1 /*
2 * Copyright (C) 2011 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17 #ifndef ART_RUNTIME_GC_SPACE_SPACE_TEST_H_
18 #define ART_RUNTIME_GC_SPACE_SPACE_TEST_H_
19
20 #include <stdint.h>
21 #include <memory>
22
23 #include "common_runtime_test.h"
24 #include "handle_scope-inl.h"
25 #include "mirror/array-inl.h"
26 #include "mirror/class-inl.h"
27 #include "mirror/class_loader.h"
28 #include "mirror/object-inl.h"
29 #include "runtime_globals.h"
30 #include "scoped_thread_state_change-inl.h"
31 #include "thread_list.h"
32 #include "zygote_space.h"
33
34 namespace art HIDDEN {
35 namespace gc {
36 namespace space {
37
38 template <class Super>
39 class SpaceTest : public Super {
40 public:
41 jobject byte_array_class_ = nullptr;
42
43 void AddSpace(ContinuousSpace* space, bool revoke = true) {
44 Heap* heap = Runtime::Current()->GetHeap();
45 if (revoke) {
46 heap->RevokeAllThreadLocalBuffers();
47 }
48 {
49 ScopedThreadStateChange sts(Thread::Current(), ThreadState::kSuspended);
50 ScopedSuspendAll ssa("Add image space");
51 heap->AddSpace(space);
52 }
53 heap->SetSpaceAsDefault(space);
54 }
55
GetByteArrayClass(Thread * self)56 ObjPtr<mirror::Class> GetByteArrayClass(Thread* self) REQUIRES_SHARED(Locks::mutator_lock_) {
57 if (byte_array_class_ == nullptr) {
58 ObjPtr<mirror::Class> byte_array_class =
59 Runtime::Current()->GetClassLinker()->FindSystemClass(self, "[B");
60 EXPECT_TRUE(byte_array_class != nullptr);
61 byte_array_class_ = self->GetJniEnv()->NewLocalRef(byte_array_class.Ptr());
62 EXPECT_TRUE(byte_array_class_ != nullptr);
63 }
64 return self->DecodeJObject(byte_array_class_)->AsClass();
65 }
66
Alloc(space::MallocSpace * alloc_space,Thread * self,size_t bytes,size_t * bytes_allocated,size_t * usable_size,size_t * bytes_tl_bulk_allocated)67 mirror::Object* Alloc(space::MallocSpace* alloc_space,
68 Thread* self,
69 size_t bytes,
70 size_t* bytes_allocated,
71 size_t* usable_size,
72 size_t* bytes_tl_bulk_allocated)
73 REQUIRES_SHARED(Locks::mutator_lock_) {
74 StackHandleScope<1> hs(self);
75 Handle<mirror::Class> byte_array_class(hs.NewHandle(GetByteArrayClass(self)));
76 mirror::Object* obj = alloc_space->Alloc(self,
77 bytes,
78 bytes_allocated,
79 usable_size,
80 bytes_tl_bulk_allocated);
81 if (obj != nullptr) {
82 InstallClass(obj, byte_array_class.Get(), bytes);
83 }
84 return obj;
85 }
86
AllocWithGrowth(space::MallocSpace * alloc_space,Thread * self,size_t bytes,size_t * bytes_allocated,size_t * usable_size,size_t * bytes_tl_bulk_allocated)87 mirror::Object* AllocWithGrowth(space::MallocSpace* alloc_space,
88 Thread* self,
89 size_t bytes,
90 size_t* bytes_allocated,
91 size_t* usable_size,
92 size_t* bytes_tl_bulk_allocated)
93 REQUIRES_SHARED(Locks::mutator_lock_) {
94 StackHandleScope<1> hs(self);
95 Handle<mirror::Class> byte_array_class(hs.NewHandle(GetByteArrayClass(self)));
96 mirror::Object* obj = alloc_space->AllocWithGrowth(self, bytes, bytes_allocated, usable_size,
97 bytes_tl_bulk_allocated);
98 if (obj != nullptr) {
99 InstallClass(obj, byte_array_class.Get(), bytes);
100 }
101 return obj;
102 }
103
InstallClass(mirror::Object * o,mirror::Class * byte_array_class,size_t size)104 void InstallClass(mirror::Object* o, mirror::Class* byte_array_class, size_t size)
105 REQUIRES_SHARED(Locks::mutator_lock_) {
106 // Note the minimum size, which is the size of a zero-length byte array.
107 EXPECT_GE(size, SizeOfZeroLengthByteArray());
108 EXPECT_TRUE(byte_array_class != nullptr);
109 o->SetClass(byte_array_class);
110 if (kUseBakerReadBarrier) {
111 // Like the proper heap object allocation, install and verify
112 // the correct read barrier state.
113 o->AssertReadBarrierState();
114 }
115 ObjPtr<mirror::Array> arr = o->AsArray<kVerifyNone>();
116 size_t header_size = SizeOfZeroLengthByteArray();
117 int32_t length = size - header_size;
118 arr->SetLength(length);
119 EXPECT_EQ(arr->SizeOf<kVerifyNone>(), size);
120 }
121
SizeOfZeroLengthByteArray()122 static size_t SizeOfZeroLengthByteArray() {
123 return mirror::Array::DataOffset(Primitive::ComponentSize(Primitive::kPrimByte)).Uint32Value();
124 }
125
126 typedef MallocSpace* (*CreateSpaceFn)(const std::string& name,
127 size_t initial_size,
128 size_t growth_limit,
129 size_t capacity);
130
131 void SizeFootPrintGrowthLimitAndTrimBody(MallocSpace* space, intptr_t object_size,
132 int round, size_t growth_limit);
133 void SizeFootPrintGrowthLimitAndTrimDriver(size_t object_size, CreateSpaceFn create_space);
134 };
135
test_rand(size_t * seed)136 static inline size_t test_rand(size_t* seed) {
137 *seed = *seed * 1103515245 + 12345;
138 return *seed;
139 }
140
141 template <class Super>
SizeFootPrintGrowthLimitAndTrimBody(MallocSpace * space,intptr_t object_size,int round,size_t growth_limit)142 void SpaceTest<Super>::SizeFootPrintGrowthLimitAndTrimBody(MallocSpace* space,
143 intptr_t object_size,
144 int round,
145 size_t growth_limit) {
146 if (((object_size > 0 && object_size >= static_cast<intptr_t>(growth_limit))) ||
147 ((object_size < 0 && -object_size >= static_cast<intptr_t>(growth_limit)))) {
148 // No allocation can succeed
149 return;
150 }
151
152 // The space's footprint equals amount of resources requested from system
153 size_t footprint = space->GetFootprint();
154
155 // The space must at least have its book keeping allocated
156 EXPECT_GT(footprint, 0u);
157
158 // But it shouldn't exceed the initial size
159 EXPECT_LE(footprint, growth_limit);
160
161 // space's size shouldn't exceed the initial size
162 EXPECT_LE(space->Size(), growth_limit);
163
164 // this invariant should always hold or else the space has grown to be larger than what the
165 // space believes its size is (which will break invariants)
166 EXPECT_GE(space->Size(), footprint);
167
168 // Fill the space with lots of small objects up to the growth limit
169 size_t max_objects = (growth_limit / (object_size > 0 ? object_size : 8)) + 1;
170 std::unique_ptr<mirror::Object*[]> lots_of_objects(new mirror::Object*[max_objects]);
171 size_t last_object = 0; // last object for which allocation succeeded
172 size_t amount_allocated = 0; // amount of space allocated
173 Thread* self = Thread::Current();
174 ScopedObjectAccess soa(self);
175 size_t rand_seed = 123456789;
176 for (size_t i = 0; i < max_objects; i++) {
177 size_t alloc_fails = 0; // number of failed allocations
178 size_t max_fails = 30; // number of times we fail allocation before giving up
179 for (; alloc_fails < max_fails; alloc_fails++) {
180 size_t alloc_size;
181 if (object_size > 0) {
182 alloc_size = object_size;
183 } else {
184 alloc_size = test_rand(&rand_seed) % static_cast<size_t>(-object_size);
185 // Note the minimum size, which is the size of a zero-length byte array.
186 size_t size_of_zero_length_byte_array = SizeOfZeroLengthByteArray();
187 if (alloc_size < size_of_zero_length_byte_array) {
188 alloc_size = size_of_zero_length_byte_array;
189 }
190 }
191 StackHandleScope<1> hs(soa.Self());
192 auto object(hs.NewHandle<mirror::Object>(nullptr));
193 size_t bytes_allocated = 0;
194 size_t bytes_tl_bulk_allocated;
195 if (round <= 1) {
196 object.Assign(Alloc(space, self, alloc_size, &bytes_allocated, nullptr,
197 &bytes_tl_bulk_allocated));
198 } else {
199 object.Assign(AllocWithGrowth(space, self, alloc_size, &bytes_allocated, nullptr,
200 &bytes_tl_bulk_allocated));
201 }
202 footprint = space->GetFootprint();
203 EXPECT_GE(space->Size(), footprint); // invariant
204 if (object != nullptr) { // allocation succeeded
205 lots_of_objects[i] = object.Get();
206 size_t allocation_size = space->AllocationSize(object.Get(), nullptr);
207 EXPECT_EQ(bytes_allocated, allocation_size);
208 if (object_size > 0) {
209 EXPECT_GE(allocation_size, static_cast<size_t>(object_size));
210 } else {
211 EXPECT_GE(allocation_size, 8u);
212 }
213 EXPECT_TRUE(bytes_tl_bulk_allocated == 0 ||
214 bytes_tl_bulk_allocated >= allocation_size);
215 amount_allocated += allocation_size;
216 break;
217 }
218 }
219 if (alloc_fails == max_fails) {
220 last_object = i;
221 break;
222 }
223 }
224 CHECK_NE(last_object, 0u); // we should have filled the space
225 EXPECT_GT(amount_allocated, 0u);
226
227 // We shouldn't have gone past the growth_limit
228 EXPECT_LE(amount_allocated, growth_limit);
229 EXPECT_LE(footprint, growth_limit);
230 EXPECT_LE(space->Size(), growth_limit);
231
232 // footprint and size should agree with amount allocated
233 EXPECT_GE(footprint, amount_allocated);
234 EXPECT_GE(space->Size(), amount_allocated);
235
236 // Release storage in a semi-adhoc manner
237 size_t free_increment = 96;
238 while (true) {
239 {
240 ScopedThreadStateChange tsc(self, ThreadState::kNative);
241 // Give the space a haircut.
242 space->Trim();
243 }
244
245 // Bounds consistency check.
246 footprint = space->GetFootprint();
247 EXPECT_LE(amount_allocated, growth_limit);
248 EXPECT_GE(footprint, amount_allocated);
249 EXPECT_LE(footprint, growth_limit);
250 EXPECT_GE(space->Size(), amount_allocated);
251 EXPECT_LE(space->Size(), growth_limit);
252
253 if (free_increment == 0) {
254 break;
255 }
256
257 // Free some objects
258 for (size_t i = 0; i < last_object; i += free_increment) {
259 mirror::Object* object = lots_of_objects.get()[i];
260 if (object == nullptr) {
261 continue;
262 }
263 size_t allocation_size = space->AllocationSize(object, nullptr);
264 if (object_size > 0) {
265 EXPECT_GE(allocation_size, static_cast<size_t>(object_size));
266 } else {
267 EXPECT_GE(allocation_size, 8u);
268 }
269 space->Free(self, object);
270 lots_of_objects.get()[i] = nullptr;
271 amount_allocated -= allocation_size;
272 footprint = space->GetFootprint();
273 EXPECT_GE(space->Size(), footprint); // invariant
274 }
275
276 free_increment >>= 1;
277 }
278
279 // The space has become empty here before allocating a large object
280 // below. For RosAlloc, revoke thread-local runs, which are kept
281 // even when empty for a performance reason, so that they won't
282 // cause the following large object allocation to fail due to
283 // potential fragmentation. Note they are normally revoked at each
284 // GC (but no GC here.)
285 space->RevokeAllThreadLocalBuffers();
286
287 // All memory was released, try a large allocation to check freed memory is being coalesced
288 StackHandleScope<1> hs(soa.Self());
289 auto large_object(hs.NewHandle<mirror::Object>(nullptr));
290 size_t three_quarters_space = (growth_limit / 2) + (growth_limit / 4);
291 size_t bytes_allocated = 0;
292 size_t bytes_tl_bulk_allocated;
293 if (round <= 1) {
294 large_object.Assign(Alloc(space, self, three_quarters_space, &bytes_allocated, nullptr,
295 &bytes_tl_bulk_allocated));
296 } else {
297 large_object.Assign(AllocWithGrowth(space, self, three_quarters_space, &bytes_allocated,
298 nullptr, &bytes_tl_bulk_allocated));
299 }
300 EXPECT_TRUE(large_object != nullptr);
301
302 // Consistency check of the footprint.
303 footprint = space->GetFootprint();
304 EXPECT_LE(footprint, growth_limit);
305 EXPECT_GE(space->Size(), footprint);
306 EXPECT_LE(space->Size(), growth_limit);
307
308 // Clean up.
309 space->Free(self, large_object.Assign(nullptr));
310
311 // Consistency check of the footprint.
312 footprint = space->GetFootprint();
313 EXPECT_LE(footprint, growth_limit);
314 EXPECT_GE(space->Size(), footprint);
315 EXPECT_LE(space->Size(), growth_limit);
316 }
317
318 template <class Super>
SizeFootPrintGrowthLimitAndTrimDriver(size_t object_size,CreateSpaceFn create_space)319 void SpaceTest<Super>::SizeFootPrintGrowthLimitAndTrimDriver(size_t object_size,
320 CreateSpaceFn create_space) {
321 if (object_size < SizeOfZeroLengthByteArray()) {
322 // Too small for the object layout/model.
323 return;
324 }
325 size_t initial_size = 4 * MB;
326 size_t growth_limit = 8 * MB;
327 size_t capacity = 16 * MB;
328 MallocSpace* space(create_space("test", initial_size, growth_limit, capacity));
329 ASSERT_TRUE(space != nullptr);
330
331 // Basic consistency check.
332 EXPECT_EQ(space->Capacity(), growth_limit);
333 EXPECT_EQ(space->NonGrowthLimitCapacity(), capacity);
334
335 // Make space findable to the heap, will also delete space when runtime is cleaned up
336 AddSpace(space);
337
338 // In this round we don't allocate with growth and therefore can't grow past the initial size.
339 // This effectively makes the growth_limit the initial_size, so assert this.
340 SizeFootPrintGrowthLimitAndTrimBody(space, object_size, 1, initial_size);
341 SizeFootPrintGrowthLimitAndTrimBody(space, object_size, 2, growth_limit);
342 // Remove growth limit
343 space->ClearGrowthLimit();
344 EXPECT_EQ(space->Capacity(), capacity);
345 SizeFootPrintGrowthLimitAndTrimBody(space, object_size, 3, capacity);
346 }
347
348 #define TEST_SizeFootPrintGrowthLimitAndTrimStatic(name, spaceName, spaceFn, size) \
349 TEST_F(spaceName##StaticTest, SizeFootPrintGrowthLimitAndTrim_AllocationsOf_##name) { \
350 SizeFootPrintGrowthLimitAndTrimDriver(size, spaceFn); \
351 }
352
353 #define TEST_SizeFootPrintGrowthLimitAndTrimRandom(name, spaceName, spaceFn, size) \
354 TEST_F(spaceName##RandomTest, SizeFootPrintGrowthLimitAndTrim_RandomAllocationsWithMax_##name) { \
355 SizeFootPrintGrowthLimitAndTrimDriver(-(size), spaceFn); \
356 }
357
358 #define TEST_SPACE_CREATE_FN_STATIC(spaceName, spaceFn) \
359 class spaceName##StaticTest : public SpaceTest<CommonRuntimeTest> { \
360 }; \
361 \
362 TEST_SizeFootPrintGrowthLimitAndTrimStatic(12B, spaceName, spaceFn, 12) \
363 TEST_SizeFootPrintGrowthLimitAndTrimStatic(16B, spaceName, spaceFn, 16) \
364 TEST_SizeFootPrintGrowthLimitAndTrimStatic(24B, spaceName, spaceFn, 24) \
365 TEST_SizeFootPrintGrowthLimitAndTrimStatic(32B, spaceName, spaceFn, 32) \
366 TEST_SizeFootPrintGrowthLimitAndTrimStatic(64B, spaceName, spaceFn, 64) \
367 TEST_SizeFootPrintGrowthLimitAndTrimStatic(128B, spaceName, spaceFn, 128) \
368 TEST_SizeFootPrintGrowthLimitAndTrimStatic(1KB, spaceName, spaceFn, 1 * KB) \
369 TEST_SizeFootPrintGrowthLimitAndTrimStatic(4KB, spaceName, spaceFn, 4 * KB) \
370 TEST_SizeFootPrintGrowthLimitAndTrimStatic(1MB, spaceName, spaceFn, 1 * MB) \
371 TEST_SizeFootPrintGrowthLimitAndTrimStatic(4MB, spaceName, spaceFn, 4 * MB) \
372 TEST_SizeFootPrintGrowthLimitAndTrimStatic(8MB, spaceName, spaceFn, 8 * MB)
373
374 #define TEST_SPACE_CREATE_FN_RANDOM(spaceName, spaceFn) \
375 class spaceName##RandomTest : public SpaceTest<CommonRuntimeTest> { \
376 }; \
377 \
378 TEST_SizeFootPrintGrowthLimitAndTrimRandom(16B, spaceName, spaceFn, 16) \
379 TEST_SizeFootPrintGrowthLimitAndTrimRandom(24B, spaceName, spaceFn, 24) \
380 TEST_SizeFootPrintGrowthLimitAndTrimRandom(32B, spaceName, spaceFn, 32) \
381 TEST_SizeFootPrintGrowthLimitAndTrimRandom(64B, spaceName, spaceFn, 64) \
382 TEST_SizeFootPrintGrowthLimitAndTrimRandom(128B, spaceName, spaceFn, 128) \
383 TEST_SizeFootPrintGrowthLimitAndTrimRandom(1KB, spaceName, spaceFn, 1 * KB) \
384 TEST_SizeFootPrintGrowthLimitAndTrimRandom(4KB, spaceName, spaceFn, 4 * KB) \
385 TEST_SizeFootPrintGrowthLimitAndTrimRandom(1MB, spaceName, spaceFn, 1 * MB) \
386 TEST_SizeFootPrintGrowthLimitAndTrimRandom(4MB, spaceName, spaceFn, 4 * MB) \
387 TEST_SizeFootPrintGrowthLimitAndTrimRandom(8MB, spaceName, spaceFn, 8 * MB)
388
389 } // namespace space
390 } // namespace gc
391 } // namespace art
392
393 #endif // ART_RUNTIME_GC_SPACE_SPACE_TEST_H_
394