1 /*
2 * Copyright 2016 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16 #include "model/setup/async_manager.h" // for AsyncManager
17
18 #include <errno.h> // for errno
19 #include <atomic> // for atomic_bool, atomic_e...
20 #include <condition_variable> // for condition_variable
21 #include <cstring> // for strerror
22 #include <limits> // for numeric_limits
23 #include <map> // for map<>::value_type, map
24 #include <mutex> // for unique_lock, mutex
25 #include <ratio> // for ratio
26 #include <set> // for set
27 #include <thread> // for thread
28 #include <type_traits> // for remove_extent_t
29 #include <utility> // for pair, make_pair, oper...
30 #include <vector> // for vector
31
32 #include "aemu/base/EintrWrapper.h" // for HANDLE_EINTR
33 #include "aemu/base/Log.h" // for LogStreamVoidify, Log...
34 #include "aemu/base/sockets/SocketUtils.h" // for socketRecv, socketSet...
35 #include "aemu/base/sockets/SocketWaiter.h" // for SocketWaiter, SocketW...
36 #include "aemu/base/logging/CLog.h"
37
38 namespace rootcanal {
39 // Implementation of AsyncManager is divided between two classes, three if
40 // AsyncManager itself is taken into account, but its only responsability
41 // besides being a proxy for the other two classes is to provide a global
42 // synchronization mechanism for callbacks and client code to use.
43
44 // The watching of file descriptors is done through AsyncFdWatcher. Several
45 // objects of this class may coexist simultaneosly as they share no state.
46 // After construction of this objects nothing happens beyond some very simple
47 // member initialization. When the first FD is set up for watching the object
48 // starts a new thread which watches the given (and later provided) FDs using
49 // select() inside a loop. A special FD (a pipe) is also watched which is
50 // used to notify the thread of internal changes on the object state (like
51 // the addition of new FDs to watch on). Every access to internal state is
52 // synchronized using a single internal mutex. The thread is only stopped on
53 // destruction of the object, by modifying a flag, which is the only member
54 // variable accessed without acquiring the lock (because the notification to
55 // the thread is done later by writing to a pipe which means the thread will
56 // be notified regardless of what phase of the loop it is in that moment)
57
58 // The scheduling of asynchronous tasks, periodic or not, is handled by the
59 // AsyncTaskManager class. Like the one for FDs, this class shares no internal
60 // state between different instances so it is safe to use several objects of
61 // this class, also nothing interesting happens upon construction, but only
62 // after a Task has been scheduled and access to internal state is synchronized
63 // using a single internal mutex. When the first task is scheduled a thread
64 // is started which monitors a queue of tasks. The queue is peeked to see
65 // when the next task should be carried out and then the thread performs a
66 // (absolute) timed wait on a condition variable. The wait ends because of a
67 // time out or a notify on the cond var, the former means a task is due
68 // for execution while the later means there has been a change in internal
69 // state, like a task has been scheduled/canceled or the flag to stop has
70 // been set. Setting and querying the stop flag or modifying the task queue
71 // and subsequent notification on the cond var is done atomically (e.g while
72 // holding the lock on the internal mutex) to ensure that the thread never
73 // misses the notification, since notifying a cond var is not persistent as
74 // writing on a pipe (if not done this way, the thread could query the
75 // stopping flag and be put aside by the OS scheduler right after, then the
76 // 'stop thread' procedure could run, setting the flag, notifying a cond
77 // var that no one is waiting on and joining the thread, the thread then
78 // resumes execution believing that it needs to continue and waits on the
79 // cond var possibly forever if there are no tasks scheduled, efectively
80 // causing a deadlock).
81
82 // This number also states the maximum number of scheduled tasks we can handle
83 // at a given time
84 static const uint16_t kMaxTaskId = -1; /* 2^16 - 1, permisible ids are {1..2^16-1}*/
NextAsyncTaskId(const AsyncTaskId id)85 static inline AsyncTaskId NextAsyncTaskId(const AsyncTaskId id) {
86 return (id == kMaxTaskId) ? 1 : id + 1;
87 }
88 // The buffer is only 10 bytes because the expected number of bytes
89 // written on this socket is 1. It is possible that the thread is notified
90 // more than once but highly unlikely, so a buffer of size 10 seems enough
91 // and the reads are performed inside a while just in case it isn't. From
92 // the thread routine's point of view it is the same to have been notified
93 // just once or 100 times so it just tries to consume the entire buffer.
94 // In the cases where an interrupt would cause read to return without
95 // having read everything that was available a new iteration of the thread
96 // loop will bring execution to this point almost immediately, so there is
97 // no need to treat that case.
98 static const int kNotificationBufferSize = 10;
99
100
101 using android::base::SocketWaiter;
102
103 // Async File Descriptor Watcher Implementation:
104 class AsyncManager::AsyncFdWatcher {
105
106 public:
WatchFdForNonBlockingReads(int file_descriptor,const ReadCallback & on_read_fd_ready_callback)107 int WatchFdForNonBlockingReads(int file_descriptor, const ReadCallback& on_read_fd_ready_callback) {
108 // add file descriptor and callback
109 {
110 std::unique_lock<std::recursive_mutex> guard(internal_mutex_);
111 watched_shared_fds_[file_descriptor] = on_read_fd_ready_callback;
112 }
113
114 // start the thread if not started yet
115 int started = tryStartThread();
116 if (started != 0) {
117 derror("%s: Unable to start thread", __func__);
118 return started;
119 }
120
121 // notify the thread so that it knows of the new FD
122 notifyThread();
123
124 return 0;
125 }
126
StopWatchingFileDescriptor(int file_descriptor)127 void StopWatchingFileDescriptor(int file_descriptor) {
128 std::unique_lock<std::recursive_mutex> guard(internal_mutex_);
129 watched_shared_fds_.erase(file_descriptor);
130 }
131
132 AsyncFdWatcher() = default;
133 AsyncFdWatcher(const AsyncFdWatcher&) = delete;
134 AsyncFdWatcher& operator=(const AsyncFdWatcher&) = delete;
135
136 ~AsyncFdWatcher() = default;
137
stopThread()138 int stopThread() {
139 if (!std::atomic_exchange(&running_, false)) {
140 return 0; // if not running already
141 }
142
143 notifyThread();
144
145 if (std::this_thread::get_id() != thread_.get_id()) {
146 thread_.join();
147 } else {
148 dwarning("%s: Starting thread stop from inside the reading thread itself", __func__);
149 }
150
151 {
152 std::unique_lock<std::recursive_mutex> guard(internal_mutex_);
153 watched_shared_fds_.clear();
154 }
155
156 return 0;
157 }
158
159 private:
160 // Make sure to call this with at least one file descriptor ready to be
161 // watched upon or the thread routine will return immediately
tryStartThread()162 int tryStartThread() {
163 if (std::atomic_exchange(&running_, true)) {
164 return 0; // if already running
165 }
166 // set up the communication channel
167 if (android::base::socketCreatePair(¬ification_listen_fd_, ¬ification_write_fd_)) {
168 derror(
169 "%s:Unable to establish a communication channel to the reading "
170 "thread",
171 __func__);
172 return -1;
173 }
174 android::base::socketSetNonBlocking(notification_listen_fd_);
175 android::base::socketSetNonBlocking(notification_write_fd_);
176
177 thread_ = std::thread([this]() { ThreadRoutine(); });
178 if (!thread_.joinable()) {
179 derror("%s: Unable to start reading thread", __func__);
180 return -1;
181 }
182 return 0;
183 }
184
notifyThread()185 int notifyThread() {
186 char buffer = '0';
187 if (android::base::socketSend(notification_write_fd_, &buffer, 1) < 0) {
188 derror("%s: Unable to send message to reading thread", __func__);
189 return -1;
190 }
191 return 0;
192 }
193
setUpFileDescriptorSet(SocketWaiter * read_fds)194 void setUpFileDescriptorSet(SocketWaiter* read_fds) {
195 // add comm channel to the set
196 read_fds->update(notification_listen_fd_, SocketWaiter::Event::kEventRead);
197
198 // add watched FDs to the set
199 {
200 std::unique_lock<std::recursive_mutex> guard(internal_mutex_);
201 for (auto& fdp : watched_shared_fds_) {
202 read_fds->update(fdp.first, SocketWaiter::Event::kEventRead);
203 }
204 }
205 }
206
207 // check the comm channel and read everything there
consumeThreadNotifications(SocketWaiter * read_fds)208 bool consumeThreadNotifications(SocketWaiter* read_fds) {
209 if (read_fds->pendingEventsFor(notification_listen_fd_)) {
210 char buffer[kNotificationBufferSize];
211 while (HANDLE_EINTR(android::base::socketRecv(notification_listen_fd_, buffer, kNotificationBufferSize)) ==
212 kNotificationBufferSize) {
213 }
214 return true;
215 }
216 return false;
217 }
218
219 // check all file descriptors and call callbacks if necesary
runAppropriateCallbacks(SocketWaiter * read_fds)220 void runAppropriateCallbacks(SocketWaiter* read_fds) {
221 // not a good idea to call a callback while holding the FD lock,
222 // nor to release the lock while traversing the map
223 std::vector<decltype(watched_shared_fds_)::value_type> fds;
224 std::unique_lock<std::recursive_mutex> guard(internal_mutex_);
225 for (auto& fdc : watched_shared_fds_) {
226 auto pending = read_fds->pendingEventsFor(fdc.first);
227 if (pending == SocketWaiter::kEventRead) {
228 fds.push_back(fdc);
229 }
230 }
231
232 for (auto& p : fds) {
233 p.second(p.first);
234 }
235
236 }
237
ThreadRoutine()238 void ThreadRoutine() {
239 auto read_fds = std::unique_ptr<SocketWaiter>(SocketWaiter::create());
240 while (running_) {
241 read_fds->reset();
242 setUpFileDescriptorSet(read_fds.get());
243
244 // wait until there is data available to read on some FD
245 int retval = read_fds->wait(std::numeric_limits<int64_t>::max());
246 if (retval <= 0) { // there was some error or a timeout
247 derror(
248 "%s: There was an error while waiting for data on the file "
249 "descriptors: %s",
250 __func__, strerror(errno));
251 continue;
252 }
253
254 consumeThreadNotifications(read_fds.get());
255
256 // Do not read if there was a call to stop running
257 if (!running_) {
258 break;
259 }
260
261 runAppropriateCallbacks(read_fds.get());
262 }
263 }
264
265 std::atomic_bool running_{false};
266 std::thread thread_;
267 std::recursive_mutex internal_mutex_;
268
269
270 //android::base::SocketWaiter socket_waiter_;
271 std::map<int, ReadCallback> watched_shared_fds_;
272
273 // A pair of FD to send information to the reading thread
274 int notification_listen_fd_{};
275 int notification_write_fd_{};
276 };
277
278 // Async task manager implementation
279 class AsyncManager::AsyncTaskManager {
280 public:
GetNextUserId()281 AsyncUserId GetNextUserId() { return lastUserId_++; }
282
ExecAsync(AsyncUserId user_id,std::chrono::milliseconds delay,const TaskCallback & callback)283 AsyncTaskId ExecAsync(AsyncUserId user_id, std::chrono::milliseconds delay,
284 const TaskCallback& callback) {
285 return scheduleTask(std::make_shared<Task>(
286 std::chrono::steady_clock::now() + delay, callback, user_id));
287 }
288
ExecAsyncPeriodically(AsyncUserId user_id,std::chrono::milliseconds delay,std::chrono::milliseconds period,const TaskCallback & callback)289 AsyncTaskId ExecAsyncPeriodically(AsyncUserId user_id,
290 std::chrono::milliseconds delay,
291 std::chrono::milliseconds period,
292 const TaskCallback& callback) {
293 return scheduleTask(std::make_shared<Task>(
294 std::chrono::steady_clock::now() + delay, period, callback, user_id));
295 }
296
CancelAsyncTask(AsyncTaskId async_task_id)297 bool CancelAsyncTask(AsyncTaskId async_task_id) {
298 // remove task from queue (and task id association) while holding lock
299 std::unique_lock<std::mutex> guard(internal_mutex_);
300 return cancel_task_with_lock_held(async_task_id);
301 }
302
CancelAsyncTasksFromUser(AsyncUserId user_id)303 bool CancelAsyncTasksFromUser(AsyncUserId user_id) {
304 // remove task from queue (and task id association) while holding lock
305 std::unique_lock<std::mutex> guard(internal_mutex_);
306 if (tasks_by_user_id_.count(user_id) == 0) {
307 return false;
308 }
309 for (auto task : tasks_by_user_id_[user_id]) {
310 cancel_task_with_lock_held(task);
311 }
312 tasks_by_user_id_.erase(user_id);
313 return true;
314 }
315
Synchronize(const CriticalCallback & critical)316 void Synchronize(const CriticalCallback& critical) {
317 std::unique_lock<std::mutex> guard(synchronization_mutex_);
318 critical();
319 }
320
321 AsyncTaskManager() = default;
322 AsyncTaskManager(const AsyncTaskManager&) = delete;
323 AsyncTaskManager& operator=(const AsyncTaskManager&) = delete;
324
325 ~AsyncTaskManager() = default;
326
stopThread()327 int stopThread() {
328 {
329 std::unique_lock<std::mutex> guard(internal_mutex_);
330 tasks_by_id_.clear();
331 task_queue_.clear();
332 if (!running_) {
333 return 0;
334 }
335 running_ = false;
336 // notify the thread
337 internal_cond_var_.notify_one();
338 } // release the lock before joining a thread that is likely waiting for it
339 if (std::this_thread::get_id() != thread_.get_id()) {
340 thread_.join();
341 } else {
342 dwarning("%s: Starting thread stop from inside the task thread itself", __func__);
343 }
344 return 0;
345 }
346
347 private:
348 // Holds the data for each task
349 class Task {
350 public:
Task(std::chrono::steady_clock::time_point time,std::chrono::milliseconds period,const TaskCallback & callback,AsyncUserId user)351 Task(std::chrono::steady_clock::time_point time,
352 std::chrono::milliseconds period, const TaskCallback& callback,
353 AsyncUserId user)
354 : time(time),
355 periodic(true),
356 period(period),
357 callback(callback),
358 task_id(kInvalidTaskId),
359 user_id(user) {}
Task(std::chrono::steady_clock::time_point time,const TaskCallback & callback,AsyncUserId user)360 Task(std::chrono::steady_clock::time_point time,
361 const TaskCallback& callback, AsyncUserId user)
362 : time(time),
363 periodic(false),
364 callback(callback),
365 task_id(kInvalidTaskId),
366 user_id(user) {}
367
368 // Operators needed to be in a collection
operator <(const Task & another) const369 bool operator<(const Task& another) const {
370 return std::make_pair(time, task_id) < std::make_pair(another.time, another.task_id);
371 }
372
isPeriodic() const373 bool isPeriodic() const {
374 return periodic;
375 }
376
377 // These fields should no longer be public if the class ever becomes
378 // public or gets more complex
379 std::chrono::steady_clock::time_point time;
380 bool periodic;
381 std::chrono::milliseconds period{};
382 std::mutex in_callback; // Taken when the callback is active
383 TaskCallback callback;
384 AsyncTaskId task_id;
385 AsyncUserId user_id;
386 };
387
388 // A comparator class to put shared pointers to tasks in an ordered set
389 struct task_p_comparator {
operator ()rootcanal::AsyncManager::AsyncTaskManager::task_p_comparator390 bool operator()(const std::shared_ptr<Task>& t1, const std::shared_ptr<Task>& t2) const {
391 return *t1 < *t2;
392 }
393 };
394
cancel_task_with_lock_held(AsyncTaskId async_task_id)395 bool cancel_task_with_lock_held(AsyncTaskId async_task_id) {
396 if (tasks_by_id_.count(async_task_id) == 0) {
397 return false;
398 }
399
400 // Now make sure we are not running this task.
401 // 2 cases
402 // - This is called from thread_, this means a scheduled task is actually
403 // unregistering.
404 // - Another thread is calling us, let's make sure the task is not active.
405 if (thread_.get_id() != std::this_thread::get_id()) {
406 auto task = tasks_by_id_[async_task_id];
407 const std::lock_guard<std::mutex> lock(task->in_callback);
408 task_queue_.erase(task);
409 tasks_by_id_.erase(async_task_id);
410 } else {
411 task_queue_.erase(tasks_by_id_[async_task_id]);
412 tasks_by_id_.erase(async_task_id);
413 }
414
415 return true;
416 }
417
scheduleTask(const std::shared_ptr<Task> & task)418 AsyncTaskId scheduleTask(const std::shared_ptr<Task>& task) {
419 {
420 std::unique_lock<std::mutex> guard(internal_mutex_);
421 // no more room for new tasks, we need a larger type for IDs
422 if (tasks_by_id_.size() == kMaxTaskId) // TODO potentially type unsafe
423 return kInvalidTaskId;
424 do {
425 lastTaskId_ = NextAsyncTaskId(lastTaskId_);
426 } while (isTaskIdInUse(lastTaskId_));
427 task->task_id = lastTaskId_;
428 // add task to the queue and map
429 tasks_by_id_[lastTaskId_] = task;
430 tasks_by_user_id_[task->user_id].insert(task->task_id);
431 task_queue_.insert(task);
432 }
433 // start thread if necessary
434 int started = tryStartThread();
435 if (started != 0) {
436 derror("%s: Unable to start thread", __func__);
437 return kInvalidTaskId;
438 }
439 // notify the thread so that it knows of the new task
440 internal_cond_var_.notify_one();
441 // return task id
442 return task->task_id;
443 }
444
isTaskIdInUse(const AsyncTaskId & task_id) const445 bool isTaskIdInUse(const AsyncTaskId& task_id) const {
446 return tasks_by_id_.count(task_id) != 0;
447 }
448
tryStartThread()449 int tryStartThread() {
450 // need the lock because of the running flag and the cond var
451 std::unique_lock<std::mutex> guard(internal_mutex_);
452 // check that the thread is not yet running
453 if (running_) {
454 return 0;
455 }
456 // start the thread
457 running_ = true;
458 thread_ = std::thread([this]() { ThreadRoutine(); });
459 if (!thread_.joinable()) {
460 derror("%s: Unable to start task thread", __func__);
461 return -1;
462 }
463 return 0;
464 }
465
ThreadRoutine()466 void ThreadRoutine() {
467 while (running_) {
468 TaskCallback callback;
469 std::shared_ptr<Task> task_p;
470 bool run_it = false;
471 {
472 std::unique_lock<std::mutex> guard(internal_mutex_);
473 if (!task_queue_.empty()) {
474 task_p = *(task_queue_.begin());
475 if (task_p->time < std::chrono::steady_clock::now()) {
476 run_it = true;
477 callback = task_p->callback;
478 task_queue_.erase(task_p); // need to remove and add again if
479 // periodic to update order
480 if (task_p->isPeriodic()) {
481 task_p->time += task_p->period;
482 task_queue_.insert(task_p);
483 } else {
484 tasks_by_user_id_[task_p->user_id].erase(task_p->task_id);
485 tasks_by_id_.erase(task_p->task_id);
486 }
487 }
488 }
489 }
490 if (run_it) {
491 const std::lock_guard<std::mutex> lock(task_p->in_callback);
492 Synchronize(callback);
493 }
494 {
495 std::unique_lock<std::mutex> guard(internal_mutex_);
496 // check for termination right before waiting
497 if (!running_) break;
498 // wait until time for the next task (if any)
499 if (task_queue_.size() > 0) {
500 // Make a copy of the time_point because wait_until takes a reference
501 // to it and may read it after waiting, by which time the task may
502 // have been freed (e.g. via CancelAsyncTask).
503 std::chrono::steady_clock::time_point time =
504 (*task_queue_.begin())->time;
505 internal_cond_var_.wait_until(guard, time);
506 } else {
507 internal_cond_var_.wait(guard);
508 }
509 }
510 }
511 }
512
513 bool running_ = false;
514 std::thread thread_;
515 std::mutex internal_mutex_;
516 std::mutex synchronization_mutex_;
517 std::condition_variable internal_cond_var_;
518
519 AsyncTaskId lastTaskId_ = kInvalidTaskId;
520 AsyncUserId lastUserId_{1};
521 std::map<AsyncTaskId, std::shared_ptr<Task> > tasks_by_id_;
522 std::map<AsyncUserId, std::set<AsyncTaskId>> tasks_by_user_id_;
523 std::set<std::shared_ptr<Task>, task_p_comparator> task_queue_;
524 };
525
526 // Async Manager Implementation:
AsyncManager()527 AsyncManager::AsyncManager() : fdWatcher_p_(new AsyncFdWatcher()), taskManager_p_(new AsyncTaskManager()) {}
528
~AsyncManager()529 AsyncManager::~AsyncManager() {
530 // Make sure the threads are stopped before destroying the object.
531 // The threads need to be stopped here and not in each internal class'
532 // destructor because unique_ptr's reset() first assigns nullptr to the
533 // pointer and only then calls the destructor, so any callback running
534 // on these threads would dereference a null pointer if they called a member
535 // function of this class.
536 fdWatcher_p_->stopThread();
537 taskManager_p_->stopThread();
538 }
539
WatchFdForNonBlockingReads(int file_descriptor,const ReadCallback & on_read_fd_ready_callback)540 int AsyncManager::WatchFdForNonBlockingReads(int file_descriptor, const ReadCallback& on_read_fd_ready_callback) {
541 return fdWatcher_p_->WatchFdForNonBlockingReads(file_descriptor, on_read_fd_ready_callback);
542 }
543
StopWatchingFileDescriptor(int file_descriptor)544 void AsyncManager::StopWatchingFileDescriptor(int file_descriptor) {
545 fdWatcher_p_->StopWatchingFileDescriptor(file_descriptor);
546 }
547
GetNextUserId()548 AsyncUserId AsyncManager::GetNextUserId() {
549 return taskManager_p_->GetNextUserId();
550 }
551
ExecAsync(AsyncUserId user_id,std::chrono::milliseconds delay,const TaskCallback & callback)552 AsyncTaskId AsyncManager::ExecAsync(AsyncUserId user_id,
553 std::chrono::milliseconds delay,
554 const TaskCallback& callback) {
555 return taskManager_p_->ExecAsync(user_id, delay, callback);
556 }
557
ExecAsyncPeriodically(AsyncUserId user_id,std::chrono::milliseconds delay,std::chrono::milliseconds period,const TaskCallback & callback)558 AsyncTaskId AsyncManager::ExecAsyncPeriodically(
559 AsyncUserId user_id, std::chrono::milliseconds delay,
560 std::chrono::milliseconds period, const TaskCallback& callback) {
561 return taskManager_p_->ExecAsyncPeriodically(user_id, delay, period,
562 callback);
563 }
564
CancelAsyncTask(AsyncTaskId async_task_id)565 bool AsyncManager::CancelAsyncTask(AsyncTaskId async_task_id) {
566 return taskManager_p_->CancelAsyncTask(async_task_id);
567 }
568
CancelAsyncTasksFromUser(rootcanal::AsyncUserId user_id)569 bool AsyncManager::CancelAsyncTasksFromUser(
570 rootcanal::AsyncUserId user_id) {
571 return taskManager_p_->CancelAsyncTasksFromUser(user_id);
572 }
573
Synchronize(const CriticalCallback & critical)574 void AsyncManager::Synchronize(const CriticalCallback& critical) {
575 taskManager_p_->Synchronize(critical);
576 }
577 } // namespace rootcanal
578