• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright 2023 Google LLC
3  *
4  * Use of this source code is governed by a BSD-style license that can be
5  * found in the LICENSE file.
6  */
7 
8 #include "src/gpu/graphite/render/PerEdgeAAQuadRenderStep.h"
9 
10 #include "src/base/SkVx.h"
11 #include "src/core/SkRRectPriv.h"
12 #include "src/gpu/graphite/DrawParams.h"
13 #include "src/gpu/graphite/DrawWriter.h"
14 #include "src/gpu/graphite/render/CommonDepthStencilSettings.h"
15 
16 // This RenderStep is specialized to draw filled rectangles with per-edge AA.
17 //
18 // Each of these "primitives" is represented by a single instance. The instance attributes are
19 // flexible enough to describe per-edge AA quads without relying on uniforms to define its
20 // operation. The attributes encode shape as follows:
21 //
22 // float4 edgeFlags - per-edge AA defined by each component: aa != 0.
23 // float4 quadXs - these values provide the X coordinates of the quadrilateral in top-left CW order.
24 // float4 quadYs - these values provide the Y coordinates of the quadrilateral.
25 //
26 // From the other direction, per-edge AA quads produce instance values like:
27 //  - [aa(t,r,b,l) ? 255 : 0]   [xs(tl,tr,br,bl)]     [ys(tl,tr,br,bl)]
28 //
29 // From this encoding, data can be unpacked for each corner, which are equivalent under
30 // rotational symmetry. Per-edge quads are always mitered and fill the interior, but the
31 // vertices are placed such that the edge coverage ramps can collapse to 0 area on non-AA edges.
32 //
33 // The vertices that describe each corner are placed so that edges and miters calculate
34 // coverage by interpolating a varying and then clamping in the fragment shader. Triangles that
35 // cover the inner and outer curves calculate distance to the curve within the fragment shader.
36 //
37 // See https://docs.google.com/presentation/d/1MCPstNsSlDBhR8CrsJo0r-cZNbu-sEJEvU9W94GOJoY/edit?usp=sharing
38 // for diagrams and explanation of how the geometry is defined.
39 //
40 // PerEdgeAAQuadRenderStep uses the common technique of approximating distance to the level set by
41 // one expansion of the Taylor's series for the level set's equation. Given a level set function
42 // C(x,y), this amounts to calculating C(px,py)/|∇C(px,py)|. For the straight edges the level set
43 // is linear and calculated in the vertex shader and then interpolated exactly over the rectangle.
44 // This provides distances to all four exterior edges within the fragment shader and allows it to
45 // reconstruct a relative position per elliptical corner. Unfortunately this requires the fragment
46 // shader to calculate the length of the gradient for straight edges instead of interpolating
47 // exact device-space distance.
48 //
49 // Unlike AnalyticRRectRenderStep, for per-edge AA quads it's valid to have each pixel calculate a
50 // single corner's coverage that's controlled via the vertex shader. Any bias is a constant 1/2,
51 // so this is also added in the vertex shader.
52 //
53 // Analytic derivatives are used so that a single pipeline can be used regardless of HW derivative
54 // support or for geometry that would prove difficult for forward differencing. The device-space
55 // gradient for ellipses is calculated per-pixel by transforming a per-pixel local gradient vector
56 // with the Jacobian of the inverse local-to-device transform:
57 //
58 // (px,py) is the projected point of (u,v) transformed by a 3x3 matrix, M:
59 //                [x(u,v) / w(u,v)]       [x]   [m00 m01 m02] [u]
60 //      (px,py) = [y(u,v) / w(u,v)] where [y] = [m10 m11 m12]X[v] = M*(u,v,1)
61 //                                        [w]   [m20 m21 m22] [1]
62 //
63 // C(px,py) can be defined in terms of a local Cl(u,v) as C(px,py) = Cl(p^-1(px,py)), where p^-1 =
64 //
65 //               [x'(px,py) / w'(px,py)]       [x']   [m00' m01' * m02'] [px]
66 //      (u,v) =  [y'(px,py) / w'(px,py)] where [y'] = [m10' m11' * m12']X[py] = M^-1*(px,py,0,1)
67 //                                             [w']   [m20' m21' * m22'] [ 1]
68 //
69 // Note that if the 3x3 M was arrived by dropping the 3rd row and column from a 4x4 since we assume
70 // a local 3rd coordinate of 0, M^-1 is not equal to the 4x4 inverse with dropped rows and columns.
71 //
72 // Using the chain rule, then ∇C(px,py)
73 //   =  ∇Cl(u,v)X[1/w'(px,py)     0       -x'(px,py)/w'(px,py)^2] [m00' m01']
74 //               [    0       1/w'(px,py) -y'(px,py)/w'(px,py)^2]X[m10' m11']
75 //                                                                [m20' m21']
76 //
77 //   = 1/w'(px,py)*∇Cl(u,v)X[1 0 -x'(px,py)/w'(px,py)] [m00' m01']
78 //                          [0 1 -y'(px,py)/w'(px,py)]X[m10' m11']
79 //                                                     [m20' m21']
80 //
81 //   = w(u,v)*∇Cl(u,v)X[1 0 0 -u] [m00' m01']
82 //                     [0 1 0 -v]X[m10' m11']
83 //                                [m20' m21']
84 //
85 //   = w(u,v)*∇Cl(u,v)X[m00'-m20'u m01'-m21'u]
86 //                     [m10'-m20'v m11'-m21'v]
87 //
88 // The vertex shader calculates the rightmost 2x2 matrix and interpolates it across the shape since
89 // each component is linear in (u,v). ∇Cl(u,v) is evaluated per pixel in the fragment shader and
90 // depends on which corner and edge being evaluated. w(u,v) is the device-space W coordinate, so
91 // its reciprocal is provided in sk_FragCoord.w.
92 namespace skgpu::graphite {
93 
94 using AAFlags = EdgeAAQuad::Flags;
95 
is_clockwise(const EdgeAAQuad & quad)96 static bool is_clockwise(const EdgeAAQuad& quad) {
97     if (quad.isRect()) {
98         return true; // by construction, these are always locally clockwise
99     }
100 
101     // This assumes that each corner has a consistent winding, which is the case for convex inputs,
102     // which is an assumption of the per-edge AA API. Check the sign of cross product between the
103     // first two edges.
104     const skvx::float4& xs = quad.xs();
105     const skvx::float4& ys = quad.ys();
106 
107     float winding = (xs[0] - xs[3])*(ys[1] - ys[0]) - (ys[0] - ys[3])*(xs[1] - xs[0]);
108     if (winding == 0.f) {
109         // The input possibly forms a triangle with duplicate vertices, so check the opposite corner
110         winding = (xs[2] - xs[1])*(ys[3] - ys[2]) - (ys[2] - ys[1])*(xs[3] - xs[2]);
111     }
112 
113     // At this point if winding is < 0, the quad's vertices are CCW. If it's still 0, the vertices
114     // form a line, in which case the vertex shader constructs a correct CW winding. Otherwise,
115     // the quad or triangle vertices produce a positive winding and are CW.
116     return winding >= 0.f;
117 }
118 
119 // Represents the per-vertex attributes used in each instance.
120 struct Vertex {
121     SkV2 fNormal;
122 };
123 
124 // Allowed values for the center weight instance value (selected at record time based on style
125 // and transform), and are defined such that when (insance-weight > vertex-weight) is true, the
126 // vertex should be snapped to the center instead of its regular calculation.
127 static constexpr int kCornerVertexCount = 4; // sk_VertexID is divided by this in SkSL
128 static constexpr int kVertexCount = 4 * kCornerVertexCount;
129 static constexpr int kIndexCount = 29;
130 
write_index_buffer(VertexWriter writer)131 static void write_index_buffer(VertexWriter writer) {
132     static constexpr uint16_t kTL = 0 * kCornerVertexCount;
133     static constexpr uint16_t kTR = 1 * kCornerVertexCount;
134     static constexpr uint16_t kBR = 2 * kCornerVertexCount;
135     static constexpr uint16_t kBL = 3 * kCornerVertexCount;
136 
137     static const uint16_t kIndices[kIndexCount] = {
138         // Exterior AA ramp outset
139         kTL+1,kTL+2,kTL+3,kTR+0,kTR+3,kTR+1,
140         kTR+1,kTR+2,kTR+3,kBR+0,kBR+3,kBR+1,
141         kBR+1,kBR+2,kBR+3,kBL+0,kBL+3,kBL+1,
142         kBL+1,kBL+2,kBL+3,kTL+0,kTL+3,kTL+1,
143         kTL+3,
144         // Fill triangles
145         kTL+3,kTR+3,kBL+3,kBR+3
146     };
147 
148     if (writer) {
149         writer << kIndices;
150     } // otherwise static buffer creation failed, so do nothing; Context initialization will fail.
151 }
152 
write_vertex_buffer(VertexWriter writer)153 static void write_vertex_buffer(VertexWriter writer) {
154     static constexpr float kHR2 = 0.5f * SK_FloatSqrt2; // "half root 2"
155 
156     // This template is repeated 4 times in the vertex buffer, for each of the four corners.
157     // The vertex ID is used to lookup per-corner instance properties such as positions,
158     // but otherwise this vertex data produces a consistent clockwise mesh from
159     // TL -> TR -> BR -> BL.
160     static constexpr Vertex kCornerTemplate[kCornerVertexCount] = {
161         // Normals for device-space AA outsets from outer curve
162         { {1.0f, 0.0f} },
163         { {kHR2, kHR2} },
164         { {0.0f, 1.0f} },
165 
166         // Normal for outer anchor (zero length to signal no local or device-space normal outset)
167         { {0.0f, 0.0f} },
168     };
169 
170     if (writer) {
171         writer << kCornerTemplate  // TL
172                << kCornerTemplate  // TR
173                << kCornerTemplate  // BR
174                << kCornerTemplate; // BL
175     } // otherwise static buffer creation failed, so do nothing; Context initialization will fail.
176 }
177 
PerEdgeAAQuadRenderStep(StaticBufferManager * bufferManager)178 PerEdgeAAQuadRenderStep::PerEdgeAAQuadRenderStep(StaticBufferManager* bufferManager)
179         : RenderStep("PerEdgeAAQuadRenderStep",
180                      "",
181                      Flags::kPerformsShading | Flags::kEmitsCoverage | Flags::kOutsetBoundsForAA,
182                      /*uniforms=*/{},
183                      PrimitiveType::kTriangleStrip,
184                      kDirectDepthGreaterPass,
185                      /*vertexAttrs=*/{
186                             {"normal", VertexAttribType::kFloat2, SkSLType::kFloat2},
187                      },
188                      /*instanceAttrs=*/
189                             {{"edgeFlags", VertexAttribType::kUByte4_norm, SkSLType::kFloat4},
190                              {"quadXs", VertexAttribType::kFloat4, SkSLType::kFloat4},
191                              {"quadYs", VertexAttribType::kFloat4, SkSLType::kFloat4},
192 
193                              // TODO: pack depth and ssbo index into one 32-bit attribute, if we can
194                              // go without needing both render step and paint ssbo index attributes.
195                              {"depth", VertexAttribType::kFloat, SkSLType::kFloat},
196                              {"ssboIndices", VertexAttribType::kUShort2, SkSLType::kUShort2},
197 
198                              {"mat0", VertexAttribType::kFloat3, SkSLType::kFloat3},
199                              {"mat1", VertexAttribType::kFloat3, SkSLType::kFloat3},
200                              {"mat2", VertexAttribType::kFloat3, SkSLType::kFloat3}},
201                      /*varyings=*/{
202                              // Device-space distance to LTRB edges of quad.
203                              {"edgeDistances", SkSLType::kFloat4}, // distance to LTRB edges
204                      }) {
205     // Initialize the static buffers we'll use when recording draw calls.
206     // NOTE: Each instance of this RenderStep gets its own copy of the data. Since there should only
207     // ever be one PerEdgeAAQuadRenderStep at a time, this shouldn't be an issue.
208     write_vertex_buffer(bufferManager->getVertexWriter(sizeof(Vertex) * kVertexCount,
209                                                        &fVertexBuffer));
210     write_index_buffer(bufferManager->getIndexWriter(sizeof(uint16_t) * kIndexCount,
211                                                      &fIndexBuffer));
212 }
213 
~PerEdgeAAQuadRenderStep()214 PerEdgeAAQuadRenderStep::~PerEdgeAAQuadRenderStep() {}
215 
vertexSkSL() const216 std::string PerEdgeAAQuadRenderStep::vertexSkSL() const {
217     // Returns the body of a vertex function, which must define a float4 devPosition variable and
218     // must write to an already-defined float2 stepLocalCoords variable.
219     return "float4 devPosition = per_edge_aa_quad_vertex_fn("
220                    // Vertex Attributes
221                    "normal, "
222                    // Instance Attributes
223                    "edgeFlags, quadXs, quadYs, depth, "
224                    "float3x3(mat0, mat1, mat2), "
225                    // Varyings
226                    "edgeDistances, "
227                    // Render Step
228                    "stepLocalCoords);\n";
229 }
230 
fragmentCoverageSkSL() const231 const char* PerEdgeAAQuadRenderStep::fragmentCoverageSkSL() const {
232     // The returned SkSL must write its coverage into a 'half4 outputCoverage' variable (defined in
233     // the calling code) with the actual coverage splatted out into all four channels.
234     return "outputCoverage = per_edge_aa_quad_coverage_fn(sk_FragCoord, edgeDistances);";
235 }
236 
writeVertices(DrawWriter * writer,const DrawParams & params,skvx::ushort2 ssboIndices) const237 void PerEdgeAAQuadRenderStep::writeVertices(DrawWriter* writer,
238                                            const DrawParams& params,
239                                            skvx::ushort2 ssboIndices) const {
240     SkASSERT(params.geometry().isEdgeAAQuad());
241     const EdgeAAQuad& quad = params.geometry().edgeAAQuad();
242 
243     DrawWriter::Instances instance{*writer, fVertexBuffer, fIndexBuffer, kIndexCount};
244     auto vw = instance.append(1);
245 
246     // Empty fills should not have been recorded at all.
247     SkDEBUGCODE(Rect bounds = params.geometry().bounds());
248     SkASSERT(!bounds.isEmptyNegativeOrNaN());
249 
250     constexpr uint8_t kAAOn = 255;
251     constexpr uint8_t kAAOff = 0;
252     auto edgeSigns = skvx::byte4{quad.edgeFlags() & AAFlags::kLeft   ? kAAOn : kAAOff,
253                                  quad.edgeFlags() & AAFlags::kTop    ? kAAOn : kAAOff,
254                                  quad.edgeFlags() & AAFlags::kRight  ? kAAOn : kAAOff,
255                                  quad.edgeFlags() & AAFlags::kBottom ? kAAOn : kAAOff};
256 
257     // The vertex shader expects points to be in clockwise order. EdgeAAQuad is the only
258     // shape that *might* have counter-clockwise input.
259     if (is_clockwise(quad)) {
260         vw << edgeSigns << quad.xs() << quad.ys();
261     } else {
262         vw << skvx::shuffle<2,1,0,3>(edgeSigns)  // swap left and right AA bits
263            << skvx::shuffle<1,0,3,2>(quad.xs())  // swap TL with TR, and BL with BR
264            << skvx::shuffle<1,0,3,2>(quad.ys()); //   ""
265     }
266 
267     // All instance types share the remaining instance attribute definitions
268     const SkM44& m = params.transform().matrix();
269 
270     vw << params.order().depthAsFloat()
271        << ssboIndices
272        << m.rc(0,0) << m.rc(1,0) << m.rc(3,0)  // mat0
273        << m.rc(0,1) << m.rc(1,1) << m.rc(3,1)  // mat1
274        << m.rc(0,3) << m.rc(1,3) << m.rc(3,3); // mat2
275 }
276 
writeUniformsAndTextures(const DrawParams &,PipelineDataGatherer *) const277 void PerEdgeAAQuadRenderStep::writeUniformsAndTextures(const DrawParams&,
278                                                        PipelineDataGatherer*) const {
279     // All data is uploaded as instance attributes, so no uniforms are needed.
280 }
281 
282 }  // namespace skgpu::graphite
283