   ASSERT_TRUE(GetFilesystemInfo(kTestMountpoint, &fs_info));
1434 
1435   std::vector<uint8_t> zeroes(kTestFileBytes, 0);
1436   std::vector<uint8_t> ciphertext_1;
1437   std::vector<uint8_t> ciphertext_2;
1438   ASSERT_TRUE(WriteTestFile(zeroes, path_1, fs_info.raw_blk_device, nullptr,
1439                             &ciphertext_1));
1440   ASSERT_TRUE(WriteTestFile(zeroes, path_2, fs_info.raw_blk_device, nullptr,
1441                             &ciphertext_2));
1442 
1443   GTEST_LOG_(INFO) << "Verifying randomness of ciphertext";
1444 
1445   // Each individual file's ciphertext should be random.
1446   ASSERT_TRUE(VerifyDataRandomness(ciphertext_1));
1447   ASSERT_TRUE(VerifyDataRandomness(ciphertext_2));
1448 
1449   // The files' ciphertext concatenated should also be random.
1450   // I.e., each file should be encrypted differently.
1451   std::vector<uint8_t> concatenated_ciphertext;
1452   concatenated_ciphertext.insert(concatenated_ciphertext.end(),
1453                                  ciphertext_1.begin(), ciphertext_1.end());
1454   concatenated_ciphertext.insert(concatenated_ciphertext.end(),
1455                                  ciphertext_2.begin(), ciphertext_2.end());
1456   ASSERT_TRUE(VerifyDataRandomness(concatenated_ciphertext));
1457 
1458   ASSERT_EQ(unlink(path_1.c_str()), 0);
1459   ASSERT_EQ(unlink(path_2.c_str()), 0);
1460 }
1461 
1462 // Tests that all of user 0's directories that should be encrypted actually are,
1463 // and that user 0's CE and DE keys are different.
TEST(FBETest,TestUserDirectoryPolicies)1464 TEST(FBETest, TestUserDirectoryPolicies) {
1465   if (!DeviceUsesFBE()) return;
1466 
1467   std::string user0_ce_key, user0_de_key;
1468   EXPECT_TRUE(GetKeyUsedByDir("/data/user/0", &user0_ce_key));
1469   EXPECT_TRUE(GetKeyUsedByDir("/data/user_de/0", &user0_de_key));
1470   EXPECT_NE(user0_ce_key, user0_de_key) << "CE and DE keys must differ";
1471 
1472   // Check the CE directories other than /data/user/0.
1473   for (const std::string &dir : {"/data/media/0", "/data/misc_ce/0",
1474                                  "/data/system_ce/0", "/data/vendor_ce/0"}) {
1475     std::string key;
1476     EXPECT_TRUE(GetKeyUsedByDir(dir, &key));
1477     EXPECT_EQ(key, user0_ce_key) << dir << " must be encrypted with CE key";
1478   }
1479 
1480   // Check the DE directories other than /data/user_de/0.
1481   for (const std::string &dir :
1482        {"/data/misc_de/0", "/data/system_de/0", "/data/vendor_de/0"}) {
1483     std::string key;
1484     EXPECT_TRUE(GetKeyUsedByDir(dir, &key));
1485     EXPECT_EQ(key, user0_de_key) << dir << " must be encrypted with DE key";
1486   }
1487 }
1488 
1489 }  // namespace kernel
1490 }  // namespace android
1491