• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause
3  *
4  * Copyright (c) 2012 Stephen Montgomery-Smith <stephen@FreeBSD.ORG>
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  *
16  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
17  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
20  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26  * SUCH DAMAGE.
27  */
28 
29 /*
30  * The algorithm is very close to that in "Implementing the complex arcsine
31  * and arccosine functions using exception handling" by T. E. Hull, Thomas F.
32  * Fairgrieve, and Ping Tak Peter Tang, published in ACM Transactions on
33  * Mathematical Software, Volume 23 Issue 3, 1997, Pages 299-335,
34  * http://dl.acm.org/citation.cfm?id=275324.
35  *
36  * See catrig.c for complete comments.
37  *
38  * XXX comments were removed automatically, and even short ones on the right
39  * of statements were removed (all of them), contrary to normal style.  Only
40  * a few comments on the right of declarations remain.
41  */
42 
43 #include <sys/cdefs.h>
44 __FBSDID("$FreeBSD$");
45 
46 #include <complex.h>
47 #include <float.h>
48 
49 #include "math.h"
50 #include "math_private.h"
51 
52 #undef isinf
53 #define isinf(x)	(fabsf(x) == INFINITY)
54 #undef isnan
55 #define isnan(x)	((x) != (x))
56 #define	raise_inexact()	do { volatile float junk __unused = 1 + tiny; } while(0)
57 #undef signbit
58 #define signbit(x)	(__builtin_signbitf(x))
59 
60 static const float
61 A_crossover =		10,
62 B_crossover =		0.6417,
63 FOUR_SQRT_MIN =		0x1p-61,
64 QUARTER_SQRT_MAX =	0x1p61,
65 m_e =			2.7182818285e0,		/*  0xadf854.0p-22 */
66 m_ln2 =			6.9314718056e-1,	/*  0xb17218.0p-24 */
67 pio2_hi =		1.5707962513e0,		/*  0xc90fda.0p-23 */
68 RECIP_EPSILON =		1 / FLT_EPSILON,
69 SQRT_3_EPSILON =	5.9801995673e-4,	/*  0x9cc471.0p-34 */
70 SQRT_6_EPSILON =	8.4572793338e-4,	/*  0xddb3d7.0p-34 */
71 SQRT_MIN =		0x1p-63;
72 
73 static const volatile float
74 pio2_lo =		7.5497899549e-8,	/*  0xa22169.0p-47 */
75 tiny =			0x1p-100;
76 
77 static float complex clog_for_large_values(float complex z);
78 
79 static inline float
f(float a,float b,float hypot_a_b)80 f(float a, float b, float hypot_a_b)
81 {
82 	if (b < 0)
83 		return ((hypot_a_b - b) / 2);
84 	if (b == 0)
85 		return (a / 2);
86 	return (a * a / (hypot_a_b + b) / 2);
87 }
88 
89 static inline void
do_hard_work(float x,float y,float * rx,int * B_is_usable,float * B,float * sqrt_A2my2,float * new_y)90 do_hard_work(float x, float y, float *rx, int *B_is_usable, float *B,
91     float *sqrt_A2my2, float *new_y)
92 {
93 	float R, S, A;
94 	float Am1, Amy;
95 
96 	R = hypotf(x, y + 1);
97 	S = hypotf(x, y - 1);
98 
99 	A = (R + S) / 2;
100 	if (A < 1)
101 		A = 1;
102 
103 	if (A < A_crossover) {
104 		if (y == 1 && x < FLT_EPSILON * FLT_EPSILON / 128) {
105 			*rx = sqrtf(x);
106 		} else if (x >= FLT_EPSILON * fabsf(y - 1)) {
107 			Am1 = f(x, 1 + y, R) + f(x, 1 - y, S);
108 			*rx = log1pf(Am1 + sqrtf(Am1 * (A + 1)));
109 		} else if (y < 1) {
110 			*rx = x / sqrtf((1 - y) * (1 + y));
111 		} else {
112 			*rx = log1pf((y - 1) + sqrtf((y - 1) * (y + 1)));
113 		}
114 	} else {
115 		*rx = logf(A + sqrtf(A * A - 1));
116 	}
117 
118 	*new_y = y;
119 
120 	if (y < FOUR_SQRT_MIN) {
121 		*B_is_usable = 0;
122 		*sqrt_A2my2 = A * (2 / FLT_EPSILON);
123 		*new_y = y * (2 / FLT_EPSILON);
124 		return;
125 	}
126 
127 	*B = y / A;
128 	*B_is_usable = 1;
129 
130 	if (*B > B_crossover) {
131 		*B_is_usable = 0;
132 		if (y == 1 && x < FLT_EPSILON / 128) {
133 			*sqrt_A2my2 = sqrtf(x) * sqrtf((A + y) / 2);
134 		} else if (x >= FLT_EPSILON * fabsf(y - 1)) {
135 			Amy = f(x, y + 1, R) + f(x, y - 1, S);
136 			*sqrt_A2my2 = sqrtf(Amy * (A + y));
137 		} else if (y > 1) {
138 			*sqrt_A2my2 = x * (4 / FLT_EPSILON / FLT_EPSILON) * y /
139 			    sqrtf((y + 1) * (y - 1));
140 			*new_y = y * (4 / FLT_EPSILON / FLT_EPSILON);
141 		} else {
142 			*sqrt_A2my2 = sqrtf((1 - y) * (1 + y));
143 		}
144 	}
145 }
146 
147 float complex
casinhf(float complex z)148 casinhf(float complex z)
149 {
150 	float x, y, ax, ay, rx, ry, B, sqrt_A2my2, new_y;
151 	int B_is_usable;
152 	float complex w;
153 
154 	x = crealf(z);
155 	y = cimagf(z);
156 	ax = fabsf(x);
157 	ay = fabsf(y);
158 
159 	if (isnan(x) || isnan(y)) {
160 		if (isinf(x))
161 			return (CMPLXF(x, y + y));
162 		if (isinf(y))
163 			return (CMPLXF(y, x + x));
164 		if (y == 0)
165 			return (CMPLXF(x + x, y));
166 		return (CMPLXF(nan_mix(x, y), nan_mix(x, y)));
167 	}
168 
169 	if (ax > RECIP_EPSILON || ay > RECIP_EPSILON) {
170 		if (signbit(x) == 0)
171 			w = clog_for_large_values(z) + m_ln2;
172 		else
173 			w = clog_for_large_values(-z) + m_ln2;
174 		return (CMPLXF(copysignf(crealf(w), x),
175 		    copysignf(cimagf(w), y)));
176 	}
177 
178 	if (x == 0 && y == 0)
179 		return (z);
180 
181 	raise_inexact();
182 
183 	if (ax < SQRT_6_EPSILON / 4 && ay < SQRT_6_EPSILON / 4)
184 		return (z);
185 
186 	do_hard_work(ax, ay, &rx, &B_is_usable, &B, &sqrt_A2my2, &new_y);
187 	if (B_is_usable)
188 		ry = asinf(B);
189 	else
190 		ry = atan2f(new_y, sqrt_A2my2);
191 	return (CMPLXF(copysignf(rx, x), copysignf(ry, y)));
192 }
193 
194 float complex
casinf(float complex z)195 casinf(float complex z)
196 {
197 	float complex w = casinhf(CMPLXF(cimagf(z), crealf(z)));
198 
199 	return (CMPLXF(cimagf(w), crealf(w)));
200 }
201 
202 float complex
cacosf(float complex z)203 cacosf(float complex z)
204 {
205 	float x, y, ax, ay, rx, ry, B, sqrt_A2mx2, new_x;
206 	int sx, sy;
207 	int B_is_usable;
208 	float complex w;
209 
210 	x = crealf(z);
211 	y = cimagf(z);
212 	sx = signbit(x);
213 	sy = signbit(y);
214 	ax = fabsf(x);
215 	ay = fabsf(y);
216 
217 	if (isnan(x) || isnan(y)) {
218 		if (isinf(x))
219 			return (CMPLXF(y + y, -INFINITY));
220 		if (isinf(y))
221 			return (CMPLXF(x + x, -y));
222 		if (x == 0)
223 			return (CMPLXF(pio2_hi + pio2_lo, y + y));
224 		return (CMPLXF(nan_mix(x, y), nan_mix(x, y)));
225 	}
226 
227 	if (ax > RECIP_EPSILON || ay > RECIP_EPSILON) {
228 		w = clog_for_large_values(z);
229 		rx = fabsf(cimagf(w));
230 		ry = crealf(w) + m_ln2;
231 		if (sy == 0)
232 			ry = -ry;
233 		return (CMPLXF(rx, ry));
234 	}
235 
236 	if (x == 1 && y == 0)
237 		return (CMPLXF(0, -y));
238 
239 	raise_inexact();
240 
241 	if (ax < SQRT_6_EPSILON / 4 && ay < SQRT_6_EPSILON / 4)
242 		return (CMPLXF(pio2_hi - (x - pio2_lo), -y));
243 
244 	do_hard_work(ay, ax, &ry, &B_is_usable, &B, &sqrt_A2mx2, &new_x);
245 	if (B_is_usable) {
246 		if (sx == 0)
247 			rx = acosf(B);
248 		else
249 			rx = acosf(-B);
250 	} else {
251 		if (sx == 0)
252 			rx = atan2f(sqrt_A2mx2, new_x);
253 		else
254 			rx = atan2f(sqrt_A2mx2, -new_x);
255 	}
256 	if (sy == 0)
257 		ry = -ry;
258 	return (CMPLXF(rx, ry));
259 }
260 
261 float complex
cacoshf(float complex z)262 cacoshf(float complex z)
263 {
264 	float complex w;
265 	float rx, ry;
266 
267 	w = cacosf(z);
268 	rx = crealf(w);
269 	ry = cimagf(w);
270 	if (isnan(rx) && isnan(ry))
271 		return (CMPLXF(ry, rx));
272 	if (isnan(rx))
273 		return (CMPLXF(fabsf(ry), rx));
274 	if (isnan(ry))
275 		return (CMPLXF(ry, ry));
276 	return (CMPLXF(fabsf(ry), copysignf(rx, cimagf(z))));
277 }
278 
279 static float complex
clog_for_large_values(float complex z)280 clog_for_large_values(float complex z)
281 {
282 	float x, y;
283 	float ax, ay, t;
284 
285 	x = crealf(z);
286 	y = cimagf(z);
287 	ax = fabsf(x);
288 	ay = fabsf(y);
289 	if (ax < ay) {
290 		t = ax;
291 		ax = ay;
292 		ay = t;
293 	}
294 
295 	if (ax > FLT_MAX / 2)
296 		return (CMPLXF(logf(hypotf(x / m_e, y / m_e)) + 1,
297 		    atan2f(y, x)));
298 
299 	if (ax > QUARTER_SQRT_MAX || ay < SQRT_MIN)
300 		return (CMPLXF(logf(hypotf(x, y)), atan2f(y, x)));
301 
302 	return (CMPLXF(logf(ax * ax + ay * ay) / 2, atan2f(y, x)));
303 }
304 
305 static inline float
sum_squares(float x,float y)306 sum_squares(float x, float y)
307 {
308 
309 	if (y < SQRT_MIN)
310 		return (x * x);
311 
312 	return (x * x + y * y);
313 }
314 
315 static inline float
real_part_reciprocal(float x,float y)316 real_part_reciprocal(float x, float y)
317 {
318 	float scale;
319 	uint32_t hx, hy;
320 	int32_t ix, iy;
321 
322 	GET_FLOAT_WORD(hx, x);
323 	ix = hx & 0x7f800000;
324 	GET_FLOAT_WORD(hy, y);
325 	iy = hy & 0x7f800000;
326 #define	BIAS	(FLT_MAX_EXP - 1)
327 #define	CUTOFF	(FLT_MANT_DIG / 2 + 1)
328 	if (ix - iy >= CUTOFF << 23 || isinf(x))
329 		return (1 / x);
330 	if (iy - ix >= CUTOFF << 23)
331 		return (x / y / y);
332 	if (ix <= (BIAS + FLT_MAX_EXP / 2 - CUTOFF) << 23)
333 		return (x / (x * x + y * y));
334 	SET_FLOAT_WORD(scale, 0x7f800000 - ix);
335 	x *= scale;
336 	y *= scale;
337 	return (x / (x * x + y * y) * scale);
338 }
339 
340 float complex
catanhf(float complex z)341 catanhf(float complex z)
342 {
343 	float x, y, ax, ay, rx, ry;
344 
345 	x = crealf(z);
346 	y = cimagf(z);
347 	ax = fabsf(x);
348 	ay = fabsf(y);
349 
350 	if (y == 0 && ax <= 1)
351 		return (CMPLXF(atanhf(x), y));
352 
353 	if (x == 0)
354 		return (CMPLXF(x, atanf(y)));
355 
356 	if (isnan(x) || isnan(y)) {
357 		if (isinf(x))
358 			return (CMPLXF(copysignf(0, x), y + y));
359 		if (isinf(y))
360 			return (CMPLXF(copysignf(0, x),
361 			    copysignf(pio2_hi + pio2_lo, y)));
362 		return (CMPLXF(nan_mix(x, y), nan_mix(x, y)));
363 	}
364 
365 	if (ax > RECIP_EPSILON || ay > RECIP_EPSILON)
366 		return (CMPLXF(real_part_reciprocal(x, y),
367 		    copysignf(pio2_hi + pio2_lo, y)));
368 
369 	if (ax < SQRT_3_EPSILON / 2 && ay < SQRT_3_EPSILON / 2) {
370 		raise_inexact();
371 		return (z);
372 	}
373 
374 	if (ax == 1 && ay < FLT_EPSILON)
375 		rx = (m_ln2 - logf(ay)) / 2;
376 	else
377 		rx = log1pf(4 * ax / sum_squares(ax - 1, ay)) / 4;
378 
379 	if (ax == 1)
380 		ry = atan2f(2, -ay) / 2;
381 	else if (ay < FLT_EPSILON)
382 		ry = atan2f(2 * ay, (1 - ax) * (1 + ax)) / 2;
383 	else
384 		ry = atan2f(2 * ay, (1 - ax) * (1 + ax) - ay * ay) / 2;
385 
386 	return (CMPLXF(copysignf(rx, x), copysignf(ry, y)));
387 }
388 
389 float complex
catanf(float complex z)390 catanf(float complex z)
391 {
392 	float complex w = catanhf(CMPLXF(cimagf(z), crealf(z)));
393 
394 	return (CMPLXF(cimagf(w), crealf(w)));
395 }
396