• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright © 2010 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21  * DEALINGS IN THE SOFTWARE.
22  */
23 
24 #include <assert.h>
25 #include <stdarg.h>
26 #include <stdint.h>
27 #include <stdio.h>
28 #include <stdlib.h>
29 #include <string.h>
30 
31 #include "util/list.h"
32 #include "util/macros.h"
33 #include "util/u_math.h"
34 #include "util/u_printf.h"
35 
36 #include "ralloc.h"
37 
38 #define CANARY 0x5A1106
39 
40 #if defined(__LP64__) || defined(_WIN64)
41 #define HEADER_ALIGN 16
42 #else
43 #define HEADER_ALIGN 8
44 #endif
45 
46 /* Align the header's size so that ralloc() allocations will return with the
47  * same alignment as a libc malloc would have (8 on 32-bit GLIBC, 16 on
48  * 64-bit), avoiding performance penalities on x86 and alignment faults on
49  * ARM.
50  */
51 struct ralloc_header
52 {
53    alignas(HEADER_ALIGN)
54 
55 #ifndef NDEBUG
56    /* A canary value used to determine whether a pointer is ralloc'd. */
57    unsigned canary;
58 #endif
59 
60    struct ralloc_header *parent;
61 
62    /* The first child (head of a linked list) */
63    struct ralloc_header *child;
64 
65    /* Linked list of siblings */
66    struct ralloc_header *prev;
67    struct ralloc_header *next;
68 
69    void (*destructor)(void *);
70 };
71 
72 typedef struct ralloc_header ralloc_header;
73 
74 static void unlink_block(ralloc_header *info);
75 static void unsafe_free(ralloc_header *info);
76 
77 static ralloc_header *
get_header(const void * ptr)78 get_header(const void *ptr)
79 {
80    ralloc_header *info = (ralloc_header *) (((char *) ptr) -
81 					    sizeof(ralloc_header));
82    assert(info->canary == CANARY);
83    return info;
84 }
85 
86 #define PTR_FROM_HEADER(info) (((char *) info) + sizeof(ralloc_header))
87 
88 static void
add_child(ralloc_header * parent,ralloc_header * info)89 add_child(ralloc_header *parent, ralloc_header *info)
90 {
91    if (parent != NULL) {
92       info->parent = parent;
93       info->next = parent->child;
94       parent->child = info;
95 
96       if (info->next != NULL)
97 	 info->next->prev = info;
98    }
99 }
100 
101 void *
ralloc_context(const void * ctx)102 ralloc_context(const void *ctx)
103 {
104    return ralloc_size(ctx, 0);
105 }
106 
107 void *
ralloc_size(const void * ctx,size_t size)108 ralloc_size(const void *ctx, size_t size)
109 {
110    /* Some malloc allocation doesn't always align to 16 bytes even on 64 bits
111     * system, from Android bionic/tests/malloc_test.cpp:
112     *  - Allocations of a size that rounds up to a multiple of 16 bytes
113     *    must have at least 16 byte alignment.
114     *  - Allocations of a size that rounds up to a multiple of 8 bytes and
115     *    not 16 bytes, are only required to have at least 8 byte alignment.
116     */
117    void *block = malloc(align64(size + sizeof(ralloc_header),
118                                 alignof(ralloc_header)));
119    ralloc_header *info;
120    ralloc_header *parent;
121 
122    if (unlikely(block == NULL))
123       return NULL;
124 
125    info = (ralloc_header *) block;
126    /* measurements have shown that calloc is slower (because of
127     * the multiplication overflow checking?), so clear things
128     * manually
129     */
130    info->parent = NULL;
131    info->child = NULL;
132    info->prev = NULL;
133    info->next = NULL;
134    info->destructor = NULL;
135 
136    parent = ctx != NULL ? get_header(ctx) : NULL;
137 
138    add_child(parent, info);
139 
140 #ifndef NDEBUG
141    info->canary = CANARY;
142 #endif
143 
144    return PTR_FROM_HEADER(info);
145 }
146 
147 void *
rzalloc_size(const void * ctx,size_t size)148 rzalloc_size(const void *ctx, size_t size)
149 {
150    void *ptr = ralloc_size(ctx, size);
151 
152    if (likely(ptr))
153       memset(ptr, 0, size);
154 
155    return ptr;
156 }
157 
158 /* helper function - assumes ptr != NULL */
159 static void *
resize(void * ptr,size_t size)160 resize(void *ptr, size_t size)
161 {
162    ralloc_header *child, *old, *info;
163 
164    old = get_header(ptr);
165    info = realloc(old, align64(size + sizeof(ralloc_header),
166                                alignof(ralloc_header)));
167 
168    if (info == NULL)
169       return NULL;
170 
171    /* Update parent and sibling's links to the reallocated node. */
172    if (info != old && info->parent != NULL) {
173       if (info->parent->child == old)
174 	 info->parent->child = info;
175 
176       if (info->prev != NULL)
177 	 info->prev->next = info;
178 
179       if (info->next != NULL)
180 	 info->next->prev = info;
181    }
182 
183    /* Update child->parent links for all children */
184    for (child = info->child; child != NULL; child = child->next)
185       child->parent = info;
186 
187    return PTR_FROM_HEADER(info);
188 }
189 
190 void *
reralloc_size(const void * ctx,void * ptr,size_t size)191 reralloc_size(const void *ctx, void *ptr, size_t size)
192 {
193    if (unlikely(ptr == NULL))
194       return ralloc_size(ctx, size);
195 
196    assert(ralloc_parent(ptr) == ctx);
197    return resize(ptr, size);
198 }
199 
200 void *
rerzalloc_size(const void * ctx,void * ptr,size_t old_size,size_t new_size)201 rerzalloc_size(const void *ctx, void *ptr, size_t old_size, size_t new_size)
202 {
203    if (unlikely(ptr == NULL))
204       return rzalloc_size(ctx, new_size);
205 
206    assert(ralloc_parent(ptr) == ctx);
207    ptr = resize(ptr, new_size);
208 
209    if (new_size > old_size)
210       memset((char *)ptr + old_size, 0, new_size - old_size);
211 
212    return ptr;
213 }
214 
215 void *
ralloc_array_size(const void * ctx,size_t size,unsigned count)216 ralloc_array_size(const void *ctx, size_t size, unsigned count)
217 {
218    if (count > SIZE_MAX/size)
219       return NULL;
220 
221    return ralloc_size(ctx, size * count);
222 }
223 
224 void *
rzalloc_array_size(const void * ctx,size_t size,unsigned count)225 rzalloc_array_size(const void *ctx, size_t size, unsigned count)
226 {
227    if (count > SIZE_MAX/size)
228       return NULL;
229 
230    return rzalloc_size(ctx, size * count);
231 }
232 
233 void *
reralloc_array_size(const void * ctx,void * ptr,size_t size,unsigned count)234 reralloc_array_size(const void *ctx, void *ptr, size_t size, unsigned count)
235 {
236    if (count > SIZE_MAX/size)
237       return NULL;
238 
239    return reralloc_size(ctx, ptr, size * count);
240 }
241 
242 void *
rerzalloc_array_size(const void * ctx,void * ptr,size_t size,unsigned old_count,unsigned new_count)243 rerzalloc_array_size(const void *ctx, void *ptr, size_t size,
244                      unsigned old_count, unsigned new_count)
245 {
246    if (new_count > SIZE_MAX/size)
247       return NULL;
248 
249    return rerzalloc_size(ctx, ptr, size * old_count, size * new_count);
250 }
251 
252 void
ralloc_free(void * ptr)253 ralloc_free(void *ptr)
254 {
255    ralloc_header *info;
256 
257    if (ptr == NULL)
258       return;
259 
260    info = get_header(ptr);
261    unlink_block(info);
262    unsafe_free(info);
263 }
264 
265 static void
unlink_block(ralloc_header * info)266 unlink_block(ralloc_header *info)
267 {
268    /* Unlink from parent & siblings */
269    if (info->parent != NULL) {
270       if (info->parent->child == info)
271 	 info->parent->child = info->next;
272 
273       if (info->prev != NULL)
274 	 info->prev->next = info->next;
275 
276       if (info->next != NULL)
277 	 info->next->prev = info->prev;
278    }
279    info->parent = NULL;
280    info->prev = NULL;
281    info->next = NULL;
282 }
283 
284 static void
unsafe_free(ralloc_header * info)285 unsafe_free(ralloc_header *info)
286 {
287    /* Recursively free any children...don't waste time unlinking them. */
288    ralloc_header *temp;
289    while (info->child != NULL) {
290       temp = info->child;
291       info->child = temp->next;
292       unsafe_free(temp);
293    }
294 
295    /* Free the block itself.  Call the destructor first, if any. */
296    if (info->destructor != NULL)
297       info->destructor(PTR_FROM_HEADER(info));
298 
299    free(info);
300 }
301 
302 void
ralloc_steal(const void * new_ctx,void * ptr)303 ralloc_steal(const void *new_ctx, void *ptr)
304 {
305    ralloc_header *info, *parent;
306 
307    if (unlikely(ptr == NULL))
308       return;
309 
310    info = get_header(ptr);
311    parent = new_ctx ? get_header(new_ctx) : NULL;
312 
313    unlink_block(info);
314 
315    add_child(parent, info);
316 }
317 
318 void
ralloc_adopt(const void * new_ctx,void * old_ctx)319 ralloc_adopt(const void *new_ctx, void *old_ctx)
320 {
321    ralloc_header *new_info, *old_info, *child;
322 
323    if (unlikely(old_ctx == NULL))
324       return;
325 
326    old_info = get_header(old_ctx);
327    new_info = get_header(new_ctx);
328 
329    /* If there are no children, bail. */
330    if (unlikely(old_info->child == NULL))
331       return;
332 
333    /* Set all the children's parent to new_ctx; get a pointer to the last child. */
334    for (child = old_info->child; child->next != NULL; child = child->next) {
335       child->parent = new_info;
336    }
337    child->parent = new_info;
338 
339    /* Connect the two lists together; parent them to new_ctx; make old_ctx empty. */
340    child->next = new_info->child;
341    if (child->next)
342       child->next->prev = child;
343    new_info->child = old_info->child;
344    old_info->child = NULL;
345 }
346 
347 void *
ralloc_parent(const void * ptr)348 ralloc_parent(const void *ptr)
349 {
350    ralloc_header *info;
351 
352    if (unlikely(ptr == NULL))
353       return NULL;
354 
355    info = get_header(ptr);
356    return info->parent ? PTR_FROM_HEADER(info->parent) : NULL;
357 }
358 
359 void
ralloc_set_destructor(const void * ptr,void (* destructor)(void *))360 ralloc_set_destructor(const void *ptr, void(*destructor)(void *))
361 {
362    ralloc_header *info = get_header(ptr);
363    info->destructor = destructor;
364 }
365 
366 char *
ralloc_strdup(const void * ctx,const char * str)367 ralloc_strdup(const void *ctx, const char *str)
368 {
369    size_t n;
370    char *ptr;
371 
372    if (unlikely(str == NULL))
373       return NULL;
374 
375    n = strlen(str);
376    ptr = ralloc_array(ctx, char, n + 1);
377    memcpy(ptr, str, n);
378    ptr[n] = '\0';
379    return ptr;
380 }
381 
382 char *
ralloc_strndup(const void * ctx,const char * str,size_t max)383 ralloc_strndup(const void *ctx, const char *str, size_t max)
384 {
385    size_t n;
386    char *ptr;
387 
388    if (unlikely(str == NULL))
389       return NULL;
390 
391    n = strnlen(str, max);
392    ptr = ralloc_array(ctx, char, n + 1);
393    memcpy(ptr, str, n);
394    ptr[n] = '\0';
395    return ptr;
396 }
397 
398 /* helper routine for strcat/strncat - n is the exact amount to copy */
399 static bool
cat(char ** dest,const char * str,size_t n)400 cat(char **dest, const char *str, size_t n)
401 {
402    char *both;
403    size_t existing_length;
404    assert(dest != NULL && *dest != NULL);
405 
406    existing_length = strlen(*dest);
407    both = resize(*dest, existing_length + n + 1);
408    if (unlikely(both == NULL))
409       return false;
410 
411    memcpy(both + existing_length, str, n);
412    both[existing_length + n] = '\0';
413 
414    *dest = both;
415    return true;
416 }
417 
418 
419 bool
ralloc_strcat(char ** dest,const char * str)420 ralloc_strcat(char **dest, const char *str)
421 {
422    return cat(dest, str, strlen(str));
423 }
424 
425 bool
ralloc_strncat(char ** dest,const char * str,size_t n)426 ralloc_strncat(char **dest, const char *str, size_t n)
427 {
428    return cat(dest, str, strnlen(str, n));
429 }
430 
431 bool
ralloc_str_append(char ** dest,const char * str,size_t existing_length,size_t str_size)432 ralloc_str_append(char **dest, const char *str,
433                   size_t existing_length, size_t str_size)
434 {
435    char *both;
436    assert(dest != NULL && *dest != NULL);
437 
438    both = resize(*dest, existing_length + str_size + 1);
439    if (unlikely(both == NULL))
440       return false;
441 
442    memcpy(both + existing_length, str, str_size);
443    both[existing_length + str_size] = '\0';
444 
445    *dest = both;
446 
447    return true;
448 }
449 
450 char *
ralloc_asprintf(const void * ctx,const char * fmt,...)451 ralloc_asprintf(const void *ctx, const char *fmt, ...)
452 {
453    char *ptr;
454    va_list args;
455    va_start(args, fmt);
456    ptr = ralloc_vasprintf(ctx, fmt, args);
457    va_end(args);
458    return ptr;
459 }
460 
461 char *
ralloc_vasprintf(const void * ctx,const char * fmt,va_list args)462 ralloc_vasprintf(const void *ctx, const char *fmt, va_list args)
463 {
464    size_t size = u_printf_length(fmt, args) + 1;
465 
466    char *ptr = ralloc_size(ctx, size);
467    if (ptr != NULL)
468       vsnprintf(ptr, size, fmt, args);
469 
470    return ptr;
471 }
472 
473 bool
ralloc_asprintf_append(char ** str,const char * fmt,...)474 ralloc_asprintf_append(char **str, const char *fmt, ...)
475 {
476    bool success;
477    va_list args;
478    va_start(args, fmt);
479    success = ralloc_vasprintf_append(str, fmt, args);
480    va_end(args);
481    return success;
482 }
483 
484 bool
ralloc_vasprintf_append(char ** str,const char * fmt,va_list args)485 ralloc_vasprintf_append(char **str, const char *fmt, va_list args)
486 {
487    size_t existing_length;
488    assert(str != NULL);
489    existing_length = *str ? strlen(*str) : 0;
490    return ralloc_vasprintf_rewrite_tail(str, &existing_length, fmt, args);
491 }
492 
493 bool
ralloc_asprintf_rewrite_tail(char ** str,size_t * start,const char * fmt,...)494 ralloc_asprintf_rewrite_tail(char **str, size_t *start, const char *fmt, ...)
495 {
496    bool success;
497    va_list args;
498    va_start(args, fmt);
499    success = ralloc_vasprintf_rewrite_tail(str, start, fmt, args);
500    va_end(args);
501    return success;
502 }
503 
504 bool
ralloc_vasprintf_rewrite_tail(char ** str,size_t * start,const char * fmt,va_list args)505 ralloc_vasprintf_rewrite_tail(char **str, size_t *start, const char *fmt,
506 			      va_list args)
507 {
508    size_t new_length;
509    char *ptr;
510 
511    assert(str != NULL);
512 
513    if (unlikely(*str == NULL)) {
514       // Assuming a NULL context is probably bad, but it's expected behavior.
515       *str = ralloc_vasprintf(NULL, fmt, args);
516       *start = strlen(*str);
517       return true;
518    }
519 
520    new_length = u_printf_length(fmt, args);
521 
522    ptr = resize(*str, *start + new_length + 1);
523    if (unlikely(ptr == NULL))
524       return false;
525 
526    vsnprintf(ptr + *start, new_length + 1, fmt, args);
527    *str = ptr;
528    *start += new_length;
529    return true;
530 }
531 
532 /***************************************************************************
533  * GC context.
534  ***************************************************************************
535  */
536 
537 /* The maximum size of an object that will be allocated specially.
538  */
539 #define MAX_FREELIST_SIZE 512
540 
541 /* Allocations small enough to be allocated from a freelist will be aligned up
542  * to this size.
543  */
544 #define FREELIST_ALIGNMENT 32
545 
546 #define NUM_FREELIST_BUCKETS (MAX_FREELIST_SIZE / FREELIST_ALIGNMENT)
547 
548 /* The size of a slab. */
549 #define SLAB_SIZE (32 * 1024)
550 
551 #define GC_CANARY 0xAF6B5B72
552 
553 enum gc_flags {
554    IS_USED = (1 << 0),
555    CURRENT_GENERATION = (1 << 1),
556    IS_PADDING = (1 << 7),
557 };
558 
559 typedef struct
560 {
561 #ifndef NDEBUG
562    /* A canary value used to determine whether a pointer is allocated using gc_alloc. */
563    unsigned canary;
564 #endif
565 
566    uint16_t slab_offset;
567    uint8_t bucket;
568    uint8_t flags;
569 
570    /* The last padding byte must have IS_PADDING set and is used to store the amount of padding. If
571     * there is no padding, the IS_PADDING bit of "flags" is unset and "flags" is checked instead.
572     * Because of this, "flags" must be the last member of this struct.
573     */
574    uint8_t padding[];
575 } gc_block_header;
576 
577 /* This structure is at the start of the slab. Objects inside a slab are
578  * allocated using a freelist backed by a simple linear allocator.
579  */
580 typedef struct gc_slab {
581    alignas(HEADER_ALIGN)
582 
583    gc_ctx *ctx;
584 
585    /* Objects are allocated using either linear or freelist allocation. "next_available" is the
586     * pointer used for linear allocation, while "freelist" is the next free object for freelist
587     * allocation.
588     */
589    char *next_available;
590    gc_block_header *freelist;
591 
592    /* Slabs that handle the same-sized objects. */
593    struct list_head link;
594 
595    /* Free slabs that handle the same-sized objects. */
596    struct list_head free_link;
597 
598    /* Number of allocated and free objects, recorded so that we can free the slab if it
599     * becomes empty or add one to the freelist if it's no longer full.
600     */
601    unsigned num_allocated;
602    unsigned num_free;
603 } gc_slab;
604 
605 struct gc_ctx {
606    /* Array of slabs for fixed-size allocations. Each slab tracks allocations
607     * of specific sized blocks. User allocations are rounded up to the nearest
608     * fixed size. slabs[N] contains allocations of size
609     * FREELIST_ALIGNMENT * (N + 1).
610     */
611    struct {
612       /* List of slabs in this bucket. */
613       struct list_head slabs;
614 
615       /* List of slabs with free space in this bucket, so we can quickly choose one when
616        * allocating.
617        */
618       struct list_head free_slabs;
619    } slabs[NUM_FREELIST_BUCKETS];
620 
621    uint8_t current_gen;
622    void *rubbish;
623 };
624 
625 static gc_block_header *
get_gc_header(const void * ptr)626 get_gc_header(const void *ptr)
627 {
628    uint8_t *c_ptr = (uint8_t *)ptr;
629 
630    /* Adjust for padding added to ensure alignment of the allocation. There might also be padding
631     * added by the compiler into gc_block_header, but that isn't counted in the IS_PADDING byte.
632     */
633    if (c_ptr[-1] & IS_PADDING)
634       c_ptr -= c_ptr[-1] & ~IS_PADDING;
635 
636    c_ptr -= sizeof(gc_block_header);
637 
638    gc_block_header *info = (gc_block_header *)c_ptr;
639    assert(info->canary == GC_CANARY);
640    return info;
641 }
642 
643 static gc_block_header *
get_gc_freelist_next(gc_block_header * ptr)644 get_gc_freelist_next(gc_block_header *ptr)
645 {
646    gc_block_header *next;
647    /* work around possible strict aliasing bug using memcpy */
648    memcpy(&next, (void*)(ptr + 1), sizeof(next));
649    return next;
650 }
651 
652 static void
set_gc_freelist_next(gc_block_header * ptr,gc_block_header * next)653 set_gc_freelist_next(gc_block_header *ptr, gc_block_header *next)
654 {
655    memcpy((void*)(ptr + 1), &next, sizeof(next));
656 }
657 
658 static gc_slab *
get_gc_slab(gc_block_header * header)659 get_gc_slab(gc_block_header *header)
660 {
661    return (gc_slab *)((char *)header - header->slab_offset);
662 }
663 
664 gc_ctx *
gc_context(const void * parent)665 gc_context(const void *parent)
666 {
667    gc_ctx *ctx = rzalloc(parent, gc_ctx);
668    for (unsigned i = 0; i < NUM_FREELIST_BUCKETS; i++) {
669       list_inithead(&ctx->slabs[i].slabs);
670       list_inithead(&ctx->slabs[i].free_slabs);
671    }
672    return ctx;
673 }
674 
675 static_assert(UINT32_MAX >= MAX_FREELIST_SIZE, "Freelist sizes use uint32_t");
676 
677 static uint32_t
gc_bucket_obj_size(uint32_t bucket)678 gc_bucket_obj_size(uint32_t bucket)
679 {
680    return (bucket + 1) * FREELIST_ALIGNMENT;
681 }
682 
683 static uint32_t
gc_bucket_for_size(uint32_t size)684 gc_bucket_for_size(uint32_t size)
685 {
686    return (size - 1) / FREELIST_ALIGNMENT;
687 }
688 
689 static_assert(UINT32_MAX >= SLAB_SIZE, "SLAB_SIZE use uint32_t");
690 
691 static uint32_t
gc_bucket_num_objs(uint32_t bucket)692 gc_bucket_num_objs(uint32_t bucket)
693 {
694    return (SLAB_SIZE - sizeof(gc_slab)) / gc_bucket_obj_size(bucket);
695 }
696 
697 static gc_block_header *
alloc_from_slab(gc_slab * slab,uint32_t bucket)698 alloc_from_slab(gc_slab *slab, uint32_t bucket)
699 {
700    uint32_t size = gc_bucket_obj_size(bucket);
701    gc_block_header *header;
702    if (slab->freelist) {
703       /* Prioritize already-allocated chunks, since they probably have a page
704        * backing them.
705        */
706       header = slab->freelist;
707       slab->freelist = get_gc_freelist_next(slab->freelist);
708    } else if (slab->next_available + size <= ((char *) slab) + SLAB_SIZE) {
709       header = (gc_block_header *) slab->next_available;
710       header->slab_offset = (char *) header - (char *) slab;
711       header->bucket = bucket;
712       slab->next_available += size;
713    } else {
714       return NULL;
715    }
716 
717    slab->num_allocated++;
718    slab->num_free--;
719    if (!slab->num_free)
720       list_del(&slab->free_link);
721    return header;
722 }
723 
724 static void
free_slab(gc_slab * slab)725 free_slab(gc_slab *slab)
726 {
727    if (list_is_linked(&slab->free_link))
728       list_del(&slab->free_link);
729    list_del(&slab->link);
730    ralloc_free(slab);
731 }
732 
733 static void
free_from_slab(gc_block_header * header,bool keep_empty_slabs)734 free_from_slab(gc_block_header *header, bool keep_empty_slabs)
735 {
736    gc_slab *slab = get_gc_slab(header);
737 
738    if (slab->num_allocated == 1 && !(keep_empty_slabs && list_is_singular(&slab->free_link))) {
739       /* Free the slab if this is the last object. */
740       free_slab(slab);
741       return;
742    } else if (slab->num_free == 0) {
743       list_add(&slab->free_link, &slab->ctx->slabs[header->bucket].free_slabs);
744    } else {
745       /* Keep the free list sorted by the number of free objects in ascending order. By prefering to
746        * allocate from the slab with the fewest free objects, we help free the slabs with many free
747        * objects.
748        */
749       while (slab->free_link.next != &slab->ctx->slabs[header->bucket].free_slabs &&
750              slab->num_free > list_entry(slab->free_link.next, gc_slab, free_link)->num_free) {
751          gc_slab *next = list_entry(slab->free_link.next, gc_slab, free_link);
752 
753          /* Move "slab" to after "next". */
754          list_move_to(&slab->free_link, &next->free_link);
755       }
756    }
757 
758    set_gc_freelist_next(header, slab->freelist);
759    slab->freelist = header;
760 
761    slab->num_allocated--;
762    slab->num_free++;
763 }
764 
765 static uint32_t
get_slab_size(uint32_t bucket)766 get_slab_size(uint32_t bucket)
767 {
768    /* SLAB_SIZE rounded down to a multiple of the object size so that it's not larger than what can
769     * be used.
770     */
771    uint32_t obj_size = gc_bucket_obj_size(bucket);
772    uint32_t num_objs = gc_bucket_num_objs(bucket);
773    return align((uint32_t)sizeof(gc_slab) + num_objs * obj_size, alignof(gc_slab));
774 }
775 
776 static gc_slab *
create_slab(gc_ctx * ctx,unsigned bucket)777 create_slab(gc_ctx *ctx, unsigned bucket)
778 {
779    gc_slab *slab = ralloc_size(ctx, get_slab_size(bucket));
780    if (unlikely(!slab))
781       return NULL;
782 
783    slab->ctx = ctx;
784    slab->freelist = NULL;
785    slab->next_available = (char*)(slab + 1);
786    slab->num_allocated = 0;
787    slab->num_free = gc_bucket_num_objs(bucket);
788 
789    list_addtail(&slab->link, &ctx->slabs[bucket].slabs);
790    list_addtail(&slab->free_link, &ctx->slabs[bucket].free_slabs);
791 
792    return slab;
793 }
794 
795 void *
gc_alloc_size(gc_ctx * ctx,size_t size,size_t align)796 gc_alloc_size(gc_ctx *ctx, size_t size, size_t align)
797 {
798    assert(ctx);
799    assert(util_is_power_of_two_nonzero(align));
800 
801    align = MAX2(align, alignof(gc_block_header));
802 
803    /* Alignment will add at most align-alignof(gc_block_header) bytes of padding to the header, and
804     * the IS_PADDING byte can only encode up to 127.
805     */
806    assert((align - alignof(gc_block_header)) <= 127);
807 
808    /* We can only align as high as the slab is. */
809    assert(align <= HEADER_ALIGN);
810 
811    size_t header_size = align64(sizeof(gc_block_header), align);
812    size = align64(size, align);
813    size += header_size;
814 
815    gc_block_header *header = NULL;
816    if (size <= MAX_FREELIST_SIZE) {
817       uint32_t bucket = gc_bucket_for_size((uint32_t)size);
818       if (list_is_empty(&ctx->slabs[bucket].free_slabs) && !create_slab(ctx, bucket))
819          return NULL;
820       gc_slab *slab = list_first_entry(&ctx->slabs[bucket].free_slabs, gc_slab, free_link);
821       header = alloc_from_slab(slab, bucket);
822    } else {
823       header = ralloc_size(ctx, size);
824       if (unlikely(!header))
825          return NULL;
826       /* Mark the header as allocated directly, so we know to actually free it. */
827       header->bucket = NUM_FREELIST_BUCKETS;
828    }
829 
830    header->flags = ctx->current_gen | IS_USED;
831 #ifndef NDEBUG
832    header->canary = GC_CANARY;
833 #endif
834 
835    uint8_t *ptr = (uint8_t *)header + header_size;
836    if ((header_size - 1) != offsetof(gc_block_header, flags))
837       ptr[-1] = IS_PADDING | (header_size - sizeof(gc_block_header));
838 
839    assert(((uintptr_t)ptr & (align - 1)) == 0);
840    return ptr;
841 }
842 
843 void *
gc_zalloc_size(gc_ctx * ctx,size_t size,size_t align)844 gc_zalloc_size(gc_ctx *ctx, size_t size, size_t align)
845 {
846    void *ptr = gc_alloc_size(ctx, size, align);
847 
848    if (likely(ptr))
849       memset(ptr, 0, size);
850 
851    return ptr;
852 }
853 
854 void
gc_free(void * ptr)855 gc_free(void *ptr)
856 {
857    if (!ptr)
858       return;
859 
860    gc_block_header *header = get_gc_header(ptr);
861    header->flags &= ~IS_USED;
862 
863    if (header->bucket < NUM_FREELIST_BUCKETS)
864       free_from_slab(header, true);
865    else
866       ralloc_free(header);
867 }
868 
gc_get_context(void * ptr)869 gc_ctx *gc_get_context(void *ptr)
870 {
871    gc_block_header *header = get_gc_header(ptr);
872 
873    if (header->bucket < NUM_FREELIST_BUCKETS)
874       return get_gc_slab(header)->ctx;
875    else
876       return ralloc_parent(header);
877 }
878 
879 void
gc_sweep_start(gc_ctx * ctx)880 gc_sweep_start(gc_ctx *ctx)
881 {
882    ctx->current_gen ^= CURRENT_GENERATION;
883 
884    ctx->rubbish = ralloc_context(NULL);
885    ralloc_adopt(ctx->rubbish, ctx);
886 }
887 
888 void
gc_mark_live(gc_ctx * ctx,const void * mem)889 gc_mark_live(gc_ctx *ctx, const void *mem)
890 {
891    gc_block_header *header = get_gc_header(mem);
892    if (header->bucket < NUM_FREELIST_BUCKETS)
893       header->flags ^= CURRENT_GENERATION;
894    else
895       ralloc_steal(ctx, header);
896 }
897 
898 void
gc_sweep_end(gc_ctx * ctx)899 gc_sweep_end(gc_ctx *ctx)
900 {
901    assert(ctx->rubbish);
902 
903    for (unsigned i = 0; i < NUM_FREELIST_BUCKETS; i++) {
904       unsigned obj_size = gc_bucket_obj_size(i);
905       list_for_each_entry_safe(gc_slab, slab, &ctx->slabs[i].slabs, link) {
906          if (!slab->num_allocated) {
907             free_slab(slab);
908             continue;
909          }
910 
911          for (char *ptr = (char*)(slab + 1); ptr != slab->next_available; ptr += obj_size) {
912             gc_block_header *header = (gc_block_header *)ptr;
913             if (!(header->flags & IS_USED))
914                continue;
915             if ((header->flags & CURRENT_GENERATION) == ctx->current_gen)
916                continue;
917 
918             bool last = slab->num_allocated == 1;
919 
920             header->flags &= ~IS_USED;
921             free_from_slab(header, false);
922 
923             if (last)
924                break;
925          }
926       }
927    }
928 
929    for (unsigned i = 0; i < NUM_FREELIST_BUCKETS; i++) {
930       list_for_each_entry(gc_slab, slab, &ctx->slabs[i].slabs, link) {
931          assert(slab->num_allocated > 0); /* free_from_slab() should free it otherwise */
932          ralloc_steal(ctx, slab);
933       }
934    }
935 
936    ralloc_free(ctx->rubbish);
937    ctx->rubbish = NULL;
938 }
939 
940 /***************************************************************************
941  * Linear allocator for short-lived allocations.
942  ***************************************************************************
943  *
944  * The allocator consists of a parent node (2K buffer), which requires
945  * a ralloc parent, and child nodes (allocations). Child nodes can't be freed
946  * directly, because the parent doesn't track them. You have to release
947  * the parent node in order to release all its children.
948  *
949  * The allocator uses a fixed-sized buffer with a monotonically increasing
950  * offset after each allocation. If the buffer is all used, another buffer
951  * is allocated, sharing the same ralloc parent, so all buffers are at
952  * the same level in the ralloc hierarchy.
953  *
954  * The linear parent node is always the first buffer and keeps track of all
955  * other buffers.
956  */
957 
958 #define MIN_LINEAR_BUFSIZE 2048
959 #define SUBALLOC_ALIGNMENT 8
960 #define LMAGIC 0x87b9c7d3
961 
962 struct linear_header {
963 
964    alignas(HEADER_ALIGN)
965 
966 #ifndef NDEBUG
967    unsigned magic;   /* for debugging */
968 #endif
969    unsigned offset;  /* points to the first unused byte in the buffer */
970    unsigned size;    /* size of the buffer */
971    void *ralloc_parent;          /* new buffers will use this */
972    struct linear_header *next;   /* next buffer if we have more */
973    struct linear_header *latest; /* the only buffer that has free space */
974 
975    /* After this structure, the buffer begins.
976     * Each suballocation consists of linear_size_chunk as its header followed
977     * by the suballocation, so it goes:
978     *
979     * - linear_size_chunk
980     * - allocated space
981     * - linear_size_chunk
982     * - allocated space
983     * etc.
984     *
985     * linear_size_chunk is only needed by linear_realloc.
986     */
987 };
988 
989 struct linear_size_chunk {
990    unsigned size; /* for realloc */
991    unsigned _padding;
992 };
993 
994 typedef struct linear_header linear_header;
995 typedef struct linear_size_chunk linear_size_chunk;
996 
997 #define LINEAR_PARENT_TO_HEADER(parent) \
998    (linear_header*) \
999    ((char*)(parent) - sizeof(linear_size_chunk) - sizeof(linear_header))
1000 
1001 /* Allocate the linear buffer with its header. */
1002 static linear_header *
create_linear_node(void * ralloc_ctx,unsigned min_size)1003 create_linear_node(void *ralloc_ctx, unsigned min_size)
1004 {
1005    linear_header *node;
1006 
1007    min_size += sizeof(linear_size_chunk);
1008 
1009    if (likely(min_size < MIN_LINEAR_BUFSIZE))
1010       min_size = MIN_LINEAR_BUFSIZE;
1011 
1012    node = ralloc_size(ralloc_ctx, sizeof(linear_header) + min_size);
1013    if (unlikely(!node))
1014       return NULL;
1015 
1016 #ifndef NDEBUG
1017    node->magic = LMAGIC;
1018 #endif
1019    node->offset = 0;
1020    node->size = min_size;
1021    node->ralloc_parent = ralloc_ctx;
1022    node->next = NULL;
1023    node->latest = node;
1024    return node;
1025 }
1026 
1027 void *
linear_alloc_child(void * parent,unsigned size)1028 linear_alloc_child(void *parent, unsigned size)
1029 {
1030    linear_header *first = LINEAR_PARENT_TO_HEADER(parent);
1031    linear_header *latest = first->latest;
1032    linear_header *new_node;
1033    linear_size_chunk *ptr;
1034    unsigned full_size;
1035 
1036    assert(first->magic == LMAGIC);
1037    assert(!latest->next);
1038 
1039    size = ALIGN_POT(size, SUBALLOC_ALIGNMENT);
1040    full_size = sizeof(linear_size_chunk) + size;
1041 
1042    if (unlikely(latest->offset + full_size > latest->size)) {
1043       /* allocate a new node */
1044       new_node = create_linear_node(latest->ralloc_parent, size);
1045       if (unlikely(!new_node))
1046          return NULL;
1047 
1048       first->latest = new_node;
1049       latest->latest = new_node;
1050       latest->next = new_node;
1051       latest = new_node;
1052    }
1053 
1054    ptr = (linear_size_chunk *)((char*)&latest[1] + latest->offset);
1055    ptr->size = size;
1056    latest->offset += full_size;
1057 
1058    assert((uintptr_t)&ptr[1] % SUBALLOC_ALIGNMENT == 0);
1059    return &ptr[1];
1060 }
1061 
1062 void *
linear_alloc_parent(void * ralloc_ctx,unsigned size)1063 linear_alloc_parent(void *ralloc_ctx, unsigned size)
1064 {
1065    linear_header *node;
1066 
1067    if (unlikely(!ralloc_ctx))
1068       return NULL;
1069 
1070    size = ALIGN_POT(size, SUBALLOC_ALIGNMENT);
1071 
1072    node = create_linear_node(ralloc_ctx, size);
1073    if (unlikely(!node))
1074       return NULL;
1075 
1076    return linear_alloc_child((char*)node +
1077                              sizeof(linear_header) +
1078                              sizeof(linear_size_chunk), size);
1079 }
1080 
1081 void *
linear_zalloc_child(void * parent,unsigned size)1082 linear_zalloc_child(void *parent, unsigned size)
1083 {
1084    void *ptr = linear_alloc_child(parent, size);
1085 
1086    if (likely(ptr))
1087       memset(ptr, 0, size);
1088    return ptr;
1089 }
1090 
1091 void *
linear_zalloc_parent(void * parent,unsigned size)1092 linear_zalloc_parent(void *parent, unsigned size)
1093 {
1094    void *ptr = linear_alloc_parent(parent, size);
1095 
1096    if (likely(ptr))
1097       memset(ptr, 0, size);
1098    return ptr;
1099 }
1100 
1101 void
linear_free_parent(void * ptr)1102 linear_free_parent(void *ptr)
1103 {
1104    linear_header *node;
1105 
1106    if (unlikely(!ptr))
1107       return;
1108 
1109    node = LINEAR_PARENT_TO_HEADER(ptr);
1110    assert(node->magic == LMAGIC);
1111 
1112    while (node) {
1113       void *ptr = node;
1114 
1115       node = node->next;
1116       ralloc_free(ptr);
1117    }
1118 }
1119 
1120 void
ralloc_steal_linear_parent(void * new_ralloc_ctx,void * ptr)1121 ralloc_steal_linear_parent(void *new_ralloc_ctx, void *ptr)
1122 {
1123    linear_header *node;
1124 
1125    if (unlikely(!ptr))
1126       return;
1127 
1128    node = LINEAR_PARENT_TO_HEADER(ptr);
1129    assert(node->magic == LMAGIC);
1130 
1131    while (node) {
1132       ralloc_steal(new_ralloc_ctx, node);
1133       node->ralloc_parent = new_ralloc_ctx;
1134       node = node->next;
1135    }
1136 }
1137 
1138 void *
ralloc_parent_of_linear_parent(void * ptr)1139 ralloc_parent_of_linear_parent(void *ptr)
1140 {
1141    linear_header *node = LINEAR_PARENT_TO_HEADER(ptr);
1142    assert(node->magic == LMAGIC);
1143    return node->ralloc_parent;
1144 }
1145 
1146 void *
linear_realloc(void * parent,void * old,unsigned new_size)1147 linear_realloc(void *parent, void *old, unsigned new_size)
1148 {
1149    unsigned old_size = 0;
1150    ralloc_header *new_ptr;
1151 
1152    new_ptr = linear_alloc_child(parent, new_size);
1153 
1154    if (unlikely(!old))
1155       return new_ptr;
1156 
1157    old_size = ((linear_size_chunk*)old)[-1].size;
1158 
1159    if (likely(new_ptr && old_size))
1160       memcpy(new_ptr, old, MIN2(old_size, new_size));
1161 
1162    return new_ptr;
1163 }
1164 
1165 /* All code below is pretty much copied from ralloc and only the alloc
1166  * calls are different.
1167  */
1168 
1169 char *
linear_strdup(void * parent,const char * str)1170 linear_strdup(void *parent, const char *str)
1171 {
1172    unsigned n;
1173    char *ptr;
1174 
1175    if (unlikely(!str))
1176       return NULL;
1177 
1178    n = strlen(str);
1179    ptr = linear_alloc_child(parent, n + 1);
1180    if (unlikely(!ptr))
1181       return NULL;
1182 
1183    memcpy(ptr, str, n);
1184    ptr[n] = '\0';
1185    return ptr;
1186 }
1187 
1188 char *
linear_asprintf(void * parent,const char * fmt,...)1189 linear_asprintf(void *parent, const char *fmt, ...)
1190 {
1191    char *ptr;
1192    va_list args;
1193    va_start(args, fmt);
1194    ptr = linear_vasprintf(parent, fmt, args);
1195    va_end(args);
1196    return ptr;
1197 }
1198 
1199 char *
linear_vasprintf(void * parent,const char * fmt,va_list args)1200 linear_vasprintf(void *parent, const char *fmt, va_list args)
1201 {
1202    unsigned size = u_printf_length(fmt, args) + 1;
1203 
1204    char *ptr = linear_alloc_child(parent, size);
1205    if (ptr != NULL)
1206       vsnprintf(ptr, size, fmt, args);
1207 
1208    return ptr;
1209 }
1210 
1211 bool
linear_asprintf_append(void * parent,char ** str,const char * fmt,...)1212 linear_asprintf_append(void *parent, char **str, const char *fmt, ...)
1213 {
1214    bool success;
1215    va_list args;
1216    va_start(args, fmt);
1217    success = linear_vasprintf_append(parent, str, fmt, args);
1218    va_end(args);
1219    return success;
1220 }
1221 
1222 bool
linear_vasprintf_append(void * parent,char ** str,const char * fmt,va_list args)1223 linear_vasprintf_append(void *parent, char **str, const char *fmt, va_list args)
1224 {
1225    size_t existing_length;
1226    assert(str != NULL);
1227    existing_length = *str ? strlen(*str) : 0;
1228    return linear_vasprintf_rewrite_tail(parent, str, &existing_length, fmt, args);
1229 }
1230 
1231 bool
linear_asprintf_rewrite_tail(void * parent,char ** str,size_t * start,const char * fmt,...)1232 linear_asprintf_rewrite_tail(void *parent, char **str, size_t *start,
1233                              const char *fmt, ...)
1234 {
1235    bool success;
1236    va_list args;
1237    va_start(args, fmt);
1238    success = linear_vasprintf_rewrite_tail(parent, str, start, fmt, args);
1239    va_end(args);
1240    return success;
1241 }
1242 
1243 bool
linear_vasprintf_rewrite_tail(void * parent,char ** str,size_t * start,const char * fmt,va_list args)1244 linear_vasprintf_rewrite_tail(void *parent, char **str, size_t *start,
1245                               const char *fmt, va_list args)
1246 {
1247    size_t new_length;
1248    char *ptr;
1249 
1250    assert(str != NULL);
1251 
1252    if (unlikely(*str == NULL)) {
1253       *str = linear_vasprintf(parent, fmt, args);
1254       *start = strlen(*str);
1255       return true;
1256    }
1257 
1258    new_length = u_printf_length(fmt, args);
1259 
1260    ptr = linear_realloc(parent, *str, *start + new_length + 1);
1261    if (unlikely(ptr == NULL))
1262       return false;
1263 
1264    vsnprintf(ptr + *start, new_length + 1, fmt, args);
1265    *str = ptr;
1266    *start += new_length;
1267    return true;
1268 }
1269 
1270 /* helper routine for strcat/strncat - n is the exact amount to copy */
1271 static bool
linear_cat(void * parent,char ** dest,const char * str,unsigned n)1272 linear_cat(void *parent, char **dest, const char *str, unsigned n)
1273 {
1274    char *both;
1275    unsigned existing_length;
1276    assert(dest != NULL && *dest != NULL);
1277 
1278    existing_length = strlen(*dest);
1279    both = linear_realloc(parent, *dest, existing_length + n + 1);
1280    if (unlikely(both == NULL))
1281       return false;
1282 
1283    memcpy(both + existing_length, str, n);
1284    both[existing_length + n] = '\0';
1285 
1286    *dest = both;
1287    return true;
1288 }
1289 
1290 bool
linear_strcat(void * parent,char ** dest,const char * str)1291 linear_strcat(void *parent, char **dest, const char *str)
1292 {
1293    return linear_cat(parent, dest, str, strlen(str));
1294 }
1295 
1296 void *
linear_alloc_child_array(void * parent,size_t size,unsigned count)1297 linear_alloc_child_array(void *parent, size_t size, unsigned count)
1298 {
1299    if (count > SIZE_MAX/size)
1300       return NULL;
1301 
1302    return linear_alloc_child(parent, size * count);
1303 }
1304 
1305 void *
linear_zalloc_child_array(void * parent,size_t size,unsigned count)1306 linear_zalloc_child_array(void *parent, size_t size, unsigned count)
1307 {
1308    if (count > SIZE_MAX/size)
1309       return NULL;
1310 
1311    return linear_zalloc_child(parent, size * count);
1312 }
1313