| /external/libaom/tools/ |
| D | gen_constrained_tokenset.py | 14 Model obtained from a 2-sided zero-centered distribution derived 16 cdf(x) = 0.5 + 0.5 * sgn(x) * [1 - {alpha/(alpha + |x|)} ^ beta] 18 For a given beta and a given probability of the 1-node, the alpha 19 is first solved, and then the {alpha, beta} pair is used to generate 30 def cdf_spareto(x, xm, beta): argument 31 p = 1 - (xm / (np.abs(x) + xm))**beta 36 def get_spareto(p, beta): argument 40 return ((cdf(1.5, x, beta) - cdf(0.5, x, beta)) / 41 (1 - cdf(0.5, x, beta)) - p)**2 43 alpha = scipy.optimize.fminbound(func, 1e-12, 10000, xtol=1e-12) [all …]
|
| /external/apache-commons-math/src/main/java/org/apache/commons/math3/distribution/ |
| D | BetaDistribution.java | 9 * http://www.apache.org/licenses/LICENSE-2.0 23 import org.apache.commons.math3.special.Beta; 29 * Implements the Beta distribution. 31 * @see <a href="http://en.wikipedia.org/wiki/Beta_distribution">Beta distribution</a> 40 public static final double DEFAULT_INVERSE_ABSOLUTE_ACCURACY = 1e-9; 43 private static final long serialVersionUID = -1221965979403477668L; 49 private final double beta; field in BetaDistribution 52 * Normalizing factor used in density computations. updated whenever alpha or beta are changed. 69 * @param beta Second shape parameter (must be positive). 71 public BetaDistribution(double alpha, double beta) { in BetaDistribution() argument [all …]
|
| D | GumbelDistribution.java | 9 * http://www.apache.org/licenses/LICENSE-2.0 43 * http://mathworld.wolfram.com/Euler-MascheroniConstantApproximations.html 51 private final double beta; field in GumbelDistribution 63 * @param beta scale parameter (must be positive) 64 * @throws NotStrictlyPositiveException if {@code beta <= 0} 66 public GumbelDistribution(double mu, double beta) { in GumbelDistribution() argument 67 this(new Well19937c(), mu, beta); in GumbelDistribution() 75 * @param beta scale parameter (must be positive) 76 * @throws NotStrictlyPositiveException if {@code beta <= 0} 78 public GumbelDistribution(RandomGenerator rng, double mu, double beta) { in GumbelDistribution() argument [all …]
|
| /external/apache-commons-math/src/main/java/org/apache/commons/math/distribution/ |
| D | BetaDistributionImpl.java | 9 * http://www.apache.org/licenses/LICENSE-2.0 23 import org.apache.commons.math.special.Beta; 27 * Implements the Beta distribution. 32 * Beta distribution</a></li> 35 * @version $Revision: 1054524 $ $Date: 2011-01-03 05:59:18 +0100 (lun. 03 janv. 2011) $ 45 public static final double DEFAULT_INVERSE_ABSOLUTE_ACCURACY = 1e-9; 48 private static final long serialVersionUID = -1221965979403477668L; 54 private double beta; field in BetaDistributionImpl 57 * updated whenever alpha or beta are changed. 67 * @param beta second shape parameter (must be positive) [all …]
|
| D | GammaDistributionImpl.java | 9 * http://www.apache.org/licenses/LICENSE-2.0 30 * @version $Revision: 1054524 $ $Date: 2011-01-03 05:59:18 +0100 (lun. 03 janv. 2011) $ 39 public static final double DEFAULT_INVERSE_ABSOLUTE_ACCURACY = 1e-9; 42 private static final long serialVersionUID = -3239549463135430361L; 48 private double beta; field in GammaDistributionImpl 54 * Create a new gamma distribution with the given alpha and beta values. 56 * @param beta the scale parameter. 58 public GammaDistributionImpl(double alpha, double beta) { in GammaDistributionImpl() argument 59 this(alpha, beta, DEFAULT_INVERSE_ABSOLUTE_ACCURACY); in GammaDistributionImpl() 63 * Create a new gamma distribution with the given alpha and beta values. [all …]
|
| /external/cblas/testing/ |
| D | c_d3chke.c | 22 cblas_ok = 0 ; in chkxer() 32 ALPHA=0.0, BETA=0.0; in F77_d3chke() local 46 if (strncmp( sf,"cblas_dgemm" ,11)==0) { in F77_d3chke() 50 cblas_dgemm( INVALID, CblasNoTrans, CblasNoTrans, 0, 0, 0, in F77_d3chke() 51 ALPHA, A, 1, B, 1, BETA, C, 1 ); in F77_d3chke() 54 cblas_dgemm( INVALID, CblasNoTrans, CblasTrans, 0, 0, 0, in F77_d3chke() 55 ALPHA, A, 1, B, 1, BETA, C, 1 ); in F77_d3chke() 58 cblas_dgemm( INVALID, CblasTrans, CblasNoTrans, 0, 0, 0, in F77_d3chke() 59 ALPHA, A, 1, B, 1, BETA, C, 1 ); in F77_d3chke() 62 cblas_dgemm( INVALID, CblasTrans, CblasTrans, 0, 0, 0, in F77_d3chke() [all …]
|
| D | c_s3chke.c | 22 cblas_ok = 0 ; in chkxer() 32 ALPHA=0.0, BETA=0.0; in F77_s3chke() local 46 if (strncmp( sf,"cblas_sgemm" ,11)==0) { in F77_s3chke() 49 cblas_sgemm( INVALID, CblasNoTrans, CblasNoTrans, 0, 0, 0, in F77_s3chke() 50 ALPHA, A, 1, B, 1, BETA, C, 1 ); in F77_s3chke() 53 cblas_sgemm( INVALID, CblasNoTrans, CblasTrans, 0, 0, 0, in F77_s3chke() 54 ALPHA, A, 1, B, 1, BETA, C, 1 ); in F77_s3chke() 57 cblas_sgemm( INVALID, CblasTrans, CblasNoTrans, 0, 0, 0, in F77_s3chke() 58 ALPHA, A, 1, B, 1, BETA, C, 1 ); in F77_s3chke() 61 cblas_sgemm( INVALID, CblasTrans, CblasTrans, 0, 0, 0, in F77_s3chke() [all …]
|
| D | c_c3chke.c | 22 cblas_ok = 0 ; in chkxer() 33 BETA[2] = {0.0,0.0}, in F77_c3chke() local 48 if (strncmp( sf,"cblas_cgemm" ,11)==0) { in F77_c3chke() 52 cblas_cgemm( INVALID, CblasNoTrans, CblasNoTrans, 0, 0, 0, in F77_c3chke() 53 ALPHA, A, 1, B, 1, BETA, C, 1 ); in F77_c3chke() 56 cblas_cgemm( INVALID, CblasNoTrans, CblasTrans, 0, 0, 0, in F77_c3chke() 57 ALPHA, A, 1, B, 1, BETA, C, 1 ); in F77_c3chke() 60 cblas_cgemm( INVALID, CblasTrans, CblasNoTrans, 0, 0, 0, in F77_c3chke() 61 ALPHA, A, 1, B, 1, BETA, C, 1 ); in F77_c3chke() 64 cblas_cgemm( INVALID, CblasTrans, CblasTrans, 0, 0, 0, in F77_c3chke() [all …]
|
| D | c_z3chke.c | 22 cblas_ok = 0 ; in chkxer() 33 BETA[2] = {0.0,0.0}, in F77_z3chke() local 48 if (strncmp( sf,"cblas_zgemm" ,11)==0) { in F77_z3chke() 52 cblas_zgemm( INVALID, CblasNoTrans, CblasNoTrans, 0, 0, 0, in F77_z3chke() 53 ALPHA, A, 1, B, 1, BETA, C, 1 ); in F77_z3chke() 56 cblas_zgemm( INVALID, CblasNoTrans, CblasTrans, 0, 0, 0, in F77_z3chke() 57 ALPHA, A, 1, B, 1, BETA, C, 1 ); in F77_z3chke() 60 cblas_zgemm( INVALID, CblasTrans, CblasNoTrans, 0, 0, 0, in F77_z3chke() 61 ALPHA, A, 1, B, 1, BETA, C, 1 ); in F77_z3chke() 64 cblas_zgemm( INVALID, CblasTrans, CblasTrans, 0, 0, 0, in F77_z3chke() [all …]
|
| /external/webrtc/third_party/abseil-cpp/absl/random/ |
| D | beta_distribution.h | 7 // https://www.apache.org/licenses/LICENSE-2.0 35 // Generate a floating-point variate conforming to a Beta distribution: 36 // pdf(x) \propto x^(alpha-1) * (1-x)^(beta-1), 37 // where the params alpha and beta are both strictly positive real values. 39 // The support is the open interval (0, 1), but the return value might be equal 40 // to 0 or 1, due to numerical errors when alpha and beta are very different. 42 // Usage note: One usage is that alpha and beta are counts of number of 44 // approximating a beta distribution with a Gaussian distribution with the same 46 // smaller of alpha and beta when the number of trials are sufficiently large, 47 // to quantify how far a beta distribution is from the normal distribution. [all …]
|
| /external/angle/third_party/abseil-cpp/absl/random/ |
| D | beta_distribution.h | 7 // https://www.apache.org/licenses/LICENSE-2.0 35 // Generate a floating-point variate conforming to a Beta distribution: 36 // pdf(x) \propto x^(alpha-1) * (1-x)^(beta-1), 37 // where the params alpha and beta are both strictly positive real values. 39 // The support is the open interval (0, 1), but the return value might be equal 40 // to 0 or 1, due to numerical errors when alpha and beta are very different. 42 // Usage note: One usage is that alpha and beta are counts of number of 44 // approximating a beta distribution with a Gaussian distribution with the same 46 // smaller of alpha and beta when the number of trials are sufficiently large, 47 // to quantify how far a beta distribution is from the normal distribution. [all …]
|
| /external/rust/crates/grpcio-sys/grpc/third_party/abseil-cpp/absl/random/ |
| D | beta_distribution.h | 7 // https://www.apache.org/licenses/LICENSE-2.0 35 // Generate a floating-point variate conforming to a Beta distribution: 36 // pdf(x) \propto x^(alpha-1) * (1-x)^(beta-1), 37 // where the params alpha and beta are both strictly positive real values. 39 // The support is the open interval (0, 1), but the return value might be equal 40 // to 0 or 1, due to numerical errors when alpha and beta are very different. 42 // Usage note: One usage is that alpha and beta are counts of number of 44 // approximating a beta distribution with a Gaussian distribution with the same 46 // smaller of alpha and beta when the number of trials are sufficiently large, 47 // to quantify how far a beta distribution is from the normal distribution. [all …]
|
| /external/openscreen/third_party/abseil/src/absl/random/ |
| D | beta_distribution.h | 7 // https://www.apache.org/licenses/LICENSE-2.0 35 // Generate a floating-point variate conforming to a Beta distribution: 36 // pdf(x) \propto x^(alpha-1) * (1-x)^(beta-1), 37 // where the params alpha and beta are both strictly positive real values. 39 // The support is the open interval (0, 1), but the return value might be equal 40 // to 0 or 1, due to numerical errors when alpha and beta are very different. 42 // Usage note: One usage is that alpha and beta are counts of number of 44 // approximating a beta distribution with a Gaussian distribution with the same 46 // smaller of alpha and beta when the number of trials are sufficiently large, 47 // to quantify how far a beta distribution is from the normal distribution. [all …]
|
| D | beta_distribution_test.cc | 7 // https://www.apache.org/licenses/LICENSE-2.0 54 std::exp(std::log((std::numeric_limits<TypeParam>::max)()) - in TYPED_TEST() 57 std::log((std::numeric_limits<TypeParam>::max)()) - in TYPED_TEST() 58 std::log(std::log((std::numeric_limits<TypeParam>::max)())) - 10.0f); in TYPED_TEST() 64 TypeParam(1e-20), TypeParam(1e-12), TypeParam(1e-8), TypeParam(1e-4), in TYPED_TEST() 65 TypeParam(1e-3), TypeParam(0.1), TypeParam(0.25), in TYPED_TEST() 66 std::nextafter(TypeParam(0.5), TypeParam(0)), // 0.5 - epsilon in TYPED_TEST() 69 std::nextafter(TypeParam(1), TypeParam(0)), // 1 - epsilon in TYPED_TEST() 74 std::nextafter(kSmallA, TypeParam(0)), // in TYPED_TEST() 77 std::nextafter(kLargeA, TypeParam(0)), // in TYPED_TEST() [all …]
|
| /external/cronet/third_party/abseil-cpp/absl/random/ |
| D | beta_distribution.h | 7 // https://www.apache.org/licenses/LICENSE-2.0 35 // Generate a floating-point variate conforming to a Beta distribution: 36 // pdf(x) \propto x^(alpha-1) * (1-x)^(beta-1), 37 // where the params alpha and beta are both strictly positive real values. 39 // The support is the open interval (0, 1), but the return value might be equal 40 // to 0 or 1, due to numerical errors when alpha and beta are very different. 42 // Usage note: One usage is that alpha and beta are counts of number of 44 // approximating a beta distribution with a Gaussian distribution with the same 46 // smaller of alpha and beta when the number of trials are sufficiently large, 47 // to quantify how far a beta distribution is from the normal distribution. [all …]
|
| /external/private-join-and-compute/third_party/abseil-cpp-20230125.2/absl/random/ |
| D | beta_distribution.h | 7 // https://www.apache.org/licenses/LICENSE-2.0 35 // Generate a floating-point variate conforming to a Beta distribution: 36 // pdf(x) \propto x^(alpha-1) * (1-x)^(beta-1), 37 // where the params alpha and beta are both strictly positive real values. 39 // The support is the open interval (0, 1), but the return value might be equal 40 // to 0 or 1, due to numerical errors when alpha and beta are very different. 42 // Usage note: One usage is that alpha and beta are counts of number of 44 // approximating a beta distribution with a Gaussian distribution with the same 46 // smaller of alpha and beta when the number of trials are sufficiently large, 47 // to quantify how far a beta distribution is from the normal distribution. [all …]
|
| /external/abseil-cpp/absl/random/ |
| D | beta_distribution.h | 7 // https://www.apache.org/licenses/LICENSE-2.0 35 // Generate a floating-point variate conforming to a Beta distribution: 36 // pdf(x) \propto x^(alpha-1) * (1-x)^(beta-1), 37 // where the params alpha and beta are both strictly positive real values. 39 // The support is the open interval (0, 1), but the return value might be equal 40 // to 0 or 1, due to numerical errors when alpha and beta are very different. 42 // Usage note: One usage is that alpha and beta are counts of number of 44 // approximating a beta distribution with a Gaussian distribution with the same 46 // smaller of alpha and beta when the number of trials are sufficiently large, 47 // to quantify how far a beta distribution is from the normal distribution. [all …]
|
| /external/tensorflow/third_party/absl/abseil-cpp/absl/random/ |
| D | beta_distribution.h | 7 // https://www.apache.org/licenses/LICENSE-2.0 35 // Generate a floating-point variate conforming to a Beta distribution: 36 // pdf(x) \propto x^(alpha-1) * (1-x)^(beta-1), 37 // where the params alpha and beta are both strictly positive real values. 39 // The support is the open interval (0, 1), but the return value might be equal 40 // to 0 or 1, due to numerical errors when alpha and beta are very different. 42 // Usage note: One usage is that alpha and beta are counts of number of 44 // approximating a beta distribution with a Gaussian distribution with the same 46 // smaller of alpha and beta when the number of trials are sufficiently large, 47 // to quantify how far a beta distribution is from the normal distribution. [all …]
|
| /external/libtextclassifier/abseil-cpp/absl/random/ |
| D | beta_distribution.h | 7 // https://www.apache.org/licenses/LICENSE-2.0 35 // Generate a floating-point variate conforming to a Beta distribution: 36 // pdf(x) \propto x^(alpha-1) * (1-x)^(beta-1), 37 // where the params alpha and beta are both strictly positive real values. 39 // The support is the open interval (0, 1), but the return value might be equal 40 // to 0 or 1, due to numerical errors when alpha and beta are very different. 42 // Usage note: One usage is that alpha and beta are counts of number of 44 // approximating a beta distribution with a Gaussian distribution with the same 46 // smaller of alpha and beta when the number of trials are sufficiently large, 47 // to quantify how far a beta distribution is from the normal distribution. [all …]
|
| /external/armnn/src/backends/backendsCommon/test/layerTests/ |
| D | SoftmaxTestImpl.cpp | 3 // SPDX-License-Identifier: MIT 63 float beta, in SimpleSoftmaxBaseTestImpl() argument 67 int axis = -1) in SimpleSoftmaxBaseTestImpl() 72 const int qOffset = 0; in SimpleSoftmaxBaseTestImpl() 94 data.m_Parameters.m_Beta = beta; in SimpleSoftmaxBaseTestImpl() 103 inputHandle->Allocate(); in SimpleSoftmaxBaseTestImpl() 104 outputHandle->Allocate(); in SimpleSoftmaxBaseTestImpl() 115 outputHandle->GetShape(), in SimpleSoftmaxBaseTestImpl() 124 float beta) in SimpleSoftmaxTestImpl() argument 129 float x0[4] = { exp((0.f - 1.0f) * beta), exp((1.0f - 1.0f) * beta), in SimpleSoftmaxTestImpl() [all …]
|
| /external/tensorflow/tensorflow/python/kernel_tests/distributions/ |
| D | beta_test.py | 7 # http://www.apache.org/licenses/LICENSE-2.0 26 from tensorflow.python.ops.distributions import beta as beta_lib 32 def try_import(name): # pylint: disable=invalid-name 51 dist = beta_lib.Beta(a, b) 60 dist = beta_lib.Beta(a, b) 69 dist = beta_lib.Beta(a, b) 78 dist = beta_lib.Beta(a, b) 85 dist = beta_lib.Beta(a, b) 92 dist = beta_lib.Beta(a, b, validate_args=True) 97 self.evaluate(dist.prob([-1., 0.1, 0.5])) [all …]
|
| /external/apache-commons-math/src/main/java/org/apache/commons/math3/random/ |
| D | StableRandomGenerator.java | 9 * http://www.apache.org/licenses/LICENSE-2.0 26 * with location parameter 0 and scale 1. 28 * <p>The implementation uses the Chambers-Mallows-Stuck method as described in <i>Handbook of 42 private final double beta; field in StableRandomGenerator 51 * @param alpha Stability parameter. Must be in range (0, 2] 52 * @param beta Skewness parameter. Must be in range [-1, 1] 54 * @throws OutOfRangeException if {@code alpha <= 0} or {@code alpha > 2} or {@code beta < -1} 55 * or {@code beta > 1} 58 final RandomGenerator generator, final double alpha, final double beta) in StableRandomGenerator() argument 64 if (!(alpha > 0d && alpha <= 2d)) { in StableRandomGenerator() [all …]
|
| /external/libavc/common/arm/ |
| D | ih264_deblk_chroma_a9.s | 9 @ * http://www.apache.org/licenses/LICENSE-2.0 47 @/* 05 01 2015 Kaushik Added double-call functions for */ 68 @* @param[in] r0 - pu1_src 71 @* @param[in] r1 - src_strd 74 @* @param[in] r2 - alpha 77 @* @param[in] r3 - beta 78 @* Beta Value for the boundary 94 vpush {d8 - d15} 105 vabd.u8 q13, q3, q2 @Q13 = ABS(p1 - p0) 108 vabd.u8 q11, q2, q0 @Q11 = ABS(p0 - q0) [all …]
|
| /external/eigen/lapack/ |
| D | zlarfg.f | 6 * http://www.netlib.org/lapack/explore-html/ 10 *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routin… 12 *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routin… 14 *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routin… 40 *> H**H * ( alpha ) = ( beta ), H**H * H = I. 41 *> ( x ) ( 0 ) 43 *> where alpha and beta are scalars, with beta real, and x is an 44 *> (n-1)-element complex vector. H is represented in the form 46 *> H = I - tau * ( 1 ) * ( 1 v**H ) , 49 *> where tau is a complex scalar and v is a complex (n-1)-element [all …]
|
| D | clarfg.f | 6 * http://www.netlib.org/lapack/explore-html/ 10 *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routin… 12 *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routin… 14 *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routin… 40 *> H**H * ( alpha ) = ( beta ), H**H * H = I. 41 *> ( x ) ( 0 ) 43 *> where alpha and beta are scalars, with beta real, and x is an 44 *> (n-1)-element complex vector. H is represented in the form 46 *> H = I - tau * ( 1 ) * ( 1 v**H ) , 49 *> where tau is a complex scalar and v is a complex (n-1)-element [all …]
|