1 /*
2 * Copyright 2023 Google LLC
3 *
4 * Use of this source code is governed by a BSD-style license that can be
5 * found in the LICENSE file.
6 */
7
8 #include "src/gpu/graphite/render/PerEdgeAAQuadRenderStep.h"
9
10 #include "src/base/SkVx.h"
11 #include "src/core/SkRRectPriv.h"
12 #include "src/gpu/graphite/DrawParams.h"
13 #include "src/gpu/graphite/DrawWriter.h"
14 #include "src/gpu/graphite/render/CommonDepthStencilSettings.h"
15
16 // This RenderStep is specialized to draw filled rectangles with per-edge AA.
17 //
18 // Each of these "primitives" is represented by a single instance. The instance attributes are
19 // flexible enough to describe per-edge AA quads without relying on uniforms to define its
20 // operation. The attributes encode shape as follows:
21 //
22 // float4 edgeFlags - per-edge AA defined by each component: aa != 0.
23 // float4 quadXs - these values provide the X coordinates of the quadrilateral in top-left CW order.
24 // float4 quadYs - these values provide the Y coordinates of the quadrilateral.
25 //
26 // From the other direction, per-edge AA quads produce instance values like:
27 // - [aa(t,r,b,l) ? 255 : 0] [xs(tl,tr,br,bl)] [ys(tl,tr,br,bl)]
28 //
29 // From this encoding, data can be unpacked for each corner, which are equivalent under
30 // rotational symmetry. Per-edge quads are always mitered and fill the interior, but the
31 // vertices are placed such that the edge coverage ramps can collapse to 0 area on non-AA edges.
32 //
33 // The vertices that describe each corner are placed so that edges and miters calculate
34 // coverage by interpolating a varying and then clamping in the fragment shader. Triangles that
35 // cover the inner and outer curves calculate distance to the curve within the fragment shader.
36 //
37 // See https://docs.google.com/presentation/d/1MCPstNsSlDBhR8CrsJo0r-cZNbu-sEJEvU9W94GOJoY/edit?usp=sharing
38 // for diagrams and explanation of how the geometry is defined.
39 //
40 // PerEdgeAAQuadRenderStep uses the common technique of approximating distance to the level set by
41 // one expansion of the Taylor's series for the level set's equation. Given a level set function
42 // C(x,y), this amounts to calculating C(px,py)/|∇C(px,py)|. For the straight edges the level set
43 // is linear and calculated in the vertex shader and then interpolated exactly over the rectangle.
44 // This provides distances to all four exterior edges within the fragment shader and allows it to
45 // reconstruct a relative position per elliptical corner. Unfortunately this requires the fragment
46 // shader to calculate the length of the gradient for straight edges instead of interpolating
47 // exact device-space distance.
48 //
49 // Unlike AnalyticRRectRenderStep, for per-edge AA quads it's valid to have each pixel calculate a
50 // single corner's coverage that's controlled via the vertex shader. Any bias is a constant 1/2,
51 // so this is also added in the vertex shader.
52 //
53 // Analytic derivatives are used so that a single pipeline can be used regardless of HW derivative
54 // support or for geometry that would prove difficult for forward differencing. The device-space
55 // gradient for ellipses is calculated per-pixel by transforming a per-pixel local gradient vector
56 // with the Jacobian of the inverse local-to-device transform:
57 //
58 // (px,py) is the projected point of (u,v) transformed by a 3x3 matrix, M:
59 // [x(u,v) / w(u,v)] [x] [m00 m01 m02] [u]
60 // (px,py) = [y(u,v) / w(u,v)] where [y] = [m10 m11 m12]X[v] = M*(u,v,1)
61 // [w] [m20 m21 m22] [1]
62 //
63 // C(px,py) can be defined in terms of a local Cl(u,v) as C(px,py) = Cl(p^-1(px,py)), where p^-1 =
64 //
65 // [x'(px,py) / w'(px,py)] [x'] [m00' m01' * m02'] [px]
66 // (u,v) = [y'(px,py) / w'(px,py)] where [y'] = [m10' m11' * m12']X[py] = M^-1*(px,py,0,1)
67 // [w'] [m20' m21' * m22'] [ 1]
68 //
69 // Note that if the 3x3 M was arrived by dropping the 3rd row and column from a 4x4 since we assume
70 // a local 3rd coordinate of 0, M^-1 is not equal to the 4x4 inverse with dropped rows and columns.
71 //
72 // Using the chain rule, then ∇C(px,py)
73 // = ∇Cl(u,v)X[1/w'(px,py) 0 -x'(px,py)/w'(px,py)^2] [m00' m01']
74 // [ 0 1/w'(px,py) -y'(px,py)/w'(px,py)^2]X[m10' m11']
75 // [m20' m21']
76 //
77 // = 1/w'(px,py)*∇Cl(u,v)X[1 0 -x'(px,py)/w'(px,py)] [m00' m01']
78 // [0 1 -y'(px,py)/w'(px,py)]X[m10' m11']
79 // [m20' m21']
80 //
81 // = w(u,v)*∇Cl(u,v)X[1 0 0 -u] [m00' m01']
82 // [0 1 0 -v]X[m10' m11']
83 // [m20' m21']
84 //
85 // = w(u,v)*∇Cl(u,v)X[m00'-m20'u m01'-m21'u]
86 // [m10'-m20'v m11'-m21'v]
87 //
88 // The vertex shader calculates the rightmost 2x2 matrix and interpolates it across the shape since
89 // each component is linear in (u,v). ∇Cl(u,v) is evaluated per pixel in the fragment shader and
90 // depends on which corner and edge being evaluated. w(u,v) is the device-space W coordinate, so
91 // its reciprocal is provided in sk_FragCoord.w.
92 namespace skgpu::graphite {
93
94 using AAFlags = EdgeAAQuad::Flags;
95
is_clockwise(const EdgeAAQuad & quad)96 static bool is_clockwise(const EdgeAAQuad& quad) {
97 if (quad.isRect()) {
98 return true; // by construction, these are always locally clockwise
99 }
100
101 // This assumes that each corner has a consistent winding, which is the case for convex inputs,
102 // which is an assumption of the per-edge AA API. Check the sign of cross product between the
103 // first two edges.
104 const skvx::float4& xs = quad.xs();
105 const skvx::float4& ys = quad.ys();
106
107 float winding = (xs[0] - xs[3])*(ys[1] - ys[0]) - (ys[0] - ys[3])*(xs[1] - xs[0]);
108 if (winding == 0.f) {
109 // The input possibly forms a triangle with duplicate vertices, so check the opposite corner
110 winding = (xs[2] - xs[1])*(ys[3] - ys[2]) - (ys[2] - ys[1])*(xs[3] - xs[2]);
111 }
112
113 // At this point if winding is < 0, the quad's vertices are CCW. If it's still 0, the vertices
114 // form a line, in which case the vertex shader constructs a correct CW winding. Otherwise,
115 // the quad or triangle vertices produce a positive winding and are CW.
116 return winding >= 0.f;
117 }
118
119 // Represents the per-vertex attributes used in each instance.
120 struct Vertex {
121 SkV2 fNormal;
122 };
123
124 // Allowed values for the center weight instance value (selected at record time based on style
125 // and transform), and are defined such that when (insance-weight > vertex-weight) is true, the
126 // vertex should be snapped to the center instead of its regular calculation.
127 static constexpr int kCornerVertexCount = 4; // sk_VertexID is divided by this in SkSL
128 static constexpr int kVertexCount = 4 * kCornerVertexCount;
129 static constexpr int kIndexCount = 29;
130
write_index_buffer(VertexWriter writer)131 static void write_index_buffer(VertexWriter writer) {
132 static constexpr uint16_t kTL = 0 * kCornerVertexCount;
133 static constexpr uint16_t kTR = 1 * kCornerVertexCount;
134 static constexpr uint16_t kBR = 2 * kCornerVertexCount;
135 static constexpr uint16_t kBL = 3 * kCornerVertexCount;
136
137 static const uint16_t kIndices[kIndexCount] = {
138 // Exterior AA ramp outset
139 kTL+1,kTL+2,kTL+3,kTR+0,kTR+3,kTR+1,
140 kTR+1,kTR+2,kTR+3,kBR+0,kBR+3,kBR+1,
141 kBR+1,kBR+2,kBR+3,kBL+0,kBL+3,kBL+1,
142 kBL+1,kBL+2,kBL+3,kTL+0,kTL+3,kTL+1,
143 kTL+3,
144 // Fill triangles
145 kTL+3,kTR+3,kBL+3,kBR+3
146 };
147
148 if (writer) {
149 writer << kIndices;
150 } // otherwise static buffer creation failed, so do nothing; Context initialization will fail.
151 }
152
write_vertex_buffer(VertexWriter writer)153 static void write_vertex_buffer(VertexWriter writer) {
154 static constexpr float kHR2 = 0.5f * SK_FloatSqrt2; // "half root 2"
155
156 // This template is repeated 4 times in the vertex buffer, for each of the four corners.
157 // The vertex ID is used to lookup per-corner instance properties such as positions,
158 // but otherwise this vertex data produces a consistent clockwise mesh from
159 // TL -> TR -> BR -> BL.
160 static constexpr Vertex kCornerTemplate[kCornerVertexCount] = {
161 // Normals for device-space AA outsets from outer curve
162 { {1.0f, 0.0f} },
163 { {kHR2, kHR2} },
164 { {0.0f, 1.0f} },
165
166 // Normal for outer anchor (zero length to signal no local or device-space normal outset)
167 { {0.0f, 0.0f} },
168 };
169
170 if (writer) {
171 writer << kCornerTemplate // TL
172 << kCornerTemplate // TR
173 << kCornerTemplate // BR
174 << kCornerTemplate; // BL
175 } // otherwise static buffer creation failed, so do nothing; Context initialization will fail.
176 }
177
PerEdgeAAQuadRenderStep(StaticBufferManager * bufferManager)178 PerEdgeAAQuadRenderStep::PerEdgeAAQuadRenderStep(StaticBufferManager* bufferManager)
179 : RenderStep("PerEdgeAAQuadRenderStep",
180 "",
181 Flags::kPerformsShading | Flags::kEmitsCoverage | Flags::kOutsetBoundsForAA,
182 /*uniforms=*/{},
183 PrimitiveType::kTriangleStrip,
184 kDirectDepthGreaterPass,
185 /*vertexAttrs=*/{
186 {"normal", VertexAttribType::kFloat2, SkSLType::kFloat2},
187 },
188 /*instanceAttrs=*/
189 {{"edgeFlags", VertexAttribType::kUByte4_norm, SkSLType::kFloat4},
190 {"quadXs", VertexAttribType::kFloat4, SkSLType::kFloat4},
191 {"quadYs", VertexAttribType::kFloat4, SkSLType::kFloat4},
192
193 // TODO: pack depth and ssbo index into one 32-bit attribute, if we can
194 // go without needing both render step and paint ssbo index attributes.
195 {"depth", VertexAttribType::kFloat, SkSLType::kFloat},
196 {"ssboIndices", VertexAttribType::kUShort2, SkSLType::kUShort2},
197
198 {"mat0", VertexAttribType::kFloat3, SkSLType::kFloat3},
199 {"mat1", VertexAttribType::kFloat3, SkSLType::kFloat3},
200 {"mat2", VertexAttribType::kFloat3, SkSLType::kFloat3}},
201 /*varyings=*/{
202 // Device-space distance to LTRB edges of quad.
203 {"edgeDistances", SkSLType::kFloat4}, // distance to LTRB edges
204 }) {
205 // Initialize the static buffers we'll use when recording draw calls.
206 // NOTE: Each instance of this RenderStep gets its own copy of the data. Since there should only
207 // ever be one PerEdgeAAQuadRenderStep at a time, this shouldn't be an issue.
208 write_vertex_buffer(bufferManager->getVertexWriter(sizeof(Vertex) * kVertexCount,
209 &fVertexBuffer));
210 write_index_buffer(bufferManager->getIndexWriter(sizeof(uint16_t) * kIndexCount,
211 &fIndexBuffer));
212 }
213
~PerEdgeAAQuadRenderStep()214 PerEdgeAAQuadRenderStep::~PerEdgeAAQuadRenderStep() {}
215
vertexSkSL() const216 std::string PerEdgeAAQuadRenderStep::vertexSkSL() const {
217 // Returns the body of a vertex function, which must define a float4 devPosition variable and
218 // must write to an already-defined float2 stepLocalCoords variable.
219 return "float4 devPosition = per_edge_aa_quad_vertex_fn("
220 // Vertex Attributes
221 "normal, "
222 // Instance Attributes
223 "edgeFlags, quadXs, quadYs, depth, "
224 "float3x3(mat0, mat1, mat2), "
225 // Varyings
226 "edgeDistances, "
227 // Render Step
228 "stepLocalCoords);\n";
229 }
230
fragmentCoverageSkSL() const231 const char* PerEdgeAAQuadRenderStep::fragmentCoverageSkSL() const {
232 // The returned SkSL must write its coverage into a 'half4 outputCoverage' variable (defined in
233 // the calling code) with the actual coverage splatted out into all four channels.
234 return "outputCoverage = per_edge_aa_quad_coverage_fn(sk_FragCoord, edgeDistances);";
235 }
236
writeVertices(DrawWriter * writer,const DrawParams & params,skvx::ushort2 ssboIndices) const237 void PerEdgeAAQuadRenderStep::writeVertices(DrawWriter* writer,
238 const DrawParams& params,
239 skvx::ushort2 ssboIndices) const {
240 SkASSERT(params.geometry().isEdgeAAQuad());
241 const EdgeAAQuad& quad = params.geometry().edgeAAQuad();
242
243 DrawWriter::Instances instance{*writer, fVertexBuffer, fIndexBuffer, kIndexCount};
244 auto vw = instance.append(1);
245
246 // Empty fills should not have been recorded at all.
247 SkDEBUGCODE(Rect bounds = params.geometry().bounds());
248 SkASSERT(!bounds.isEmptyNegativeOrNaN());
249
250 constexpr uint8_t kAAOn = 255;
251 constexpr uint8_t kAAOff = 0;
252 auto edgeSigns = skvx::byte4{quad.edgeFlags() & AAFlags::kLeft ? kAAOn : kAAOff,
253 quad.edgeFlags() & AAFlags::kTop ? kAAOn : kAAOff,
254 quad.edgeFlags() & AAFlags::kRight ? kAAOn : kAAOff,
255 quad.edgeFlags() & AAFlags::kBottom ? kAAOn : kAAOff};
256
257 // The vertex shader expects points to be in clockwise order. EdgeAAQuad is the only
258 // shape that *might* have counter-clockwise input.
259 if (is_clockwise(quad)) {
260 vw << edgeSigns << quad.xs() << quad.ys();
261 } else {
262 vw << skvx::shuffle<2,1,0,3>(edgeSigns) // swap left and right AA bits
263 << skvx::shuffle<1,0,3,2>(quad.xs()) // swap TL with TR, and BL with BR
264 << skvx::shuffle<1,0,3,2>(quad.ys()); // ""
265 }
266
267 // All instance types share the remaining instance attribute definitions
268 const SkM44& m = params.transform().matrix();
269
270 vw << params.order().depthAsFloat()
271 << ssboIndices
272 << m.rc(0,0) << m.rc(1,0) << m.rc(3,0) // mat0
273 << m.rc(0,1) << m.rc(1,1) << m.rc(3,1) // mat1
274 << m.rc(0,3) << m.rc(1,3) << m.rc(3,3); // mat2
275 }
276
writeUniformsAndTextures(const DrawParams &,PipelineDataGatherer *) const277 void PerEdgeAAQuadRenderStep::writeUniformsAndTextures(const DrawParams&,
278 PipelineDataGatherer*) const {
279 // All data is uploaded as instance attributes, so no uniforms are needed.
280 }
281
282 } // namespace skgpu::graphite
283